
Collision of Random Walks and a
Refined Analysis of Attacks on the

Discrete Logarithm Problem

Shuji Kijima1 and Ravi Montenegro2(B)

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka 819-0395, Japan

kijima@inf.kyushu-u.ac.jp
2 Department of Mathematical Sciences, University of Massachusetts Lowell,

Lowell, MA 01854, USA
ravi montenegro@uml.edu

Abstract. Some of the most efficient algorithms for finding the discrete
logarithm involve pseudo-random implementations of Markov chains,
with one or more “walks” proceeding until a collision occurs, i.e. some
state is visited a second time. In this paper we develop a method for
determining the expected time until the first collision. We use our tech-
nique to examine three methods for solving discrete-logarithm problems:
Pollard’s Kangaroo, Pollard’s Rho, and a few versions of Gaudry-Schost.
For the Kangaroo method we prove new and fairly precise matching
upper and lower bounds. For the Rho method we prove the first rigorous
non-trivial lower bound, and under a mild assumption show matching
upper and lower bounds. Our Gaudry-Schost results are heuristic, but
improve on the prior limited understanding of this method. We also give
results for parallel versions of these algorithms.

1 Introduction

Given a cyclic group G = 〈g〉 and an element h ∈ G, the discrete-logarithm
problem asks to find a solution x to h = gx. Shoup showed that for a generic
cyclic group this requires Ω(

√|G|) group operations [17], although this bound
can be beaten for many representations of such groups. The discrete-logarithm
problem over a random group of elliptic curves seems to be as hard as this lower
bound, which has led to its use in cryptosystems.

Several methods have been proposed which use a pseudo-random “walk” to
achieve heuristic run time equal to Shoup’s lower bound. Each step of these walks
will involve a single group operation and so the number of steps (run time) will
equal the number of group operations until discrete logarithm is found, aside
from a small amount of pre-computation. In this paper we give a fairly general
method for understanding the performance of such methods, and in particular

R. Montenegro—Supported by a Japan Society for Promotion of Science (JSPS)
Fellowship while a guest at Kyushu University.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 127–149, 2015.
DOI: 10.1007/978-3-662-46447-2 6

128 S. Kijima and R. Montenegro

for understanding the extent to which they will be slower than predicted by
simple heuristics. We use our method to show very precise estimates on run
time of three such methods: Pollard’s Rho, Pollard’s Kangaroo, and Gaudry-
Schost. These methods have been used for attacks on problems of cryptographic
significance. For instance, a parallelized Pollard’s Rho method was used in an
attack on Certicom’s challenge problem ECC2K-130 [2], while an attack based
on Gaudry-Schost was used to break a proposed EMVco protocol to replace the
chip-and-pin system used in over 1.6 billion payments cards [3].

1.1 Description of Algorithms

Before describing our results we review the algorithms being considered. Methods
of detecting collisions, such as via distinguished points or Floyd’s cycle finding
method, will not be discussed.

For Pollard’s Rho, partition G into 3 roughly equal sized pieces S1, S2, S3,
and define an iterating function

F (X) =

⎧
⎪⎨

⎪⎩

Xg if X ∈ S1,

Xh if X ∈ S2,

X2 if X ∈ S3.

Let X0 = h = gx and repeatedly iterate with Xi+1 = F (Xi). Continue until the
first time that some Xi = Xj , known as a “collision.” If we keep track of the
exponent Xi = gai+bix then gai+bi x = gaj+bj x. The discrete logarithm is then
x ≡ (ai−aj)(bj −bi)−1 mod |G|, except in the rare degenerate case when bi ≡ bj

mod |G|. Teske suggests an “additive” version that is faster in practice. For a
fixed integer r define r step types s1, s2, . . ., sr by choosing αk, βk uniformly at
random from {0, 1, . . . , |G| − 1} and setting sk = gαkhβk = gαk+βkx. Then take
r partitions S1, S2, . . ., Sr, set F (X) = X sk on Sk, and proceed as before. One
way to parallelize is to start M processors at different randomly chosen states:
gαhβ = gα+βx with α, β ∈ [0, |G| − 1]. These may be re-randomized every time
a distinguished point is encountered (see Gaudry-Schost below and [19]).

Pollard’s Kangaroo method applies when it is known that x ∈ [a, a + N) for
some a,N ≤ |G|. Set X0 = h = gx and Y0 = ga+�N/2�. Take d + 1 partitions S0,
S1, . . ., Sd, set F (X) = X g2

k

on Sk, and repeatedly iterate both processes with
Xi+1 = Xi F (Xi) and Yi+1 = Yi F (Yi). Once some Xi = Yj , say at Xi = gx+α

and Yj = ga+�N/2�+β , then x ≡ a + �N/2� + β − α mod |G|, and the discrete
logarithm is found. The processes Xi and Yj are known as the wild and tame
kangaroos respectively.

In the Gaudry-Schost method the discrete logarithm x is known to lie in a
hypercube [a, b]n with volume N = (b − a + 1)n. We discuss only the n = 1
version here, although our technique applies in higher dimensions as well. Let A
be a region centered at the unknown discrete logarithm x, let B be a duplicate
of this region but centered at a predetermined value within the hypercube such
as the centerpoint, and let D be a set of distinguished points covering roughly a θ

A Refined Analysis of Attacks on Discrete Logarithm 129

fraction of group elements. For a pre-specified integer r and average step size m
choose r step types s1, s2, . . . , sr uniformly at random from [1, 2m), and partition
the space into r pieces S1, S2, . . ., Sr. Use iterating function F (X) = X gsi if
X ∈ Si, except for the θ fraction of the time that X is a distinguished point and
F transitions to a point chosen uniformly at random in A or B. Proceed until
some Xi = Yj , say with Xi = gx+α and Yj = gβ , at which point the discrete
logarithm is x ≡ β − α mod |G|. This will usually be in A ∩ B, but could be
slightly outside this region. One way to parallelize is to start M/2 processors at
different randomly chosen states in A, and M/2 in B.

1.2 Heuristic Run Time

The attacks just described involve pseudo-random processes on G which proceed
until a collision: either a single walk proceeds until it visits a state (group ele-
ment) it has previously been to, or two walks proceed until each has visited a
common state (group element). If we treat these as truly random processes then
there are natural heuristic arguments for their run time.

Pollard’s Rho resembles a random walk which proceeds until some state is
visited twice. If each transition were a uniform random sample from G then
the birthday paradox would suggest run time of

√
π
2 |G| ≈ 1.25

√|G|. However,
because the process only has 3 transition types, consecutive states are highly
dependent and the true run time is about 30% slower. Teske’s additive version is
significantly slower when there are r = 3 transition types, but is nearly as good
as the birthday heuristic when r is large, e.g. r = 16. Several improvements have
been made on this basic heuristic, see Section 2.1. The parallel version with M
processors generates samples M times faster, and so is M times faster.

