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Abstract. A crossing-free straight-line drawing of a graph is monotone if there
is a monotone path between any pair of vertices with respect to some direction.
We show how to construct a monotone drawing of a tree with n vertices on an
O(n1.5)×O(n1.5) grid whose angles are close to the best possible angular reso-
lution. Our drawings are convex, that is, if every edge to a leaf is substituted by a
ray, the (unbounded) faces form convex regions. It is known that convex drawings
are monotone and, in the case of trees, also crossing-free.

A monotone drawing is strongly monotone if, for every pair of vertices, the
direction that witnesses the monotonicity comes from the vector that connects the
two vertices. We show that every tree admits a strongly monotone drawing. For
biconnected outerplanar graphs, this is easy to see. On the other hand, we present
a simply-connected graph that does not have a strongly monotone drawing in any
embedding.

1 Introduction

A natural requirement for the layout of a connected graph is that between any source
vertex and any target vertex, there should be a source–target path that approaches the
target according to some distance measure. A large body of literature deals with prob-
lems of this type; various measures have been studied. For example, in a greedy drawing
it is possible to decide locally where to go, by selecting in the current vertex any neigh-
bor closer to the target. In a monotone drawing, the distance between vertices (on the
desired source-target path) is measured with respect to their projections on some line,
which may be different for any source–target pair. In strongly monotone drawings, that
line is always the line from source to target, and in upward drawings, the line is always
the vertical line, directed upwards.

In this paper, we focus on monotone and strongly monotone drawings of trees with
additional aesthetic properties such as convexity or small area. Given a tree, we call the
edges incident to the leaves leaf edges and all other edges interior edges. We direct all
edges away from the root. Given a straight-line drawing of a tree, we substitute each
leaf edge by a ray whose initial part coincides with the edge. The embedding of the
tree defines a combinatorial embedding of the tree, that is the order of the edges around
every vertex. The faces are then specified by this combinatorial embedding as leaf-to-
leaf paths. If the faces of the augmented drawing are realized as convex nonoverlapping
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(unbounded) polygonal regions, then we call the original drawing a convex drawing.
If every region is strictly convex (that is, all interior angles are strictly less than π), we
also call the drawing strictly convex. Note that a convex drawing is also monotone [4,2],
but a monotone drawing is not necessarily convex. Strict convexity forbids vertices of
degree 2. In this paper, when we talk about (strongly) monotone drawings, this always
includes the planarity requirement. Otherwise, as Angelini et al. [2] observed, drawing
any spanning tree of the given graph in a (strongly) monotone way and inserting the
remaining edges would yield a (strongly) monotone drawing.

Previous Work. While any 3-connected plane graph has a greedy drawing in the Eu-
clidean plane [10] (even without crossing [7]), this is, unfortunately, not true for trees.
Nöllenburg and Prutkin [11] gave a complete characterization for the tree case, which
shows that no tree with a vertex of degree 6 or more admits a greedy drawing. Alam-
dari et al. [1] have studied a subclass of greedy drawings, so-called self-approaching
drawings which require that there always is a source–target path such that the distance
decreases for any triplet of intermediate points on the edges, not only for the vertices.

Carlson and Eppstein [6] study convex drawings of trees. They give linear-time algo-
rithms that optimize the angular resolution of the drawings, both for the fixed- and the
variable-embedding case. They observe that convexity allows them to pick edge lengths
arbitrarily, without introducing crossings.

For monotone drawings, Angelini et al. [2] studied the variable-embedding case.
They showed that anyn-vertex tree admits a straight-line monotone drawing on a grid of
size O(n1.6)×O(n1.6) (using a BFS-based algorithm) or O(n)×O(n2) (using a DFS-
based algorithm). They also showed that any biconnected planar graph has a monotone
drawing (using exponential area). Further, they observed that not every planar graph
admits a monotone drawing if its embedding is fixed. They introduced the concept
of strong monotonicity and showed that there is a drawing of a planar triangulation
that is not strongly monotone. Hossain and Rahman [9] improve some of the results
of Angelini et al. by showing that every connected planar graph admits a monotone
drawing of size O(n)×O(n2) and that such a drawing can be computed in linear time.

