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Abstract. Small-world graphs have characteristically low average dis-
tance and thus cause force-directed methods to generate drawings that
look like hairballs. This is by design as the inherent objective of these
methods is a globally uniform edge length or, more generally, accurate
distance representation. The problem arises in graphs of high density
or high conductance, and in the presence of high-degree vertices, all of
which tend to pull vertices together and thus clutter variation in local
density.

We here propose a method to draw online social networks, a spe-
cial class of hairball graphs. The method is based on a spanning sub-
graph that is sparse but connected and consists of strong ties holding
together communities. To identify these ties we propose a novel measure
of embeddedness. It is based on a weighted accumulation of triangles in
quadrangles and can be determined efficiently. An evaluation on empir-
ical and generated networks indicates that our approach improves upon
previous methods using other edge indices. Although primarily designed
to achieve more informative drawings, our spanning subgraph may also
serve as a sparsifier that trims a hairball graph before the application of
a clustering algorithm.

1 Introduction

Online social networks such as Facebook friendship graphs are an amalgamation
of a variety of social relations. The existence of a friendship tie might be due
to shared interests, spatial proximity, kinship, or professional relations to name
but a few. When such a multitude of relations is conflated in the same network,
any two nodes are likely to be connected via at most a few links – thus leading
to a small world effect [21]. Visualizations of these graphs using standard layout
methods such as force-directed placement produce drawings in which variation
in local structure is hidden in a densely-looking, overlap-ridden hairball. An
example is given in Fig. 1(a).

Various approaches to reduce the clutter in drawings of small worlds and other
hairball graphs have been proposed [12], most notably edge bundling [10], edge
lensing [11], modified layout algorithms or representations [1,7,29], and graph
simplification [2,17,18,20,23,30]. The idea of graph simplification is to identify
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a subset of edges such that only the resulting graph, the so-called backbone,
needs to be laid out. We adopt this approach and propose a new method to trim
hairballs.

Problem formulations in graph simplification include the preservation of prop-
erties such as cuts [2], spectra [23,24], connectivity [30], collapsing substructures
into supernodes [18], and emphasizing deeply embedded connections [17,20]. As
graph invariants such as cuts are more easily affected by noise in empirical net-
works, we opt for locally defined graph simplification criteria.

Substantiated by the sociological work of Simmel [22], Nick et al. [17] define
the strength of an edge by the number of triangles it is contained in, and then
determine the degree of structural embeddedness for an edge by comparing the
ranked neighborhoods of its two vertices. The purpose is to identify edges that
are more likely to be inside of cohesive groups than between such groups. If
the initial edge strengths are uniform, the Simmelian backbone reduces to a
backbone proposed by Satuliri et al. [20]. In both methods, the backbone is
obtained by finally removing all edges with weights below a specified nodal or
network wide threshold.

These filtering techniques are related to, but not the same as graph partition-
ing. Since we want to use them for graph drawing, the difference is even greater
because maintaining connectedness becomes a crucial constraint. Otherwise, the
layout algorithm is oblivious to edges of the original graph connecting vertices
in different components of the backbone as can be inferred from Fig. 1(b). When
connected components happen to be placed far apart, these edges will run across
the drawing and produce even worse clutter.

We present an efficient preprocessing technique that allows to draw a certain
class of small-world social networks with standard layout algorithms that would
produce hairball layouts otherwise. Our main contributions are:

– a novel method to identify strong ties,
– the use of the union of all maximum spanning trees as a sparsifier that

maintains connectedness and avoids subtree-ordering ambivalence, and
– an evaluation on observed and generated networks.

We outline our overall method for drawing hairball graphs in the next section
and describe our edge embeddedness metric in Sect. 3. Different metrics are
evaluated in Sect. 4 and we conclude in Sect. 5.

2 Drawing Algorithm

The main challenges in drawing hairball graphs are their high density, low di-
ameter and noisy group structure. Therefore, our goal is to find a backbone of
the graph that retains deeply embedded edges and thus can be used to draw the
original graph, e.g., by a force-directed method [13] to reveal the actual variation
in cohesiveness.