Pollard’s Kangaroo resembles two random walks which proceed until they
visit some common state. Let d ∼ log2

√
N +log2(log2

√
N)−2 be such that the

average transition size is m = 1
d+1

∑d
k=0 2k ≈ 1

2

√
N . After a warmup of around

ET = E
|X0−Y0|

m = N
4m = 1

2

√
N steps, the walk starting with smaller exponent

of X0 = gx and Y0 = ga+N/2 will have caught up to the initial location of the
other walk. Each walk visits a 1/m fraction of states, so at each subsequent
step there is probability p ≈ 1/m of a “collision,” for expected runtime of about
2(ET + m) ≈ 2

√
N . However, because the process only has (d + 1) transition

types there are dependencies and the probability of a collision varies significantly
from step to step, with probability often 0.

The Gaudry-Schost method resembles two random walks, one in A and one
in B, where each step produces a sample from A ∩ B with probability roughly
|A∩B|

|A| . A generalized birthday problem [14] suggests that each walk should take
1
2

√
π |A ∩ B| samples from A ∩ B until collision, for an expected run time of

2 |A|
|A∩B|

1
2

√
π |A ∩ B| transitions. But again, consecutive states are highly depen-

dent unless a distinguished point was just visited. Once again, the parallel version
generates samples M times faster.

The largest flaw in each heuristic is that consecutive states are highly
dependent. One solution might be if Rho, for instance, used an iterating function

130 S. Kijima and R. Montenegro

F : G → G that outputs a pseudo-random uniform sample from the entirety of
G. However, computing random values of gαhβ is slow. Even if in an average
of only two group operations sufficed, finding the discrete logarithm would take
2 × 1.25

√|G| group operations, versus 1.6
√|G| for Pollard’s Rho and under

1.3
√|G| for Teske’s additive version. So the dependencies in these algorithms

are an important component of their fast run time. An improved method for
understanding the effects of dependencies could thus help to minimize their neg-
ative effects.

1.3 New Results

Each algorithm considered here is entirely deterministic once the partition func-
tion (hash) has been chosen. Indeed, the deterministic nature is necessary for
efficient detection of collisions. However, the hash is usually chosen to “look”
random, and so all attempts to explain these algorithms have treated the itera-
tive process as if it were entirely random until the first collision. Our results will
make this assumption as well, even those we describe as “rigorous.” Since our
concern is with when that collision occurs, not what happens after it, we also
treat these as fully random walks, even after collision. As such we will use the
language of random walks, so that “state” refers to a group element and “run
time” refers to the number of iterations taken. After some precomputation each
iteration requires exactly one group operation, and so run time will be equiva-
lent to counting group operations, except when a distinguished point is hit in
Gaudry-Schost.

The heuristic arguments just described neglect dependencies between con-
secutive states. One way of avoiding this problem is to only consider a subset
of states all of which are τ steps apart, where τ denotes the number of steps
required to lose this dependency, so that Xj is nearly independent of Xi when
|j − i| ≥ τ . However, this would give results which are very weak since a large
fraction of possible collisions are being ignored.

A different approach is to try to measure the extent of the dependency.
Consider how many times two independent random walks can be expected to
collide (visit common states) if they start at the same state and proceed τ steps
until they have lost their initial dependency. We find that this quantity alone is
sufficient to explain the extent to which Pollard’s Kangaroo and Pollard’s Rho
fail to match heuristic bounds. It also explains the vast majority of the slow
down for Gaudry-Schost, although boundary effects along ∂(A ∩ B) also come
into play. The precise quantity we consider is the following:

Definition 1. The collision number Cτ is the expected number of collisions when
two independent copies of a random walk start at the same state, chosen uni-
formly at random, and proceed for τ steps.

Consider the Kangaroo method. This is generally thought to be well under-
stood, in the sense that the heuristic of 2

√
N matches asymptotic behavior.

However, even on groups as large as |G| = 1012 the Kangaroo method runs

A Refined Analysis of Attacks on Discrete Logarithm 131

about 3% slower than predicted by heuristic. We use the collision number to
prove a bound which more-or-less eliminates this error (see Figure 1).

Theorem 2 (Pollard’s Kangaroo). Given a cyclic group G, the Kangaroo
method with power-of-two jumps for computing the discrete logarithm in an inter-
val of size N = o(|G|) has expected run time

2Emin{k : ∃i, j ≤ k, Xi = Yj} =

(
2 +

2

log2 N
+

14

(log2 N)2
+ O((log N)−3)

) √
N .

This extends to transitions other than powers of two if 2 + 2
log2 N + · · · is

replaced by 1 + Cτ .
For Pollard’s Rho method we show the first rigorous non-trivial lower bound

on runtime.

Theorem 3 (Pollard’s Rho). Given a cyclic group G of prime order N , the
Rho method with r step types has expected run time of

Emin{i : ∃j ≤ i − τ), Xi = Xj} ≥ (1 + O(1/N))

√
π

2
N

1 − 1/r

where τ = O(log2 N) for Pollard’s process and τ = O(N2/(r−1)) for Teske’s.

This neglects the o(1) fraction of potential collisions Xi = Xj with i− j < τ ,
except for Teske’s process with r ≤ 5.

Under a fairly mild assumption we can determine the precise run time.

Heuristic 4 (Pollard’s Rho) Given a cyclic group G of prime order N , Pol-
lard’s Rho method has expected run time of

Emin{i : ∃j < i, Xi = Xj} = (1.62555 + O(1/N))
√

N .

Teske’s additive version with r ≥ 6 step types has

Emin{i : ∃j ≤ i, Xi = Xj} = (1 + O(1/N))

√
π

2

N

1 − (1/r + 1/r2 + 2/r3 + O(1/r4))
.

Parallel versions with M threads will take 1/M times as long.

Simulation data matches this to 4 decimals points , so the heuristic is almost
certainly correct.

The final process we consider is the Gaudry-Schost method. This has bound-
ary effects which complicate any attempt at a rigorous proof, and there are too
many variants to analyze them all here. In order to present the ideas without
complicating things excessively we have chosen to analyze one of the simpler
cases [6].

132 S. Kijima and R. Montenegro

Heuristic 5 (Gaudry-Schost) Galbraith and Ruprai’s Gaudry-Schost method
for computing the discrete logarithm on an interval of size N with r step types,
distinguished point probability θ at each state, and average step size m = c θ N
with c small (e.g. c = 0.01), has expected run time

2Emin{k : ∃i, j ≤ k, Xi = Yj}

= (1 + O(1/N))
2

31/2

√

π
N

1 − (1/r + 1/r2 + 2/r3 + O(1/r4))
.

Parallel versions with M threads will take 1/M times as long.

This indicates a slowdown by
√Cτ = 1/

√
1 − (1/r + 1/r2 + 2/r3 + O(1/r4))

over previous heuristics based on the birthday problem. We test our method
on a more complicated case of Gaudry-Schost, namely Galbraith, Pollard, and
Ruprai’s [5] improved 3 walk Gaudry-Schost method for discrete logarithm on
an interval of width N . Our heuristic predicts the runtime within 0.3% of that
found in simulations.