Both the BFS- and the DFS-based algorithms of Angelini et al. precompute a set of
n−1 vectors in decreasing order of slope. For this, they use two different partial traver-
sals of the so-called Stern–Brocot tree, an infinite tree whose vertices are in bijection
with the irreducible positive rational numbers. Such numbers can be seen as primitive
vectors in 2d, that is, as vectors with pairwise different slopes. Then both algorithms do
a depth-first (pre-order) traversal of the input tree. Whenever they hit a new edge, they
assign to it the steepest unused vector. They place the root of the input tree at the origin
and draw each edge (u, v) by adding the vector assigned to (u, v) to the position of u.
They call such tree drawings slope-disjoint. We won’t formally define this notion here,
but it is not hard to see that it implies monotonicity.

Angelini, with a different set of co-authors [3], investigated the fixed-embedding
case. They showed that, on theO(n)×O(n2) grid, every connected plane graph admits a
monotone drawing with two bends per edge and any outerplane graph admits a straight-
line monotone drawing.
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Our contribution. We present two main results. First, we show that any n-vertex tree
admits a strictly convex and, hence, monotone drawing on the O(n1.5)× O(n1.5) grid
(see Section 3). As the drawings of Angelini et al. [2], our drawings are slope-disjoint,
but we use a different set of primitive vectors (based on Farey sequences), which slightly
decreases the grid size. (This also works for the BFS-based algorithm of Angelini et al.)
Instead of pre-oder, we use a kind of in-oder traversal (first child – root – other children)
of the input tree, which helps us to achieve convexity. Our ideas can be applied to
modify the optimal angular resolution algorithm of Carlson and Eppstein [6] such that
a drawing on an O(n1.5) × O(n1.5) grid is constructed at the expense of missing the
optimal angular resolution by a constant factor. Second, we show that any tree admits a
strongly monotone drawing (see Section 4). So far, no positive results have been known
for strongly monotone drawings.

In the case of proper binary trees, our drawings are additionally strictly convex. For
biconnected outerplanar graphs, it is easy to construct strongly monotone drawings.
On the other hand, we present a simply-connected planar graph that does not have a
strongly monotone drawing in any embedding.

We leave it as an open question whether trees admit strongly monotone drawings on
a grid of polynomial size (see Section 5).

2 Building Blocks: Primitive Vectors

The following algorithms require a set of integral vectors with distinct directed slopes
and bounded length. In particular, we ask for a set of primitive vectors Pd = {(x, y) |
gcd(x, y) ∈ {1, d}, 0 ≤ x ≤ y ≤ d}. Our goal is to find the right value of d such that
Pd contains at least k primitive vectors, where k is a number that we determine later.
We can then use the reflections on the lines x = y, y = 0 and x = 0 to get a sufficiently
large set of integer vectors with distinct directed slopes. The edges of the monotone
drawings in Section 3 are translates of these vectors; each edge uses a different vector.

Fig. 1. The 13 primitive vectors ob-
tained from F6. The smallest angle
of ≈ 1.14◦ is realized between the
vectors (4, 5) and (5, 6) marked
with white dots; the best possible
angular resolution in this case is
45◦/12 = 3.75◦.

Assume that we have fixed d and want to gener-
ate the set Pd. If we consider each entry (x, y) of Pd

to be a rational number x/y and order these numbers
by value, we get the Farey sequence Fd (see, for ex-
ample, Hardy and Wright’s book [8]). The Farey se-
quence is well understood. In particular, it is known
that |Fd| = 3d2/π2 + O(d log d) [8, Thm. 331].
Furthermore, the entries of Fd can be computed in
time O(|Fd|). We remark that the set

⋃
dFd coin-

cides with the entries of the Stern–Brocot tree. How-
ever, collecting the latter level by level is not the most
effective method to build a set of primitive vectors for
our purpose.

To get access to a set of k primitive vectors, we use
the first k entries of the Farey sequence Fd, for d :=
4�√k�, replacing each rational by its corresponding
2d vector. By selecting k vectors form this set we get
a set of exactly k primitive vectors, which we denote by Vk; see Fig. 1.
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If we wish to have more control over the aspect ratio in our final drawing, we can pick
a set of primitive vectors contained inside a triangle spanned by the grid points (0, 0),
(mx, 0), (mx,my). By stretching the triangle and keeping its area fixed, we may end
up with fewer primitive vectors. This will result in an (only slightly) smaller constant
compared to the case mx = my . As proven by Bárány and Rote [5, Thm. 2], any such
triangular domain contains at least mxmy/4 primitive vectors. This implies that we
can adapt the algorithm easily to control the aspect ratio by selecting the box for the
primitive vectors accordingly. For the sake of simplicity, we detail our algorithms only
for the most interesting case (mx = my).

