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Abstract. In this paper we study the ANCHORED GRAPH DRAWING (AGD)
problem: Given a planar graph G, an initial placement for its vertices, and a dis-
tance d, produce a planar straight-line drawing of G such that each vertex is at
distance at most d from its original position.

We show that the AGD problem is NP-hard in several settings and provide
a polynomial-time algorithm when d is the uniform distance L. and edges are
required to be drawn as horizontal or vertical segments.

1 Introduction

Several applications require to draw graphs whose vertices are constrained to be not
too much distant from specific points [1,9]. As an example, consider a graph whose
vertices are cities and whose edges are relationships between cities. It is conceivable
that the user wants to draw the graph on a geographic map where vertices have the
coordinates of the corresponding cities. Unfortunately, depending on the local density
of the cities, the drawing may be cluttered or may contain crossings between edges that
might disappear if the vertices could move from their locations. Hence, the user may be
interested to trade precision for quality of the drawing, accepting that the vertices move
of a certain distance from the location of the cities, provided that the readability of the
drawing increases. Problems in which the input consists of a set of imprecise points
have also been studied in Computational Geometry [4,7].

In this paper we consider the following problem, that we call ANCHORED GRAPH
DRAWING (AGD )!. Given a graph G’ = (V, E), an initial placement for its vertices,
and a distance J, we ask whether there exists a planar drawing of G, according to a
certain drawing convention, such that each vertex v € V can move at distance at most
¢ from its initial placement. Note that the problem can have different formulations de-
pending on how the concepts of “readability” and “distance” are defined.

We consider both straight-line planar drawings and rectilinear planar drawings. Fur-
ther, in addition to the traditional L, Euclidean distance, we consider the 1.; Manhattan
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Table 1. The complexity of the ANCHORED GRAPH DRAWING problem depending on the metric
and drawing style adopted when the areas of the vertices do not overlap

Metric Distance Region Shape Straight-line Rectilinear
L1 Manhattan O NP-hard NP-hard
Lo Euclidean @) NP-hard NP-hard
Lo Uniform O NP-hard Polynomial

distance and the L, ‘uniform’ distance. Note that, adopting L+ distance is equivalent to
allowing vertices to be placed into circular regions centered at their original positions,
and adopting L; or L., distances is equivalent to allowing vertices to be placed into
diamond-shaped or square-shaped areas, respectively.

Observe that, if the regions of two vertices overlap, the positions of the two vertices
can be swapped with respect to their initial placement, which may be confusing to a user
of the drawing. Moreover, overlapping between vertex regions would make problem
AGD as difficult as known Clustered Planarity variants, such as the Strip Planarity
problem [2] in the straight-line setting, whose complexity is a non-trivial open problem.
Hence, we restrict to instances such that the regions of the vertices do not overlap.

We remark that the version of the problem where each circle may have a different size
was shown to be NP-hard in [6] by reducing Planar-(3, 4)-SAT with variable repetitions
(where repeated occurrences of one variable in one clause are counted repeatedly). The
proof in [6] uses disks with radius zero and disks with large radii. Also, the reduction
relies on overlapping disks.

Furthermore, we observe that the NP-hardness of the problem with different dis-
tances and overlapping areas trivially follows from the NP-hardness of extending a pla-
nar straight-line drawing [10] by setting §(v) = 0 for each fixed vertex v and allowing
suitably large distances for vertices that have to be planarly added to the drawing.

In this paper we show that the ANCHORED GRAPH DRAWING problem is NP-hard
for any combination of metrics and drawing standards that we considered, with the ex-
ception of rectilinear drawings and uniform distance metric (square-shaped regions).
These results, summarized in Table 1, were somehow unexpected, as computing a pla-
nar rectilinear drawing of a graph, without any further constraint, is NP-hard [5].