The paper proceeds as follows. In Section 2 we discuss past results on collision
times and also give an overview of our new method for studying collision times.
We apply this method to Pollard’s Kangaroo in Section 3, to Pollard’s Rho in
Section 4, and to Gaudry-Schost in Section 5. Section 6 includes discussion on
computation of Cτ , while Section 7 consolidates our simulation data confirming
the high degree of accuracy in our results.

2 Methods of Studying Collision Time

The attacks considered in this paper depend on iterative processes which proceed
until some group element has been visited twice, a “collision.” In Section 1.2 we
gave simple heuristics for understanding the time until the first collision. In
Section 1.3 we justified treating the attacks as if they involved random walks.
Under this assumption several improvements have been made on the basic heuris-
tic arguments, and we discuss here both those improvements and our new app-
roach to studying collision time.

We use some notation here that may be unfamiliar: f = o(g) if limx→∞
f(x)
g(x) =

0, while f = O(g) if limx→∞
f(x)
g(x) ≤ C for some constant C, and f = O∗(g)

indicates that logarithmic terms are being ignored, e.g. if f = O(x3 log x) then
f = O∗(x3).

2.1 Past Work

Of the three methods we consider, Pollard’s Rho has been studied most heav-
ily. A heuristic based on the birthday problem suggests that it will take an
average of

√
π
2 N = 1.2533

√|G| steps until a collision. However, experimen-
tal data finds the run time to be slower than this, and sometimes significantly

A Refined Analysis of Attacks on Discrete Logarithm 133

so. Blackburn and Murphy [4] borrow an idea of Brent and Pollard to give an
improved heuristic, that for a process with r step types the collision time will be√

π
2

N
1−1/r . Teske gives a heuristic suggesting that her additive version has run

time O(
√

N) when there are r ≥ 5 step types [18]. The first rigorous result for
a Rho method is Miller and Venkatesan’s proof of order O∗(

√
N) for Pollard’s

Rho [12]. Kim, Montenegro, Peres and Tetali [10] improve this to O(
√

N Cτ),
with Pollard’s Rho having expected collision time of ≤ (52.5 + o(1))

√
N . Bailey

et al. [1] extend Blackburn and Murphy’s method to the case where steps do
not all have equal probabilities. Bernstein and Lange [2] take a very different
approach to the problem and yet also arrive at our Heuristic 4 for the special
case of Teske’s additive walks.

Pollard’s Kangaroo method on an interval [a, a + N) is based on a principle
known as the Kruskal Count, which suggests a run time of (2+o(1))

√
N . Pollard

gives a very convincing argument that (2 + o(1))
√

N steps suffice, although it
was not quite rigorous. Montenegro and Tetali give the first rigorous result that
(2 + o(1))

√
N steps suffices [13]. However, their upper and lower bounds do not

agree on the error term, or even whether the run time is greater or less than
2
√

N .
For the Gaudry-Schost method nothing has been shown rigorously, and simu-

lations disagree somewhat with heuristic. This method is complicated by having
several variables: the number of generators, the average step size, and the num-
ber of distinguished points. Our result is thus the first attempt at a bound better
than what can be obtained by a simple generalized birthday problem, and yet it
is quite accurate, predicting runtime within 0.3% of what we find in simulations.

2.2 Our Approach

We take a similar approach to each algorithm. First, choose the appropriate
heuristic from Section 1.2. This would be more-or-less rigorous if the probability
of a collision between every pair of states Xi and Xj were independent, but this
is clearly not the case.

We revise the heuristic by replacing each individual state Xi by a long seg-
ment Si of some L consecutive states, preceded by a short randomization seg-
ment Ri of τ states to ensure that Si is independent of the earlier segments. In
particular, let a0 = 0, b0 = a0 + τ , a� = b�−1 + L, b� = a� + τ .

R� = {Xa�
, . . . , Xb�

}
S� = {Xb�

, . . . , Xa�+1} (1)

By construction segments Si and Sj will be independent when i �= j. If τ � L
almost no collisions will involve randomization segments Ri, while if L is much
less than the expected collision time almost no collisions will involve a segment
Si with itself, leaving almost all collisions to be between distinct segments Si and
Sj . It is generally not hard to modify the heuristic of Section 1.2 to determine
a new and precise estimate of collision time. The hard part is in adding rigor.

134 S. Kijima and R. Montenegro

First, although Cτ is fairly easy to estimate numerically it is very difficult to find
τ and Cτ rigorously. Second, it can be difficult to show that there is indeed a
negligible chance of collisions between a segment Si and itself, or of a collision
involving an Ri segment. Most of the technical work required for rigor is left to
the full version of this paper or cited from prior research, as it is tedious and
not very enlightening.

The simplest approach to parallelization involves starting M threads at M
independent initial points, and recording visits to distinguished points until some
distinguished point is visited a second time. For fixed values of L and τ each
thread will generate a new nearly-independent segment every (τ +L) steps, and
so this form of parallelization produces segments M times faster, and expected
collision time is 1/M times as long.

Our approach is inspired by our past work [10,13], and indeed we borrow
several of the more tedious results from those papers. However, a critical differ-
ence is that we now partition the walk by design, with a conscious goal to rework
prior heuristics. In our past work the walk was partitioned as well, but that was
an artifact of the proof failing to work up to the full collision time. As a result
the partitioning felt unnecessary, the method of proof was harder to follow, and
the results were less precise than obtained in this paper.

3 Pollard’s Kangaroo Method

We begin by studying Pollard’s Kangaroo method, as the argument is somewhat
simpler and sharper than in the Rho or Gaudry-Schost cases.

Collision in the random walk is equivalent to collision in the exponent of g,
i.e. gα = gβ iff α ≡ β mod |G|. This induces an additive form of the process:
let X0 = x, Y0 = a + N/2, and transitions are of the form Xi+1 = Xi + 2k

mod |G| and Yi+1 = Yi + 2� mod |G|, where k, 	 ∈ {0, 1, . . . , d}. Furthermore,
we are most interested in the case when N is much smaller than the group size
|G|, and so wrap-around effects mod |G| can safely be neglected. This lets us
simplify further: assume that |X0 − Y0| ≤ N/2 and take iterations of the form
Xi+1 = Xi + 2k and Yi+1 = Yi + 2�. The Kangaroo process is then a monotone
increasing walk on the integers Z with Xi+1 = Xi + 2k, Yi+1 = Yi + 2�. Due to
this simplification, our upper bound will be valid for all N , but the lower bound
holds only when N = o(|G|).

The goal is to determine the expected time of the first collision between these
processes:

Emin{k : ∃i, j ≤ k, Xi = Yj} .

Because both processes are run simultaneously, the total number of steps taken
is twice this.