Lemma 1. Let P ⊆ Pd be a set of k = |Pd|/c primitive vectors with no coordinate
greater than d for some constant c ≥ 1. Then any two primitive vectors of P are
separated by an angle of Ω(1/k).

Proof. Since |Pd| = 3d2/π2 +O(d log d) we have that 2d2 ≈ 2π2ck/3. Any line with
slope m encloses an angle α with the x-axis, such that tan(α) = m. Let m1 and m2

be the slopes of two lines and let α1 and α2 be the corresponding angles with respect
to the x-axis. By the trigonometric addition formulas we have that the separating angle
of these two lines equals

tanφ := tan(α1 − α2) =
tanα1 − tanα2

1 + tanα1 tanα2
=

m1 −m2

1 +m1m2
.

For any two neighboring entries p/q and r/s in the Farey sequence, it holds that qr −
ps = 1 [8, Thm. 3.1.2], and therefore p/q and r/s differ by exactly (qr − ps)/(qs) =
1/(qs). As a consequence, tanφ = 1/(pr + qs). The angle φ is minimized if pr +
qs is maximized. Clearly, we have that pr + qs < 2d2 ≈ 2π2ck/3. By the Taylor
expansion, arctan(x) = x− x2ξ/(1 + ξ2)2 for some value 0 ≤ ξ ≤ x. Substituting x
with 3/(2π2ck) yields, for k ≥ 2, that

φ ≥ 3

2π2ck
− 9ξ

4π4c2k2(1 + ξ2)2
>

3

2π2ck
− 9

4π4c2k2
= Ω(1/k).

�

Since the best possible resolution for a set of k primitive vectors is 2π/k, Lemma 1
shows that the resolution of our set differs from the optimum by at most a constant.

3 Monotone Grid Drawings with Good Angles

We start by ensuring that convex tree drawings are crossing-free. This has already been
stated by Carlson and Eppstein [6].

Lemma 2. Any convex straight-line drawing of a tree is crossing-free.

We now present a simple method for drawing a tree on a grid in a strictly convex,
and therefore monotone and, by Lemma 2, crossing-free way. We name our strategy
the inorder-algorithm. The algorithm first computes a reasonable large set of primitiv
vectors, then selects a subset of these vectors and finally assigns the slopes to the edges.
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(b) grid drawing of the tree

Fig. 2. A strictly convex drawing of a tree

The drawing is then generated by translating the selected primitive vectors. In the fol-
lowing, an extended subtree will refer to a subtree including the edge leading into the
subtree (if the subtree is not the whole tree).

Every edge e will be assign with a number s(e). This number will refer to the rank of
the edge’s slope (in circular order) in the final assignment. The rank assignment is done
in a recursive fashion. At any time, let ŝ be 1 plus the maximum rank s(e) assigned
so far. Initially, ŝ = 1. Let e = uv be an edge (directed away from the root), and
let v1, v2, . . . , v� be the children of v ordered from left to right. We recursively set the
ranks of all edges in the extended subtree rooted at v1. Then we set s(e) = ŝ (which
increases ŝ by one). Finally, we set, for i = 2, . . . , �, the ranks of the edges in the
extended subtree rooted at vi. For an example of a tree with its edge ranks, see Fig. 2a.

Second, we assign actual slopes to the edges. Let e be an edge with s(e) = j. Then
we assign to e some vector sj ∈ Z

2 and draw e as a translate of sj . We pick the
vectors s1, s2, . . . , sn−1 by selecting a sufficiently large set of primitive vectors and
their reflections in counterclockwise order, see Section 2. Our drawing algorithm has
the following requirements, which can be fulfilled as the following lemma shows:

(R1) Edges that are incident to the root and consecutive in circular order are assigned
to vectors that together span an angle less than π.

(R2) In every extended subtree hanging off the root, the edges are assigned to a set of
vectors that spans an angle less than π.

Lemma 3. We can select n − 1 vectors with distinct directed slopes from a [−d, d] ×
[−d, d] grid with d = 4�√n� such that the requirements (R1) and (R2) are fulfilled.