The paper is organized as follows. Section 2 contains basic definitions and termi-
nology. Section 3 describes a polynomial-time algorithm when the considered distance
is the uniform distance L., and edges are required to be drawn as either horizontal
or vertical segments. Section 4 is devoted to the NP-hardness proofs of all the other
considered settings of the problems. Finally, Section 5 discusses some open problems.

2 Problem Definition and Instances Classification

A straight-line planar drawing of a graph G is a drawing of G where edges are straight-
line segments that do not intersect except at common end-points. A rectilinear planar
drawing is a straight-line planar drawing where edges are parallel to the axes.

Given two points p and ¢ in the plane, denote by dz(p, ¢) and dy(p, q) the differences
of their coordinates, i.e., dz(p, q) = |z(p) — z(¢)| and dy(p, q) = |y(p) — y(q)|, where




406 P. Angelini et al.

Property A:
no VV overlap

<V
s
Property B: Property C:
no VP overlap no PP overlap

Fig. 1. Venn diagram describing the logical relationships among Properties A—C

x(r) and y(r) are the x- and y-coordinate of a point r, respectively. The Euclidean
distance dy(p,q) of p and ¢ is defined as dy(p,q) = (dz(p,q)® + dy(p,q)?)z. The
Manhattan distance is defined as d; (p, q) = dx(p, q) + dy(p, q). The uniform distance
doo(p, @) = lim; o0 (dz(p, @) + dy(p. q)")* = max(dz(p, q), dy(p, q))-

We define the ANCHORED GRAPH DRAWING problem parametrically in the metric
Ly, and the drawing style X, which can be straight-line (X = &) or rectilinear (¥ =
R). Hence, for any L, € {L1, L2, Lo} and any X € {S,R} we define: Problem:
ANCHORED GRAPH DRAWING-Ly-X (AGD-Lj-X). Instance: A graph G = (V, E),
an initial placement for its vertices a(v) : V' — R?, and a distance J. Question: Does
there exist a planar drawing of G according to the X' drawing convention such that each
vertex v € V is at distance Ly, at most d from «(v)?

We define anchored drawing a planar drawing satisfying all the requirements of the
particular version of problem ANCHORED GRAPH DRAWING.

Given an instance (G, «, ¢) of the ANCHORED GRAPH DRAWING problem, each
vertex v identifies a region R(v) of the plane, called vertex region, that encloses the
initial position of the vertex and whose shape depends on the metric adopted for com-
puting the distance. In particular, for the Euclidean distance the vertex regions are cir-
cles, for the Manhattan distance they are diamonds, and for the uniform distance they
are squares. Each edge (u,v) of the graph, instead, identifies a pipe P(u,v), defined
as follows. Consider the convex hull H of R(u) and R(v); pipe P(u,v) is the closed
region obtained by removing R(u) and R(v) from H.

Instances can be classified based on the intersections among vertex and pipe regions.
Namely, we can have instances satisfying the following properties:

Property A. No overlap between two vertex regions (VV-overlaps);
Property B. No overlap between a vertex region and a pipe (VP-overlaps);
Property C. No overlap between pipes (PP-overlaps) not incident to the same vertex.

The Venn diagram in Fig. 1 shows the logical relationships between the three prop-
erties. The following observation is immediate.

Observation 1. If Properties A, B, and C are all satisfied, then the instance is trivially
positive, since choosing any point in the vertex region (including the initial placement
of the vertex) yields an anchored drawing of the input graph.
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In this paper we always assume that Property A is satisfied. In fact, if vertex regions
were allowed to overlap, then it would be possible to reduce to this problem a variant
of the Clustered Planarity problem whose complexity is still unknown. In this variant,
which includes Strip Planarity [2] as a special case, the cluster regions are already drawn
and edges are straight-line.

Two further observations can be made which reduce the set of instances of interest.

Observation 2. An instance satisfying Property B but not satisfying Property C (i.e.,
with PP-overlaps but without VP-overlaps) is trivially false, as in this case any PP-
overlap would enforce a crossing between two edges for any placement of their end-
vertices in the corresponding vertex regions.