The non-rigorous part of the heuristic in Section 1.2 is the claim that colli-
sions occur with probability p ≈ 1/m, and so p−1 ≈ m steps are required until
a collision. We replace this by a claim that there is a p = (1 + o(1))L/m2 prob-
ability of segment Si including a state visited by the tame kangaroo, and so an

A Refined Analysis of Attacks on Discrete Logarithm 135

average of p−1 segments are needed until a collision. The expected run time of
the Kangaroo method is then N

4m + (τ + L)p−1.
This argument neglects potential collisions involving the Ri segments, and

so it is only an upper bound. To show a lower bound we set L = |Si| = 4
√

N
and τ = |Ri| = O((log N)6), so that τ = o(L) and the Ri segments are involved
in only a o(1) fraction of potential collisions. We show in the full version of the
paper that the Ri segments have a negligible probability of being the location
of the first collision.

Why this value for τ? The re-randomization portion Ri is intended to make
the probability of a collision in Si be independent of the outcome of earlier
segments. One approach to this would be to have τ be the mixing time, i.e. the
number of steps required to produce a uniform random sample from G. However,
this is too pessimistic as the Kangaroo method for N ≪ |G| might even solve for
the discrete logarithm in fewer steps than the mixing time. Instead we require
a local mixing property. The follow property, defined by Montenegro and Tetali
[13], suffices:

Definition 6. Consider two independent instances of the same monotone
increasing Markov chain on the infinite state space Z, i.e. walks X0, X1, . . . and
Y0, Y1, . . . such that ∀i : Xi+1 > Xi and ∀j : Yj+1 > Yj. If the Markov chain
has average step size m then the intersection mixing time T (ε) is the smallest
integer with

∀i ≥ T (ε), ∀Y0 ≤ X0 :
1 − ε

m
≤ P (Xi ∈ {Y0, Y1, . . . , Yk, . . .}) ≤ 1 + ε

m
.

In our analysis the walks in Definition 6 will correspond to the wild and
tame kangaroos defined at the beginning of this section. Intersection mixing
time was studied in [13] where Lemma 3.1 shows that the Kangaroo walk with
steps {2k}d

k=0, when treated as a monotone walk on Z, satisfies T (2/(d + 1)) ≤
64(d + 1)5. Mixing type results typically have a dropoff similar to T (ε) =
T (1/e) log(1/ε). Since d ∼ 0.5 log2 N + O(log log N) this suggests that

T (1/N) = O((d + 1)5
log N

log D
) = O((d + 1)6) = O((log N)6) .

Indeed, the proof in [13] can be easily modified to show this.
It remains to determine the probability that a collision occurs in a segment

Sk. The following relation will be used to show this. Given a non-negative random
variable Q:

P (Q > 0) =
EQ

E(Q | Q > 0)
.

Let CSi denote the number of collisions between the tame walk and segment
Si in (1). Each state within Si has probability (1+O(1/N))/m of colliding with
the tame walk. It follows from additivity of expectation that

ECSi = (1 + O(1/N))
L

m
.

136 S. Kijima and R. Montenegro

We next bound the conditional E(CSi | CSi > 0). The first collision is part of
a sequence of Cτ collisions on average, after which each step has probability at
most (1 + 1/N)/m of colliding with the tame walk.

E(CSi | CSi > 0) ≤ (1 + 1/N)
(

Cτ +
L − τ

m

)

To lower bound the expectation, observe that each step of the walk in Si is
equally likely to have a collision, and so the probability that Xi ∈ Si is the
first collision is decreasing in i. As such, with probability at least 1 − τ/L the
collision occurs before the final τ states, in which case it is part of a sequence of
Cτ collisions on average, potentially followed by even more. Then

E(CSi | CSi > 0) ≥ (1 − 1/N)
(
1 − τ

L

)
Cτ .

Combining these various equalities leads to the conclusions:

⇒ E(CSi | CSi > 0) =
(

1 + O

(
L

m
+

τ

L
+

1
N

))
Cτ

⇒ p = P (CSi > 0) =
(

1 + O

(
L

m
+

τ

L
+

1
N

))
L

m Cτ
(2)

The identity for P (CSi > 0) is independent of the outcome on earlier seg-
ments, up to a small error due to the big-O term, and so as was discussed earlier
the number of segments until a collision is p−1. Let L = 4

√
N , and recall that

τ = O(log6 N) and m = Θ(
√

N). The expected collision time of the original
process is

(L + τ)p−1 = (L + τ)
(

1 + O

(
L

m
+

τ

L
+

1
N

))
m Cτ

L
= (1 + O∗(1/

4
√

N))m Cτ .

We leave it to the full version of the paper to prove that the answer does
not change when potential collisions in the re-randomization segments Ri are
considered.

When m = 1
2

√
N the expected number of transitions by the wild kangaroo

is

E
|X0 − Y0|

m
+ (1 + O∗(1/

4
√

N))m Cτ =
1 + Cτ + O∗(1/ 4

√
N)

2

√
N .

The tame kangaroo travels an equal number of steps. Counting both kangaroos
gives Theorem 2.

In Figure 1 we compare our Theorem 2 to the old heuristic of 2
√

N and
simulation data with an (absolute) margin of error of ±0.01

√
N . These show

our bound to be very accurate when N > 1000.

A Refined Analysis of Attacks on Discrete Logarithm 137

4 Pollard’s Rho Method

The analysis for the Rho method is not much different, but a bit more preliminary
work is required, and the result will not be as precise. Our solution focuses on
the case when each step type has equal probability, with a few comments at the
end about generalizing to the non-uniform case. We focus on the non-parallel
case because the parallel case follows immediately from this, as discussed in
Section 2.2.

Pollard’s Rho is equivalent to an additive walk on exponents which starts
at some X0 with 0 ≤ X0 < |G|, and has transitions P (Xi+1 = Xi + 1) =
P (Xi+1 = Xi + x) = P (Xi+1 = 2Xi) = 1/3. Teske’s version has transitions
P (Xi+1 = Xi + sk) = 1/r. Note that Pollard’s Rho is a process with r = 3
transition types. We use the additive walk on exponents in our analysis.

The goal of this section is to determine the expected time of the first collision
between these processes:

Emin{i : ∃j < i, Xi = Xj}
The non-rigorous part of the heuristic in Section 1.2 is in treating every

Xi as if it were an independent uniform random sample from G, and so p =
P (Xi = Xj) = 1/|G| when i �= j, and there are an average

√
π
2 p−1 samples

until collision. We replace this by a claim that every Si and Sj are pairwise
independent, with p = P (Si ∩ Sj �= ∅) ≈ 1/A for some A, and so the expected
number of segments until a collision is around

√
π
2 p−1 =

√
π
2 A. The expected

run time of the Rho method is then (L + τ)
√

π
2 A.