Proof. We first preprocess our tree by adding temporary edges at some leaves. These
edges will receive slopes, but are immediately discarded after the assignment.

First, our objective is to ensure that the tree can be split up into three parts that all
have n edges. In particular, we adjust the sizes of the extended subtrees hanging off
the root by adding temporary edges such that we can partition them into three sets of
consecutive extended subtrees which all contain n edges. Note that we have to add 2n+
1 edges to achieve this.
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Fig. 3. The cones that
contain the slopes used
in the algorithm

Second, we define three cones C1, C2, and C3 (see Fig. 3).
Each cone has its apex at the origin and spans an angle of π/4.
The angular ranges are C1 = [0, π/4], C2 = [3π/4, π], and
C3 = [3π/2, 7π/4]; angles are measured from the x-axis point-
ing in positive direction. Note that C2 is separated from the two
other cones by an angle of π/2. As mentioned in Section 2 the
set Vn contains n primitive vectors in the [0, d] × [0, d] grid.
When reflected on the x = y line these vectors lie in C1. Re-
flecting the vectors in C1 further we generate n vectors in C2

and n vectors in C3. In every cone we “need” at most n − 3
edges, hence we can remove the vectors on the boundary of each cone. After removing
the temporary edges, the number of vectors will drop from 3n to n− 1.

Now, we observe the following. Every two consecutive edges incident to the root lie
in the interiors of our cones. This yields requirement (R1) given the sizes and angular
distances of the cones. Furthermore, any extended subtree is assigned slopes from a
single cone. This yields (R2). 
�

For the example tree of Fig. 2a, it suffices to pick the 16 vectors that one gets from
reflecting the primitive vectors from the [0, 2]× [0, 2] grid. These vectors already fulfill
requirements (R1) and (R2). Hence, we did not have to apply the more involved slope
selection as described in Lemma 3. The resulting drawing is shown in Fig. 2b.

Every face in the drawing contains two leaves. The leaves are ordered by their ap-
pearance in some DFS-sequence D respecting some rooted combinatorial embedding
of T . For a face f , we call the leaf that comes first in D the left leaf and the other leaf
of f the right leaf of f . The only exception is the face whose leaves are the first and
last child of D. Here we call the first vertex in D the right leaf and the last vertex in D
the left leaf.

Lemma 4. Let u be the left leaf, and let v be the right leaf of a face of T . Further, let w
be the lowest common ancestor of u and v. The above assignment of slope ranks s to
the tree edges implies the following.
(a) If edge e1 is on the w–u path and edge e2 is on the w–v path, then s(e1) < s(e2).
(b) The ordered sequence of edges on the path w → u is increasing in s(·).
(c) The ordered sequence of edges on the path w → v is decreasing in s(·).
The proof is omitted because of space constraints. We now prove the correctness of our
algorithm.

Theorem 1. Given an embedded tree with n vertices (none of degree 2), the inorder-
algorithm produces a strictly convex and crossing-free drawing with angular resolution
Ω(1/n) on a grid of size O(n1.5)×O(n1.5). The algorithm runs in O(n) time.

Proof. We first show that in the drawing no face is incident to an angle larger than π.
Let f be a face, let e and e′ be two consecutive edges on the boundary of f , and let α
be the angle formed by e and e′ in the interior of f . If e and e′ are incident to the root,
requirement (R1) implies α < π. If both edges contain the lowest common ancestor
of the leafs belonging to f , then by requirement (R2) also α < π. In the remaining
case, e and e′ both lie on a path to the left leaf of f , or both lie on a path to the right
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leaf of f . At vertex v we have at least two outgoing edges. Let e1 be the first outgoing
edge and e2 be the last outgoing edge at v – one of the edges is e′. By the selection of
the slope ranks we have s(e1) < s(e) < s(e2). As a consequence, the supporting line
of e separates e1 and e2, and hence both faces containing e have an angle less than π
at v and therefore α < π.