Since most drawing methods cannot put vertices of different graph compo-
nents into a meaningful spatial relation, cf. Fig. 1(b), we need to maintain the
graph connectivity to retain the global context.
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(a) drawing, original network (b) triadic Simmelian backbone [17]

(c) triadic Simmelian backbone
with UMST

(d) quadrilateral Simmelian backbone
with UMST (our approach)

Fig. 1. Facebook friendships at California Institute of Technology (Caltech36). Vertex
color corresponds to dormitory (gray for missing values), but has not been utilized in
the layout algorithm. The layout in (a) is based on the entire hairball graph, whereas
(b)-(d) use edge embeddedness, which spreads the graph while keeping cohesive groups
together. Embeddedness mapped to edge color; backbone edges dark gray.

This leads to the following requirements on our backbone:

(i) Edges should be favored based on their structural embeddedness only.

(ii) Connectedness has to be maintained.

Two common approaches to simplify a graph G = (V,E,w) with vertex set V ,
edge set E, and edge weight w : E → R≥0, are sampling [2,23] and thresholding
[1,17,20]. Note that we assume that w reflects the embeddedness of an edge and
a higher value corresponds to stronger embeddedness. Although sampling can
be used for sparsification purposes the random selection of edges violates both
of our requirements. In contrast thresholding guarantees that edges are favored
by their weights and consequently their structural properties, as it retains only
the top k percent of edges with respect to w. Nevertheless, neither nodal nor
network wide thresholding can ensure that the simplified graph stays connected.
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Algorithm 1: Hairball Drawing Algorithm

Input: Undirected Graph G = (V,E) and sparsification ratio s ∈ [0, 1].
Output: Vertex positions P ∈ R

|V |×2

1 w ← embeddedness weights of edges
2 sort edges by non-increasing weight
3 Eunion ← UMST with respect to w
4 Ethreshold ← {e ∈ E : w(e) ≥ w(e�(1−s)|E|�)}
5 P ← layout determined from spanning subgraph (V,Eunion ∪Ethreshold)

Algorithm 2: UMST: Union of all Maximum Spanning Trees

Input: Undirected Graph G = (V,E) and edge weights w : E → R≥0.
Data: Union-Find datastructure
Output: Edges belonging to any MST

1 Eunion ← ∅
2 partition edges by weight into buckets B1, . . . , Bk

3 sort buckets by decreasing weight
4 for i ← 1 to k do
5 M ← ∅
6 foreach e = (u, v) ∈ Bi do
7 if find(u) �= find(v) then M ← M ∪ {e}
8 foreach e = (u, v) ∈ M do union(u, v)
9 Eunion ← Eunion ∪M

Sparse connected subgraphs of edges not likely to be between cohesive groups
have been proposed, e.g., by van Ham and Wattenberg [28] (planar graphs)
and Tumminello et al. [27] (graph of bounded genus). A minimally connected
subgraph of edges with high weights is a maximum spanning tree (MST), and
Mantegna [14] proposed these as a backbone. Trees, however, have severe draw-
backs: firstly, they do not maintain any local variation in density and, secondly,
they introduce a subtree ordering ambiguity. While the first also means that ar-
bitrary choices must be made when edges have equal embeddedness, the second
creates a degree of freedom that is almost as bad as disconnected components.

We combine thresholding (to maintain local variation) with the union of all
maximum spanning trees (UMST; to maintain connectedness). The UMST does
not only solve the problem of tie breaks but also reduces the ordering problem
by resulting in higher connectivity (Fig. 1(b)-(d)).

The complete algorithm to compute the layout of a hairball graph is presented
in Alg. 1. Note that the UMST only contributes the (strongest) edges necessary
to connect the components that result from the thresholding process.

Kruskal’s algorithm for minimum spanning trees is easily adapted to deter-
mine the union of all maximum spanning trees. Since every edge of maximum
weight that has not been processed yet could be chosen next, we batch-process
them before components are merged; cf. Algorithm 2.
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The final layout emphasizes variation in local density by considering only
deeply embedded edges as expressed by the weights introduced in the next
section.

3 Edge Embeddedness by Accumulating Triadic Effects

Real world networks are often aggregates of different relations, which can hamper
the detection of subgroups or clusters. Our goal is to determine strong embedded
edges, which are likely to be in dense groups, so that we can use them to em-
phasize the inherent structure. The assumption here is that vertices in the same
subgroup of a network are connected stronger with each other than to members
outside of the group.