This ignores potential collisions involving an Ri or an Si with itself. However,
if τ = o(L) then collisions involving an Ri segment make up only an o(1) fraction
of potential collisions. Likewise, collisions within an Si are only an o(1) fraction
of potential collisions if L = o(

√
N). For the sake of rigor we show in the full

version of the paper that these in fact have only a negligible probability of being
the location of the first collision.

What is the appropriate value for τ? The re-randomization portion Ri is
intended to make Si independent of earlier segments. It suffices that the first
state in Si be an independent nearly uniform random sample.

∀v, w ∈ V :
1 − 1/N

N
≤ Pτ (v, w) ≤ 1 + 1/N

N
.

The minimum value of τ for which this holds is called “L∞ mixing time.” Mon-
tenegro, Kim, and Tetali [9] showed that for Pollard’s Rho walk τ = O(log3 N),
while Hildebrand [8,18] showed that for Teske’s additive walk τ = O∗(N2/(r−1)).
A slightly weaker notion of mixing should be used for Teske’s process when r < 6,
but we do not consider it here.

We now turn to the proof of Theorem 3. This uses a generalization of the
birthday problem. Consider a family of events E1, E2, . . . such that P (E1) = 0
and P (Ek | ¬Ek−1) = (1 + o(1))k−1

A . Then

Emin{t : Et} = (1 + O(1/A))
√

π

2
A .

138 S. Kijima and R. Montenegro

We prove a more general form of this in the Appendix.
Let CSt denote the number of collisions between the first t segments S1, S2,

. . ., St. We will take Et as the event that CSt > 0, and so we need to determine
P (Et | ¬Et−1).

Consider segment St. It starts at X(t−1)L+tτ , which is a sample within ε =
1/N of uniform, independent of earlier rounds. It proceeds as a random path
containing L states. Assume for now that all transitions are equally likely, so
that all paths are equally likely as well; we discuss the non-uniform case at
the end of the section. There are N × rL−1 possible paths, and each will have
probability between 1±1/N

NrL−1 . In order to have CSt > 0 the path must collide with
one of the ≤ (t − 1)L points appearing in S1, S2, . . . , St−1, denote this as Xj .
There are L positions in the path at which the collision could occur, denote the
chosen location as Xi, and rL−1 possibilities for the remainder of the path, so
at most (t − 1)L2rL−1 potential St segments include collisions. It follows that

P (CSt > 0 | CSt−1 = 0) ≤ (t − 1)L2rL−1(1 + 1/N)
NrL−1(1 − 1/N)

=
(t − 1)(1 + O(1/N))

N/L2

⇒ Emin{t : CSt > 0} ≥ (1 + O(L2/N))

√
π

2
N

L2

Each round introduced τ + L new states, so this suggests run time of

Emin{i : ∃j < i, Xi = Xj} � (τ + L)(1 + O(L2/N))

√
π

2
N

L2

= (1 + O(L2/N) + O(τ/L))
√

π

2
N

This is just the birthday heuristic. We can improve on this by reducing
double-counting of paths. In the construction just given, once Xi and Xj have
been decided on, do not construct paths with Xi−1 = Xj−1, as these paths will
be counted anyway. This reduces the number of segments with Xi = Xj from
rL−1 to (r−1)rL−2, unless Xi or Xj is the first state in their respective segment.
This results in:

P (CSt > 0 | CSt−1 = 0) ≤ (1 − 1/L)2(1 − 1/r)(t − 1)L2 rL−1

N rL−1

1 + 1/N

1 − 1/N

= (1 + O(1/L) + O(1/N))
(t − 1)(1 − 1/r)L2

N

⇒ Emin{t : CSt > 0} ≥ (1 + O(L2/N))

√
π

2
N

L2(1 − 1/r)

⇒ Emin{i : ∃j < i, Xi = Xj} � (1 + O(L2/N) + O(τ/L))

√
π

2
N

1 − 1/r

In the full version of the paper we make the final line rigorous, with the added
condition that j ≤ i − τ , and so � can (almost) be replaced by ≥.

A Refined Analysis of Attacks on Discrete Logarithm 139

The bound can be made more-or-less sharp, but at the cost of rigor. A path
with first collision at Xi = Xj will have an average of Cτ collisions in the next τ
steps, and so we counted colliding paths Cτ times each on average. The number
of colliding paths is only (1 − τ/L)/Cτ of our original rough estimate.

P (CSt > 0 | It = 0) ≈ (t − 1)L2 rL−1/Cτ

N rL−1

1 + O(1/N)
1 − O(1/N)

=
(t − 1)L2

CτN
(1 + O(1/N))

⇒ Emin{t : CSt > 0} ≈ (1 + O(L2/N))

√
π

2
N Cτ

L2

⇒ Emin{i : ∃j < i, Xi = Xj} ≈ (1 + O(L2/N) + O(τ/L))
√

π

2
N Cτ

The non-rigor here is in ignoring the effects of the condition CSt−1 = 0 on
the expected number of collisions after Xi = Xj . However, given that only an
O(1/

√
N) fraction of states will be covered before the expected collision time

this effect should be quite minimal. Indeed, the simulations data discussed in
Section 7 show that our heuristic has 4 or more digits of accuracy.

The approximation Cτ ≥ C1 gives our earlier weaker, but rigorous, result, so
this is an extension of what we know to be true. Pollard’s walk has τ = O(log3 N)
[9] and so when L = 3

√
N we get run time (1 + O∗(1/ 3

√
N))

√
π
2 N Cτ . Teske’s

additive walks have τ = O(N2/(r−1)) [18] and so if r ≥ 6 then L = N0.5−ε for
small ε will suffice to show run time of (1 + o(1))

√
π
2 N Cτ , while if r = 5 then

L =
√

N will show O
(√

π
2 N Cτ

)
. These are consistent with Teske’s observation

that the walk slows considerably when r ≤ 4.

Remark 7. When the transitions have non-uniform probabilities nearly every-
thing just argued still applies, because in our construction of colliding paths we
allow all possible transitions to occur. The sole exception is the 1 − 1/r correc-
tion. In this case it suffices to replace 1/r by the smallest transition probability.
That is of course pessimistic, but is difficult to avoid in a rigorous argument.
The Cτ bound does not suffer this weakness and again seems to be sharp.

5 Gaudry-Schost

There are many variations of the Gaudry-Schost method, with versions to solve
multi-dimensional discrete logarithms, to speed up the algorithm by making the
regions non-hypercubes, to speed up by considering collision of 3 or 4 walks
on differing regions, etc [5–7]. Our technique can be applied in each of these
settings, but for simplicity we will consider only the simplest case, an early one-
dimensional version [7]. We comment on a few other versions at the end of this
section and in Section 7.

The non-rigorous part of the heuristic is in ignoring the dependence between
states such as Xi and Xi+1. We resolve this by breaking the X and Y walks

140 S. Kijima and R. Montenegro

into segments SX
i and SX

j that are independent. The most natural choice for
segments is to let SX

i denote the states visited by walk X between the (i − 1)st

and ith distinguished points, including the ith, and define SY
i and RY

i similarly.
This implicitly sets RX

i = ∅. The length |Si| is a random variable with geometric
distribution P (|Si| =) = (1 − θ)�−1 θ and expectation E|Si| = θ−1.