Next, we show that the edges and rays of a face do not intersect. Then, by Lemma 2,
no edges will cross. Assume that there are two edges/rays � and r in a common face
that have an intersection in some point x. Let t be the lowest common ancestor of �
and r and assume that � lies on the path to the left leaf and r on the path to the right
leaf. We define a closed polygonal chain P of as follows. The chain starts with the path
from t to �, continues via x to r, and finally returns to t. We direct the edges according
to this walk (for measuring the directed slopes) and call them e1, e2, . . . , ek. We may
assume that P is simple, otherwise we find another intersection point. By Lemma 4, the
slopes are monotone when we traverse P . For i = 1, . . . , k− 1, let αi be the difference
between the directed slopes of the edges ei and ei+1. Then the sum

∑
i<k αi equals

the angle between the slopes of e1 and ek. Due to requirement (R2), this angle is less
than π. Let βi = π − αi be the angle between ei and ei+1 in P , and let β0 > 0 be the
“interior” angle at t. We have that

∑

0≤i<k

βi = β0 +
∑

1≤i<k

(π − αi) > 0 + (k − 1)π − π = (k − 2)π.

This, however, contradicts the fact that the angle sum of the polygon with boundary P
is (k − 2)π. Thus, our assumption that two edges/rays cross was wrong.

Since the drawing is assembled from n−1 vectors whose absolute coordinates are at
most O(

√
n), the complete drawing uses a grid of dimension O(n1.5)×O(n1.5). Since

all vectors are reflections of (a subset of) vectors defined by a Farey sequence with at
most n entries, Lemma 1 yields that the angular resolution is bounded by Ω(1/n). 
�

We conclude this section with comparing our result with the drawing algorithm of
Carlson and Eppstein [6]. Their algorithm produces a drawing with optimal angular res-
olution. It draws trees convex, but, in contrast to our algorithm, not necessarily strictly
convex. Allowing parallel leaf edges can have a great impact on the angular resolution.
However, our ideas can be applied to modify the algorithm of Carlson and Eppstein.
For the leaf edges, their algorithm uses a set of k slopes and picks the slopes such that
they are separated by an angle of 2π/k. The slopes of interior edges have either one
of the slopes of the leaf edges, or are chosen such that they bisect the wedge spanned by
their outermost child edges. However, it suffices to assure that the slope of an interior
edge differs from the extreme slopes in the following subtree by at least 2π/(2k).

We can now modify the algorithm as follows. We pick 2k/8 primitive vectors and
reflect them such that they fill the whole angular space with 2k distinct integral vectors.
We use every other vector of this set for the leaf edges. For an interior edge we take any
vector from our preselected set whose slope lies in between the extreme slopes of the
edges in its subtree. We can always find such a vector, since we have sufficiently spaced
out our set of primitive vectors. By this we obtain a drawing on the O(n1.5)×O(n1.5)
grid. Clearly, the drawing doesn’t have optimal angular resolution. However, since we
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use 2k integral vectors having, by Lemma 1, an angular resolution of Ω(1/k), we differ
from the best possible angular resolution 2π/k only by a constant factor.

4 Strongly Monotone Drawings

We first show how to draw any proper binary tree (that is, any internal vertex has exactly
two children). We name our strategy the disk-algorithm. Then, we generalize our result
to arbitrary trees. Further, we show that connected planar graphs do not necessarily have
a strongly monotone drawing. Finally, we show how to draw biconnected outerplanar
graphs in a strongly monotone fashion.

Let T be a proper binary tree, let D be any disk with center c, and let C be the
boundary of D. Recall that a strictly convex drawing cannot have a vertex of degree 2.
Thus, we consider the root of T a dummy vertex and ensure that the angle at the root
is π. We draw T inside D. We start by mapping the root of T to c. Then, we draw a
horizontal line h through c and place the children of the root on h ∩ int(D) such that
they lie on opposite sites relative to c. We cut off two circular segments by dissecting D
with two vertical lines running through points representing the children of the root.
We inductively draw the right subtree of T into the right circular segment and the left
subtree into the left circular segment.