Satuliri et al. [20] propose to capture the embeddedness of an edge e = (u, v)
by the Jaccard coefficient over u’s and v’s neighborhood. Nick et al. [17] suggest
a more general framework, consisting of the following main steps:

1. For each edge, determine its strength
2. For each vertex, rank all its neighbors according to the edge strength
3. For each edge, determine its redundancy

The approach of Satuliri et al. can be seen as using a uniform edge strength for
step one and the Jaccard coefficient for the redundancy in step three. Contrary to
this, Nick et al. use the number of triangles an edge is embedded in (Simmelian
strength) for step one and the best prefix Jaccard coefficient for step three.
The latter chooses k such that the Jaccard coefficient of the first top k ranked
neighbors of u and v is maximized. The effect of this ranking measure is that the
highly ranked neighbors have more importance attached, since fewer common
vertices are needed to get a high coefficient.

A more intuitive interpretation of this framework is that for an edge e = (u, v)
the edge strength allows us to determine the most important neighbors of u and
v. If these most important neighbors are the same, e is strongly embedded;
otherwise e is connecting two vertices, which are likely to be in different groups.

vu

t

s

e

Fig. 2. Triangles at edge e [17,20]
do not capture mediator edges
(bold), while quadrangles do.

We follow the main idea, but propose a differ-
ent edge strength than the number of triangles.

Consider the setting in Fig. 2. Clearly, edge
e is strongly embedded. Compared to all other
edges it closes many triangles resulting in an
increase of the group performance [5] by in-
troducing mediator effects. Similar to this, an
edge (s, t) connecting two triangles at e intro-
duces additional mediator effects on the trian-
gles, which in turn increases the importance of
e. We call these edges mediator edges on e.

Counting the number of triangles at e does not capture the importance of
mediator edges. But since each mediator edge creates two quadrangles at e, cf.
dashed-contour in Fig. 2, we can use the number of quadrangles containing e



106 A. Nocaj, M. Ortmann, and U. Brandes

to capture this mediator effect. While there can be additional quadrangles at e,
they will be counted only once from e’s perspective, which makes their influence
rather low. Furthermore, counting the two different types of quadrangles at e
would be too time consuming and therefore we will not distinguish between
them.

Using the absolute number of quadrangles poses difficulties, when the network
contains subgroups of different densities. Hence, we normalize this absolute value
by putting it into relation to all edges at vertex u and v. Let q(u, v) be the
number of quadrangles containing edge (u, v) ∈ E. We define the quadrilateral
edge embeddedness as

Q(u, v) =
q(u, v)

√
q(u) · q(v) ,

where q(v) =
∑

w∈N(v) q(v, w), for v ∈ V , and N(v) the neighborhood of v. We
use the geometric mean over the arithmetic mean, since it takes the dependency
of two variables into stronger consideration. Note that edge-metrics using quad-
rangles have already been proposed by Auber et al. [1] and Radicchi et al. [19],
but are different from our method as they focus on density. For a comparison of
different edge metrics we refer the reader to Melançon and Sallaberry [16].

Computation and Time Complexity

The quadrangles of a graph G can be listed in O(mα(G)) [6], where m is the
number of edges and α(G), the arboricity of G, is the minimum number of edge-
disjoint forests necessary to cover all edges of G. While the arboricity can be as
large as

√
m, it is bounded from above by the h-index of a graph which in turn

is found to be very small in social networks [8]. Together with the normalization,
the computation of the edge strengths takes O(mα(G)) time.

Neighbors can be ranked in O(m log�(G)) time and redundancy can be com-
puted in O(m�(G)), where �(G) is the maximum vertex degree. For example,
the overall backbone computation took 0.2s on a network with 762 vertices
and 16k edges (Caltech65) and 2.3s on a network with 2970 vertices and 100k
edges (Smith60) with our Java 7 implementation and an Intel Core i7-2600K
CPU@3.40GHz. The approach thus scales to large networks and we turn to the
evaluation of its effectiveness in the next section.