As before, we consider the probability that two segments collide, this time
segments SX

i and SY
j . To simplify the discussion we ignore boundary effects

and assume that all segments are in A ∩ B, since this is the only area in which
collisions can occur. There are two main types of boundary effects: when walk
X crosses into B it effectively increases the size of A ∩ B, which improves the
runtime, but when it crosses into Ac it effectively increases the size of A which
decreases the runtime. A careful analysis finds that these effects almost exactly
cancel out.

Let Et denote the number of times that one of the first t segments for X
intersects one of the first t segments for Y . As in the analysis of the Kanga-
roo method, we will use the relation that for a non-negative random variable
P (Q > 0) = EQ

E(Q | Q>0) .
First, consider the chance that SX

t intersects with one of the first (t − 1)
segments of the Y walk.

P
(
SX

t ∩ (∪t−1
j=1S

Y
j

) �= ∅ | Et−1 = 0
) ≈

θ−1 × (t − 1) θ−1

|A∩B|
Cτ

=
t − 1

θ2Cτ |A ∩ B|

Next, consider the chance that SY
t intersects with one of the first t segments of

the X walk, if it has not collided already:

P
(
SY

t ∩ (∪t
j=1S

X
j

) �= ∅ | Et−1 = 0 ∧ SX
t ∩ (∪t−1

j=1S
Y
j

)
= ∅) ≈

θ−1 × t θ−1

|A∩B|
Cτ

=
t

θ2Cτ |A ∩ B|
Then

P (Et > 0 | Et−1 = 0) ≈ t − 1
θ2Cτ |A ∩ B| +

(
1 − t − 1

θ2Cτ |A ∩ B|
)

t

θ2Cτ |A ∩ B| (3)

The two-walk birthday problem generalizes to say that if Et is a non-negative
random variable such that

P (Et > 0 | Et−1 = 0) =
t − 1
N +

(
1 − t − 1

N
)

t

N
then

Emin{t : Et > 0} = (1 + O(1/N))
1
2

√
πN .

A Refined Analysis of Attacks on Discrete Logarithm 141

Equation (3) satisfies the condition when N = θ2Cτ |A ∩ B|, and so each
walk requires an average of 1

2

√
πN segments in A ∩ B. If we ignore boundary

effects, then each segment from the X walk has probability |A∩B|
|A| of being in

A∩B, while each segment from Y has probability |A∩B|
|B| of this. So drawing the

required number of samples from A ∩ B requires an average of

|A|
|A ∩ B|

1
2

√
πθ2 Cτ |A ∩ B|

segments from X and a similar number from the Y process. Each segment
involved an average of θ−1 steps of the walk, so the number of steps of the
walks is |A| + |B|

2|A ∩ B|
√

π Cτ |A ∩ B| .
For instance, Galbraith and Ruprai’s improved version of Gaudry-Schost [6]

uses regions with |A|/|A ∩ B| = |B|/|A ∩ B| = 2 and |A ∩ B| = N/3. This leads
to a runtime estimate of 2

31/2

√
π Cτ N , which is a factor

√Cτ times slower than
previous predictions. Our simulations find that this is within 0.3% of the correct
runtime. See Section 7 for further details.

6 The Collision Number

Almost all of our bounds consider the collision number Cτ . We remind the reader
of its definition.

Definition 8. The collision number Cτ is the expected number of collisions when
two independent copies of a random walk start at the same state, chosen uni-
formly at random, and proceed for τ steps.

The fact that this is an average case behavior means that we can ignore the
possibility of bad start values, as these are rare. Determining this value exactly
is still generally prohibitive, but upper and lower bounds of arbitrary precision
are possible.

The simplest approximation on the collision number is the lower bound Cτ ≥
C� for 	 ≤ τ . When Cτ ≥ C0 = 1 is used our bounds simply reduce to the
heuristic results of Section 1.2. When Cτ ≥ C1 = 1+1/r is used the Rho heuristic
of Heuristic 4 reduces to Theorem 3; this also gives Blackburn and Murphy’s
heuristic. When Cτ ≥ C2 is used then we start producing new results.

For small terms such as C2 it is typically possible to compute the value exactly
by hand. We give a few examples below.

Another method of estimating Cτ is to observe that most collisions will occur
quickly, and once a collision does occur then it should be followed by roughly
another Cτ collisions. Hence, if p� is the probability of a collision within a small
number of steps 	 then

Cτ ≥ 1 + p� Cτ

⇒ Cτ ≥ 1
1 − p�

(4)

142 S. Kijima and R. Montenegro

For very small 	 this can be computed by hand, but it is usually better to involve
a computer. The values produced by this estimate are quite accurate.

Simulation data shown in Section 7 shows that our heuristics are very precise.
The methods of computing each Cτ will not differ much, so we only give detailed
work for Pollard’s Rho while keeping the work short for Pollard’s Kangaroo and
Gaudry-Schost.

Example 9 (Pollard’s Kangaroo). Consider p1. This requires both walks to make
the same initial transition X1 = X0 + 2k = Y1, so p1 = 1/(d + 1) and

Cτ ≥ 1
1 − p1

= 1 +
1
d

= 1 +
2

log2 N

Consider p2. This requires both to make the same initial transition, or do the
first two steps in reversed order, or one walk does the same step twice making
it add up to the other walk’s value. Then

p2 =
1

d + 1
+

(
d + 1

2

)
1

(d + 1)4
+ 2d

1
(d + 1)3

=
2

log2 N
+

10
(log2 N)2

+ O((log N)−3) .

As N → ∞ this goes to zero, so we can use the relation 1/(1 − p) → 1 + p +
p2 + · · · . This gives the relation

Cτ ≥ 1 +
2

log2 N
+

14
(log2 N)2

+ O((log N)−3) .

This is quite accurate. See Section 7 for a plot using a version of this bound.

Example 10 (Teske’s Additive Walks). For Teske’s additive version of Pollard’s
Rho there are r step types of the form X → X + si. Consider the probability
that two independent walks with X0 = Y0 intersect within 	 = 3 steps:

P (∃i, j ≤ 3, Xi = Yj | X0 = Y0)
= P (X1 = Y1 | X0 = Y0) + P (X2 = Y2, X1 �= Y1 | X0 = Y0)

+P (X3 = Y3, X2 �= Y2, X1 �= Y1 | X0 = Y0)
= P (X1 = X0 + si = Y0 + si = Y1)

+P (X2 = X0 + si + sj = Y0 + sj + si = Y2, i �= j | X0 = Y0)
+P (X3 = X0 + si + sj + sk = Y0 + sj + sk + si, i �= j �= k �= i, | X0 = Y0)

=
1
r

+ rP2
1
r2

1
r2

+
3 rP3 + 2 rP2

r6

=
1
r

+
1
r2

+
2
r3

+ O(1/r4)

It follows that

Cτ ≈ 1
1 − p3

=
1

1 − (
1
r + 1

r2 + 2
r3 + O(1/r4)

) = 1 +
1
r

+
2
r2

+
4
r3

+ O(1/r4)

See Section 7 for discussion of the accuracy of this.