In any step of the inductive process, we are given a vertex v of T , its position in D
(which we also denote by v) and a circular segment Dv; see Fig. 4a. The preconditions
for our construction are that

(i) v lies in the relative interior of the chord sv that delimits Dv, and
(ii) Dv is empty, that is, the interiors of Dv and Du are disjoint for any vertex u that

does not lie on a root–leaf path through v.
In order to place the two children l and r of v (if any), we shoot a ray v from v per-
pendicular to sv into Dv. Let v′ be the point where v hits C. Consider the chords that
connect the endpoints of sv to v′. The chords and sv form a triangle with height vv′.
The height is contained in the interior of the triangle and splits it into two right sub-
triangles. The chords are the hypotenuses of the subtriangles. We contruct l and r by
connecting v to these chords perpendicularly. Note that, since the subtriangles are right
triangles, the heights lie inside the subtriangles. Hence, l and r lie in the relative interi-
ors of the chords. Further, note that the circular segments Dl and Dr delimited by the
two chords are disjoint and both are contained in Dv. Hence, Dl and Dr are empty, and
the preconditions for applying the above inductive process to r and l with Dl and Dr

are fulfilled. See Fig. 4b for the output of our algorithm for a tree of height 3.

Lemma 5. For a proper binary tree rooted in a dummy vertex, the disk-algorithm yields
a strictly convex drawing.

Proof. Let T be a proper binary tree and let f be a face of the drawing generated by the
algorithm described above. Clearly, f is unbounded. Let a and b be the leaves of T that
are incident to the two unbounded edges of f , and let v be the lowest common ancestor
of a and b; see Fig. 4b. Consider the two paths from v to a and b. We assume that the
path from v through its left child ends in a and the path through its right child ends in b.
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Fig. 4. Strongly monotone drawings of proper binary trees

Due to our inductive construction that uses disjoint disk sections for different sub-
trees, it is clear that the two paths do not intersect. Moreover, each vertex on the two
paths is convex, that is, the angle that such a vertex forms inside f is less than π. This
is due to the fact that we always turn right when we go from v to a, and we always turn
left when we go to b. Vertex v is also convex since the two edges from v to its children
lie in the same half-plane (bounded by sv).

It remains to show that the two rays a and b (defined analogously to v above) don’t
intersect. To this end, recall that v′ = v∩C. By our construction,a and b are orthogonal
to two chords of C that are both incident to v′. Clearly, the two chords form an angle of
less than π in v′. Hence, the two rays diverge, and the face f is strictly convex. 
�

For the proof that the algorithm described above yields a strongly monotone draw-
ing, we need the following tools. Let v1 and v2 be two vectors. We say that v3 lies
between v1 and v2 if v3 is a positive linear combination of v1 and v2. For two vec-
tors v and w, we define 〈v,w〉 = |v||w| cos(v,w) as the scalar product of v and w.

Lemma 6. If a path p is monotone with respect to two vectors v1 and v2, then it is
monotone with respect to any vector v3 between v1 and v2.

Proof. Let v3 = λ1v1 + λ2v2 with λ1, λ2 > 0. Assume that the path p is given by the
sequence of vectors w1,w2, . . . ,wk. Since p is monotone with respect to vectors v1

and v2, we have that 〈v1,wi〉 > 0 and 〈v2,wi〉 > 0 for all i ≤ k. This yields, for all
i ≤ k,

〈v3,wi〉 = 〈λ1v1 + λ2v2,wi〉 = λ1〈v1,wi〉+ λ2〈v2,wi〉 > 0,

since λ1, λ2 > 0. It follows that p is monotone with respect to v3. 
�
Lemma 7. For a proper binary tree rooted in a dummy vertex, the disk-algorithm yields
a strongly monotone drawing.

Proof. We split the drawing into four sectors: I, II, III and IV; see Fig. 4b. Let a and b
be two vertices in the graph. We will show that the path that connects a and b in the
drawing output by our algorithm is strongly monotone. Let c be the root of the tree.
W.l.o.g., assume that a lies in sector III. Then, we distinguish three cases.
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Case 1: a and b lie on a common root–leaf path; see a and v in Fig. 4b. Obviously, b
lies in sector III. W.l.o.g., assume that b lies on a path between a and c. By construc-
tion, all edges in sector III, seen as vectors directed towards c, lie between x = (0, 1)
and y = (1, 0). Thus, all edges on the path from a to b, and in particular ab, lie be-
tween x and y. Since x is perpendicular to y, the path from a to b is monotone with
respect to x and y. Following Lemma 6, the path between a and b is monotone with
respect to

−→
ab, and thus strongly monotone.

Case 2: b lies in sector I; see a and d in Fig. 4b. In Case 1, we have shown that the
all edges on the path from a to c lie between x = (0, 1) and y = (1, 0). Analogously,
the same holds for the path from c to b. Thus, the path between a and b is monotone
with respect to x and y and, following Lemma 6, strongly monotone.