4 Evaluating Methods for Edge Embeddedness

In this section we introduce the dataset and a graph model, from which we gener-
ate artificial hairball graphs. Then we explain our output quality indicators and
the different edge embeddedness methods. For each graph and edge embedded-
ness method, we iteratively increase the sparsification ratio by 10% and compute
the corresponding backbone. Layouts are computed using stress majorization [9]
initialized by PivotMDS [3] as suggested in [4].
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Fig. 3. Homophily (y-axis) is plotted against the number of remaining edges (x-axis) for
the synthetic model (PPM) and three of the Facebook networks. Overall Quadrilateral
performs better than the others. For the synthetic networks it comes very close to the
ground truth.

4.1 Dataset and Model

As real world samples, we use the Facebook100 dataset [26], which contains so-
cial relations of 100 higher educational institutes in the US. The network size
varies from 762 to 41K vertices and from 16K to 1.6M edges. The dataset is di-
rectly from Facebook, not sampled, and thus very complete in terms of capturing
the social relations according to a widely used service at that time. Additional
attributes obtained from the Facebook profiles are gender, year of graduation,
dormitory, etc. Due to incomplete profiles, a number of attribute values are
missing. We will use the dormitory attribute for our evaluation, because it has
been argued to be important for the creation of social relations in many of the
networks [26].

Note that, in spite of a strong empirical association with homophilous
attribute values, no ground-truth group structure is available for Facebook net-
works. Therefore, we also generated artificial networks from a model that repre-
sents the idealized version of the networks we are considering in this application.

A simple model generating random graphs with cohesive groups that are
connected into a small world is the planted partition model (PPM) [15]. Let
C = {C1, . . . , Ck} be a partition of V for a graph G = (V,E). Then C is called
a clustering of G with class c(v) ∈ C for a vertex v ∈ V . The probability of an
edge (u, v) is pin if c(u) = c(v) and pout if c(u) �= c(v). We generated 50 graphs
from a PPM with 500 vertices, k = 9, pin = 0.3, and pout = 0.01. On top of that,
we ran a random noise model with pin = pout = 0.1 to obfuscate the underlying
group structure. The resulting graphs are very dense, have a low diameter, and
are real hairballs without any visible structure when laid out using force-directed
methods. The presented results of our model are averaged over 50 samples.
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Fig. 4. Dormitory-homophily of differ-
ent backbones, with sparsification ra-
tio 70%, (y-axis) compared to the ho-
mophily in the original network (x-axis)
for all Facebook100 networks. Points
above/below the dashed line indicate
homophily increase/decrease respective
the original network. Simmelian and
Quadrilateral homophily values for cor-
responding networks have been con-
nected by colored segments comparing
their performance.
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4.2 Edge Embeddedness Methods

We compare different methods which assign a weight w : E → R≥0 to each edge
e = (u, v) ∈ E depicting its embeddedness. All these methods are then extended
using our UMST approach to guarantee the connectivity, such that a layout can
be computed from the resulting graph. We use the following approaches to assign
a weight to the edges.
Random: Assigns uniform random weights, as base line.

Jaccard: Jaccard coefficient, |N(u)∩N(v)|
|N(u)∪N(v)| , as proposed by Satuliri et al. [20].

Simmelian: Triadic Simmelian backbone, as proposed by Nick et al. [17].
Quadrilateral: Quadrilateral Simmelian backbone, based on our embeddedness
method, which accumulates triadic effects at an edge with quadrangles (Sect. 3).
Density:Metric by Auber et al. [1] accumulating densities of different subgroups
in the local neighborhood.
Ground Truth: Knowledge of class membership in the synthetic network is
used to assign directly a low value to inter-cluster edges and a big value to
intra-cluster edges.

4.3 Quality Metrics

In contrast to the synthetic networks there is no ground truth available for the
Facebook networks. This makes it hard to evaluate outcomes of the different
methods. Nevertheless, it was found that for many of the Facebook networks,
the housing structure (dormitory attribute) is very relevant for the underlying
formation of social relations [17,26]. We, therefore, use the dormitory attribute
as a reference for evaluation.

Assume that we know the ground truth, meaning the class membership c(v) of
each vertex. A perfect algorithm, for example, would first remove all inter-cluster
edges before starting to remove intra-cluster edges while obeying the required
sparsification ratio. Since inter-cluster edges are removed priorly, this increases
the ratio between intra-cluster or homophily edges and the total number of edges.