A Refined Analysis of Attacks on Discrete Logarithm 143

Example 11 (Gaudry-Schost). The step types were chosen uniformly at random
from an interval, and so with high probability a collision will occur in a short
number of steps iff the same steps are taken by both walks, or the same steps are
taken but with the order re-arranged. This is just what happens with Teske’s
additive walks, and so we may borrow the work done when we examined her
methods. Namely,

Cτ ≈ 1
1 − p3

=
1

1 − (
1
r + 1

r2 + 2
r3 + O(1/r4)

) = 1 +
1
r

+
2
r2

+
4
r3

+ O(1/r4)

7 Sharpness of our Results

We have consolidated our simulation details here. All of these show that our
results are extremely precise.

We note that our simulations are done in a non-standard way. Our goal is to
study performance of various methods for finding the discrete logarithm, not to
study the strengths or weaknesses of specific hash functions or representations
of a cyclic group. As a result we study walks on the exponents, not the group.
For instance, the walk X0 = h = gx, X1 = h g, X2 = (h g)2 is equivalent to
x → x + 1 → 2x + 2 mod |G|. The hash used to do a walk on the exponent was
based on the Mersenne Twister [11], as it is a fast source of pseudo-randomness.
Several variations on this hash were tested, and it was confirmed that run time
was similar in each case.

We first consider Pollard’s Kangaroo with power of two steps.

Example 12 (Pollard’s Kangaroo). When N = |G| = 109 Figure 1 shows that
there is still a significant gap between simulation data and prior heuristics, but
that our new result almost exactly matches the simulation results.

Pollard’s degree 3 process is a useful test cases as its performance deviates
from simple heuristic much more than does Teske’s improved process.

Example 13 (Pollard’s Rho). Very large simulations show that Cτ = 1.68221 ±
0.00001. A computer can be used to enumerate all possible paths of length 	 ≤ 20.
This gives the estimate Cτ ≈ 1

1−p5
= 1.65237, while Cτ ≈ 1

1−p10
= 1.67730, and

Cτ ≈ 1
1−p20

= 1.68203. So even p10 was sufficient to give an estimate of Cτ within
0.3% of the true value.

This can be seen more clearly visually. Figure 2 shows simulation data for
runtime and finds that it is consistently around 1.6254

√
N . Figure 3 shows that

Ct approaches Cτ fairly quickly in t, with C20 ≈ Cτ , and leads to a runtime
prediction of 1.6256

√
N .

We next consider Teske’s r-adding version of the Rho method.

Example 14 (Teske’s additive walks).
Teske estimates average collision time of the 20-adding walk is around

1.292
√

N steps [18]. We did a much larger run of 75 million simulations and

144 S. Kijima and R. Montenegro

Fig. 1. Standard heuristic (flat line), our bound (smooth curve), simulation data with
margin of error ±0.01

√
N (jagged plot)

found a 95% confidence interval of 1.2877
√

N to 1.2880
√

N . This suggests that
collision time is about 3% slower than the 1.2533

√
N steps predicted by the

birthday heuristic.
To apply our heuristic, recall from Section 6 that

Cτ ≈ 1
1 − p3

=
1

1 − (
1
r + 1

r2 + 2
r3 + O(1/r4)

)

When r = 20 this leads to an estimate on collision time of 1.2877
√

N , which is
already within the 95% confidence interval given by simulation data. An exact
enumeration of walks of length 	 = 5 increases the estimate only negligibly to
1.287765

√
N steps, at 	 = 10 to 1.287770

√
N steps, and the sampling based

estimate at length 	 = 100 gave an estimate of (1.287769 ± 0.000003)
√

N with
95% confidence.

So in this case a mere 3 steps already explains 99.7% of the 20-additive walk’s
deviation from the birthday heuristic, and by 5 steps the estimate is essentially
sharp.

Last of all, we compare simulation data to our heuristic for Gaudry-Schost.

Example 15. Galbraith, Pollard, and Rubrai [5] discuss 3 and 4-walk versions
with even better runtime than Pollard’s Kangaroo method. The same argument
used to give a heuristic bound for Gaudry-Schost shows that this will have a√Cτ slowdown over their predicted runtime. They consider an interval of side

A Refined Analysis of Attacks on Discrete Logarithm 145

Fig. 2. Run time of Pollard’s Rho: Simulations estimate (1.6254 ± 0.0004)
√

N steps

Fig. 3. Run time of Pollard’s Rho: Heuristic predicts 1.6256
√

N steps

146 S. Kijima and R. Montenegro

N = 240, with θ = 1/500, r = 32 step types, and average step size m = 0.01 θ N ,
and determine that a basic birthday heuristic suggests run time of 1.761

√
N . Our

improved heuristic will be ≈ 1.761/
√

1 − 1/32 − 1/322 − 2/323 = 1.790
√

N . We
did 250, 000 runs without any adjustment for boundary effects and found mean
run time of 1.79501

√
N with 95% CI of (1.791, 1.799)

√
N .

Our heuristic suggests that run time will improve when there are more gen-
erators, whereas past heuristics said nothing about this. We repeated the above
simulations but with d = 128 step types. This time the average run time was
1.77113

√
N with 95% CI of (1.767, 1.775)

√
N . Our heuristic of 1.768

√
N is

within this interval. Using more generators does indeed help, and the improve-
ment is predicted fairly accurately by our heuristic. The error is again about
0.3% from the center of the interval.

This shows that our improved heuristic is fairly good. The error in each case
is near the bottom of the CI, and only 0.3% from the center of the interval.
Presumably any error is due to minor boundary effects.

Example 16. One method that has been proposed for avoiding boundary effects
is to forbid starts in the rightmost 0.01N of an interval, as this is the average
distance traveled before a distinguished point is reached. We tested this in the
case above, with r = 32, and found mean run time of 1.79721

√
N with 95% CI of

(1.793, 1.801)
√

N . This is not a statistically significant difference from the case
that ignores boundary issues.

A Appendix

When looking at the Rho algorithm we required a generalization of the birthday
problem. We prove that here.

Consider a family of events E1 ⊆ E2 ⊆ · · · such that P (Ek | ¬Ek−1) ≤ k−1
A ,

and a second family F1 ⊆ F2 ⊆ · · · . We will modify the birthday result in order
to prove a result about the expected time until some event is true.