Case 3: a and b do not lie on a common root–leaf path, and b does not lie in
sector I; see a and b in Fig. 4b. Let d be the lowest common ancestor of a and b.
Let a0, a1, . . . , ak−1, ak be the path from d to a where a0 = d and ak = a. Now,
let b0, b1, . . . , bm−1, bm be the path from d to b where d = b0 and b = bm. Finally, let
p = ak, ak−1, . . . , a0, b1, . . . , bm−1, bm be the path from a to b.

a
b

d
ai−1

ai

AiA′
i

A

B

Bm

Fig. 5. Illustration of case 3 in the proof of
Lemma 7

Below, we describe how to rotate and
mirror the drawing such that the any vec-
tor −−−−→ai, ai−1, 1 ≤ i ≤ k lies between x =

(0, 1) and y = (1, 0), and any vector
−−−−→
bj−1, bj ,

1 ≤ j ≤ m lies between x and −y. This
statement is equivalent to x(ai) < x(d) <
x(bj), 1 ≤ i ≤ k, 1 ≤ j ≤ m and y(ak) <
. . . < y(a1) < y(d) > y(b1) > . . . > y(bm);
see Fig. 5. If b lies in sector IV, then d = c and this statement is true by construction. If b
lies in sector II, then d is a child of c. We rotate the drawing by π/2 in counterclockwise
direction and then mirror it horizontally. If b lies in sector III, let p(d) be the parent of d.
We rotate the drawing such that the edge (p(d), d) is drawn vertically. Recall that, by

construction, the ray from d in direction
−−−→
p(d)d = −y separates the subtrees of the two

children of d; see Fig. 4a. Further, the angle between any edge (directed away from d)

in the subtree of d and
−−−→
p(d)d = −y is at most π/2, i.e., they are directed downwards.

Let Ai, 1 ≤ i ≤ k be the straight line through ai and perpendicular to −−−−→ai−1ai.
Let A′

i be the parallel line to Ai that passes through a. Due to the x-monotonicity of p
the point a lies below Ai. During the construction of the tree, the line Ai defined a
circular sector in which the subtree rooted at ai including a was exclusively drawn. It
follows that a and b lie on opposite sites of Ai. Thus, b lies above Ai and also above A′

i.

Let Bj , 1 ≤ j ≤ m be the straight line through bj and perpendicular to
−−−−→
bj−1bj . Let B′

j

be the parallel line to Bj that passes through a. By construction, b lies below Bj and a
lies above Bj . Thus, b lies below B′

j .
Let A be the line A′

i with maximum slope and let B be the line B′
j with minimum

slope. First, we will show that the path is monotone with respect to the unit vector A
on A directed to the right. By choice of A, the angle between any edge (ai, ai−1), 1 ≤
i ≤ k and A is at most π/2. Recall that any vector −−−−→ai, ai−1, 1 ≤ i ≤ k lies between x
and y. Since A is perpendicular to one of these edges and directed to the right, it lies
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between x and −y. Since any vector
−−−−→
bj−1, bj , 1 ≤ j ≤ m also lies between x and −y,

the angle between A and these edges is at most π/2. Because the angle between A and
any edge on the path from a to b is at most π/2, the path is monotone with respect to A.

Analogously, it can be shown that the path is monotone with respect to B. Recall
that b lies above A and below B. So the vector

−→
ab lies between A and B. Following

Lemma 6, the path is monotone with respect to
−→
ab and thus strongly monotone. 
�

Lemmas 5 and 7 immediately imply the following.

Theorem 2. Any proper binary tree rooted in a dummy vertex has a strongly monotone
and strictly convex drawing.

Next, we (partially) extend this result to arbitrary trees.

Theorem 3. Any tree has a strongly monotone drawing.

Proof. Let T be a tree. If T has a vertex of degree 2, we root T in this vertex. Otherwise,
we subdivide any edge by creating a vertex of degree 2, which we pick as root. Then,
we add a leaf to every vertex of degree 2, except the root. Now, let v be a vertex with
out-degree k > 2. Let (v, w1), . . . , (v, wk) be the outgoing edges of v ordered from
right to left. We substitute v by a path 〈v = v1, . . . , vk+1〉, where vi+1 is the left child
of vi, for i = 1, . . . , k. Then, we substitute the edges (v, wi) by (vi, wi), i = 2, . . . , k;
see Fig. 6.