If the edge embeddedness methods perform similar to this, the ratio of ho-
mophily edges
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(a) layout error
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Fig. 5. Layout error of different edge embedding methods combined with our UMST
for (b) a real world network and (c) synthetic networks. (a) shows the layout error for
a single point of the line chart in (b).

homophily(G) =
#homophily edges

#homophily edges + #heterophily edges

should monotonically increase, while gradually removing edges from the network
according to their weight. Edges for which the class membership (attribute) of
at least one vertex is missing are neglected.

Additionally, we would like to see how well this class membership is reflected
in the layouts. Vertex pairs of the same class should have a small Euclidean
distance, while pairs of different classes should have a large Euclidean distance.
Looking at the curve of the Euclidean distance distribution of the intra-cluster
and inter-cluster vertex pairs in Fig. 5(a), we define the layout error as the
intersection area of these two curves. The layout error can also be interpreted
as the percentage of vertex pairs, where the distinction whether they are in the
same cluster or not cannot clearly be made based on the Euclidean distance.
Since the computation of this quality metric is very time intensive, it was not
feasible to analyze all 100 Facebook networks with it.

4.4 Results and Discussion

An interesting observation from Fig. 3 is that Jaccard and Simmelian perform
very similar for most Facebook networks. Our method (Quadrilateral) clearly
manages to distinguish between the different types of edges better than the
other methods, especially in earlier phases of the sparsification.

For all 100 Facebook networks, the difference in homophily between Simmelian
and Quadrilateral is shown by the length of a vertical segment in Fig. 4. While
both approaches increase the percentage of homophily edges (all segments above
the diagonal dashed line), Quadrilateral clearly performs better, especially for
networks with higher percentage of homophily edges.

Although the homophily of Jaccard and Quadrilateral is nearly the same for
the last but one step of the Caltech network (Fig. 3) the Quadrilateral embedding
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Fig. 6. Layout error of Facebook networks w.r.t. the dormitory attribute. While im-
provement is not clear for Pepperdine86 and Vassar85, the layout is improved a lot for
the networks with high homophily (Rice31 and Smith60).

creates the superior layout (Fig. 5). Furthermore, for the synthetic networks,
Quadrilateral comes very close to the ground truth (Fig. 5).

Figure 6 shows the layout error for four Facebook networks and the three best
performing edge metrics (according to homophily). The layout clearly improves
for the Rice and Smith network, but not much for the other two. One possible
explanation for this could be that the dormitory attribute is not the explanatory
variable for the formation of social relations in these two networks.

The effectiveness of our layout quality metric can also be verified, by looking at
the final drawings in Fig. 1(c) and 1(d). In the latter many clusters, as light green
and light blue, are more clearly visible. For the synthetic networks our method
comes also very close to the ground truth, in terms of layout error (Fig. 5(c)).
Again, the drawings of a synthetic network (Fig. 7) support this conclusion.

5 Conclusion

We proposed a sparsification approach to draw hairball graphs as encountered in
online social networks. It is based on the idea that pairwise distances (the “degrees
of separation”) need to be increased without disrupting tightly-knit groups. The
deeply embedded edges such groups are made of are identified using a suitably
modified Simmelian backbone [17], and overall layout organization is stabilized
by maintaining connectedness via the union of all maximum spanning trees.

An evaluation with empirical and generated networks showed that our novel
metric manages to reveal relations deeply embedded in latent primary groups.
In the resulting drawings such groups are separated from each other but still
positioned in their global context. On the Facebook100 dataset, average distances
increased from about 3 in the original friendship networks to about 14 in the
backbone, thus easing the layout task for force-directed algorithms.

Our proposed edge embeddedness metric proved to be more effective than
previous approaches with respect to improving layout quality by way of ampli-
fying homophily. It is thus likely to be useful as a preprocessing step for graph
clustering algorithms as well.
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(a) Jaccard [20] (b) triadic
Simmelian backbone [17]

(c) our quadrilateral
Simmelian backbone

Fig. 7. Layouts of the same synthetic network determined by different edge embed-
dedness methods combined with our UMST (sparsification ratio of 80%).
Colors encode groups – ground truth.

By design, our technique appears to be best suited for small-world networks
with multiple centers. While these are common, especially in social media, it will
be interesting to identify variants for hierarchically clustered graphs and single-
centered core-periphery structures such as the network of world trade [25].
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