Emin{t : Et ∪ Ft} =
∞∑

t=0

P (¬(Et ∪ Ft))

In our case, Et will be the event that a collision has occurred between segments
S1, S2, . . . , St, as was considered earlier in the paper, while Ft will be the event
that a collision occurred elsewhere: within one of the segments S1, S2, . . . , St or
involving one of the randomization segments R1, R2, . . . , Rt. The collision time
will be (L + T)Emin{t : Et ∪ Ft}.

First consider collisions between segments.

P (¬Et) = P (¬E1)
t∏

k=2

P (¬Ek | ¬Ek−1)

≥ 1
t∏

k=2

(1 − k − 1
A

)

A Refined Analysis of Attacks on Discrete Logarithm 147

This is exactly the probability that occurs in the birthday problem when there
are A days in the year, and so

Emin{t : Et} =
∞∑

t=0

P (¬Et) ≥ (1 + O(1/A))
√

π

2
A (5)

It follows that for any value of T

Emin{t : Et ∪ Ft} =
∞∑

t=0

P (¬(Et ∪ Ft))

≥
T−1∑

t=0

P (¬Et) −
T−1∑

t=0

P (Ft)

≥ (1 + O(1/A))
√

π

2
A −

∞∑

t=T

1
t∏

k=2

(1 − k − 1
A

) −
T−1∑

t=0

P (Ft)

The tail probability in the first sum can be estimated as

∞∑

t=T

1
t∏

k=2

(1 − k − 1
A

) ≤
∞∑

t=T

exp

(

−
t∑

k=2

k − 1
A

)

=
∞∑

t=T

exp (−t(t − 1)/2A)

≤
∞∑

t=T

∫ t−1

t−2

e−x2/2A dx

=
∫ ∞

T−2

e−x2/2A dx

≤
∫ ∞

(T−2)/
√

A

u

(T − 2)/
√

A
e−u2/2 (

√
Adu)

=
A

T − 2
e−(T−2)2/2A

The final inequality involved the substitution u = x/
√

A and the relation u ≥
T−2√

A
.. When T ≥ 2 +

√
A log A then this is o(1). Then

Emin{t : Et ∪ Ft} ≥ (1 + O(1/A))
√

π

2
A − A3/2

T − 2
e−(T−2)2/2A −

T−1∑

t=0

P (Ft) .

We found in Section 4 that A = N
L2(1−1/r) can be shown rigorously, while A =

N Cτ

L2 can be shown heuristically.

148 S. Kijima and R. Montenegro

References

1. Bailey, D., Batina, L., Bernstein, D., Birkner, P., Bos, J., Chen, H.-C., Cheng,
C.-M., Van Damme, G., de Meulenaer, G., Perez, L.J.D., Fan, J., Güneysu, T.,
Gürkaynak, F., Kleinjung, T., Lange, T., Mentens, N., Niederhagen, R., Paar, C.,
Regazzoni, F., Schwabe, P., Uhsade, L., Van Herrewege, A., Yang, B-Y.: “Breaking
ECC2K-130,” Cryptology ePrint Archive, Report 2009/541 (2009). https://eprint.
iacr.org/2009/541

2. Bernstein, D.J., Lange, T.: Two grumpy giants and a baby. In: ANTS X:
Proceedings of the 10th International Symposium on Algorithmic Number The-
ory. Mathematical Sciences Publishers (2013)

3. Blackburn, S., Scott, S.: The discrete logarithm problem for exponents of bounded
height. In: ANTS XI: Proceedings of the 11th International Symposium on Algo-
rithmic Number Theory. LMS J. Comput. Math 17, 148–156 (2014)

4. Blackburn, S., Murphy, S.: The number of partitions in Pollard Rho, Unpublished
note : Later made available as Technical report RHUL-MA-2011-11 (Department
of Mathematics, p. 2011. University of London, Royal Holloway (1998)

5. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete logarithms in an
interval. Math. Comp. 82, 1181–1195 (2013)

6. Galbraith, S., Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for
multidimensional discrete logarithm problems. In: Parker, M.G. (ed.) Cryptogra-
phy and Coding 2009. LNCS, vol. 5921, pp. 368–382. Springer, Heidelberg (2009)

7. Gaudry, P., Schost, É.: A low-memory parallel version of Matsuo, Chao, and Tsu-
jii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222.
Springer, Heidelberg (2004)

8. Hildebrand, M.: On the Chung-Diaconis-Graham random process. Electron.
Comm. Probab. 11, 347–356 (2006)

9. Kim, J-H., Montenegro, R., Tetali, P.: Near Optimal Bounds for Collision in Pol-
lard Rho for Discrete Log. In: IEEE Proc. of the Symposium on Foundations of
Computer Science (FOCS 2007), pp. 215–223 (2007)

10. Kim, J.-H., Montenegro, R., Peres, Y., Tetali, P.: A Birthday Paradox for Markov
chains, with an optimal bound for collision in the Pollard Rho Algorithm for Dis-
crete Logarithm. The Annals of Applied Probability 20(2), 495–521 (2010)

11. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation 8(1), 3–30 (1998)

12. Miller, S.D., Venkatesan, R.: Spectral analysis of Pollard rho collisions. In: Hess,
F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 573–581. Springer,
Heidelberg (2006)

13. Montenegro, R., Tetali, P.: How long does it take to catch a wild kangaroo?.
In: Proc. of 41st ACM Symposium on Theory of Computing (STOC 2009),
pp. 553–559 (2009). Citations refer to an improved version at http://arxiv.org/
pdf/0812.0789v2.pdf

14. Nishimura, K., Shibuya, M.: Probability to meet in the middle. Journal of
Cryptology 2(1), 13–22 (1990)

15. Pollard, J.: Monte Carlo methods for index computation mod p. Mathematics of
Computation 32(143), 918–924 (1978)

16. Pollard, J.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryptology
13(4), 437–447 (2000)

https://eprint.iacr.org/2009/541
https://eprint.iacr.org/2009/541
http://arxiv.org/pdf/0812.0789v2.pdf
http://arxiv.org/pdf/0812.0789v2.pdf

A Refined Analysis of Attacks on Discrete Logarithm 149

17. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

18. Teske, E.: Speeding up Pollard’s rho method for computing discrete logarithms. In:
Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 541–554. Springer, Heidelberg
(1998)

19. Rosini, M.D.: Applications. In: Rosini, M.D. (ed.) Macroscopic Models for Vehic-
ular Flows and Crowd Dynamics: Theory and Applications. UCS, vol. 12, pp.
217–226. Springer, Heidelberg (2013)

	Collision of Random Walks and a Refined Analysis of Attacks on the Discrete Logarithm Problem
	1 Introduction
	1.1 Description of Algorithms
	1.2 Heuristic Run Time
	1.3 New Results

	2 Methods of Studying Collision Time
	2.1 Past Work
	2.2 Our Approach

	3 Pollard's Kangaroo Method
	4 Pollard's Rho Method
	5 Gaudry-Schost
	6 The Collision Number
	7 Sharpness of our Results
	References