Let T ′ be the resulting proper binary tree. Clearly, all vertices of T ′, except its root,
have degree 1 or 3, so T ′ is a proper binary tree. We use Theorem 2 to get a strongly
monotone drawing ΓT ′ of T ′. Then, we remove the dummy vertices inserted above and
draw the edges that have been subdivided by a path as a straight-line. This yields a
drawing ΓT of T that is crossing-free since the only new edges form a set of stars that
are drawn in disjoint areas of the drawing.

Now, we show that ΓT is strongly monotone. Let (v, w) be an edge in T . Let p =
〈v = v1, . . . , vm = w〉 be the path in T ′ between v and w. Suppose p is monotone
with respect to some direction d. Thus, ∠{−−−→vivi+1,d} < π/2 for 1 ≤ i ≤ m − 1.
Clearly, −→vw =

∑m−1
i=1

−−−→vivi+1 is a positive linear combination of −−−→vivi+1, i = 1, . . . ,m
and hence ∠{−→vw,d} < π/2. It follows that the path between two vertices a and b is
monotone to a direction d in ΓT if the path between a and b is monotone to d in ΓT ′ .
With d =

−→
ab, it follows that ΓT is strongly monotone. 
�

We add to this another positive result concerning biconnected outerplanar graphs.

Theorem 4. Any biconnected outerplanar graph has a strongly monotone and strictly
convex drawing.

Proof. Let G be a biconnected outerplanar graph with outer cycle 〈v1, . . . , vn, v1〉. We
place the vertices v2, . . . , vn−1 in counterclockwise order on a quarter circle C that
has v1 = (0, 0) and vn = (1, 1) as its endpoints; see Fig. 7. Since the outer cy-
cle is drawn strictly convex, the drawing is planar and strictly convex. Clearly, the
path 〈v1, . . . , vn〉 is x- and y-monotone. Also, every vector−−→vivj , j > i lies betweenx =
(0, 1) and y = (1, 0). Thus, by Lemma 6, the drawing is strongly monotone. 
�
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v

wk w1wi

T T ′ v = v1

w1

wi

wk

vi

vk

vk+1

Fig. 6. Subdivision of a vertex v
with k outgoing edges

C
v1

vn

Fig. 7. A strongly mono-
tone drawing of a bicon-
nected outerplanar graph

v1

v2
v3w

v4

Fig. 8. A planar graph with-
out any strongly monotone
drawing

We close with a negative result. Note that the graphs in the family that we construct
are neither outerplanar nor biconnected.

Theorem 5. There is an infinite family of connected planar graphs that do not have a
strongly monotone drawing in any combinatorial embedding.

Proof. Let C be the graph that arises by attaching to each vertex of K4 a “leaf”; see
Fig. 8. Let v1, . . . , v4 be the vertices of K4. For K4 to be crossing-free, one of its ver-
tices, say v1, lies in the interior. Let w be the leaf incident to v1. Because of planarity, w
has to be placed inside a triangular face incident to v1. W.l.o.g., assume that w is placed
in the face (v1, v2, v3). If the drawing is strongly monotone, then ∠(−−→wv2,−−→wv1) < π/2
and ∠(−−→wv1,−−→wv3) < π/2 and thus ∠(−−→wv3,−−→wv2) > π. However, this means that w
does not lie inside the triangle (v1, v2, v3), which is a contradiction to the assumption.
Thus, C does not have a strongly monotone drawing in any combinatorial embedding.
We create an infinite family from C by adding more leaves to the vertices of K4. 
�

5 Conclusion and Open Problems

We have shown that any tree has a monotone drawings on a grid with area O(n3) and a
strongly monotone drawing, but can we combine the two features, that is, does any tree
have a strongly monotone drawing on a grid of polynomial size?

Angelini et al. [2, Fig. 18(b)] have constructed a drawing of a triangulation that is
not strongly monotone. But is there a triconnected (or biconnected) planar graph that
does not have any strongly monotone drawing? If yes, can this be tested efficiently?

If we could show that our drawings for general trees are not just strongly monotone
but also convex (as in the proper binary case), then all Halin graphs would automatically
have convex and strictly monotone drawings, too.
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