Observation 3. An instance satisfying Property C but not satisfying Property B (i.e.,
with VP-overlaps but without PP-overlaps) is trivially true.

Proof: Since Property C holds, no crossing can occur outside a vertex region. First,
suppose that regions are diamonds or squares. If the center of region R(v) of a vertex v
lies inside a pipe P(x, y), then at least two consecutive vertices, say a and b, delimiting
R(v) lie inside P(x,y). This implies that v has degree at most 1, as otherwise there
would be a P P-overlap between P(z,y) and a pipe P(v, w) delimited by either a or b.

As for the case in which regions are circles, if the center of R(v) lies inside P(z, y),
then at least half of the circle delimiting R(v) lies inside P(x,y). Hence, a similar
argument applies to prove that deg(v) < 1.

In all the three cases, since deg(v) < 1 and R(v) is not completely contained into
P(z,y), v can be placed on any point of R(v) outside P(z,y). Hence, placing each
other vertex at the center of its region yields an anchored drawing. m|

Due to the above properties and observations, the remaining part of this paper focuses
on the instances for which Property A holds, while Properties B and C do not. These
instances correspond to the blue region at the top of Fig. 1.

3 Polynomial-Time Algorithm

In this section we describe an algorithm, called Algo-AGD-L ..-R, that decides in poly-
nomial time instances (G, «, ¢) of problem AGD-L.-R such that G is connected.

For each vertex v € V, denote by z;(v) and z,(v) the z-coordinate of the left and
right side of R(v), respectively. Similarly, denote by y:(v) and y,(v) the y-coordinate
of the top and bottom side of R(v), respectively. See region R(u) in Fig. 2.

First note that, for each edge (u,v) € E, the relative placement of R(u) and R(v)
determines whether (u,v) has to be drawn as a vertical or a horizontal segment, or
(u,v) cannot be drawn neither horizontal nor vertical with its endpoints lying inside
their corresponding regions. In the latter case, instance I is negative. An edge that has
to be drawn as a horizontal (vertical) segment is a horizontal (vertical) edge. In the fol-
lowing we assume w.l.o.g. that any horizontal edge (u,v) is such that =, (u) < z;(v),
while any vertical edge (u,v) is such that y;(u) < y»(v). A path composed only of
horizontal (vertical) edges is a horizontal (vertical) path. Given that each edge (u,v)
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Fig. 2. Geometric description of a region R(u) and of a pipe P(u,v), after procedure PIPEE-
QUALIZER has been applied

can be categorized as either horizontal or vertical, we can label its pipe P(u,v) as ei-
ther horizontal or vertical accordingly. Also, we can determine the minimum
and maximum y-coordinate (z-coordinate) that a horizontal (vertical) edge (u,v) can
assume while placing both its endvertices inside their regions. In the following we de-
scribe pipe P(u,v) by means of these coordinates, which are denoted by y,(P) and
y+(P) (z;(P) and z, (P)), respectively. See horizontal pipe P(u,v) in Fig. 2.

Also note that, if a vertex v of degree 2 is incident to two horizontal (vertical) edges
(u,v) and (v, 2z), then replacing v and its incident edges with a horizontal (vertical)
edge (u, z) yields an equivalent instance. Hence, we assume that, if there exists a vertex
of degree 2, then it is incident to both a horizontal and a vertical edge.

As a preliminary step of the algorithm, we initialize the geometric description of each
pipe P(u,v) as follows. If P is vertical, then set z,.(P) = min(z,(u), z,(v)) and
21 (P) = max(z;(u), z;(v)). If Pishorizontal,thensety;(P) = min(y.(u), y:(v))
and y,(P) = maz(yy(u), yp(v)). Here and in the following, whenever a vertex region
R(w) (a pipe P(u,v)) is modified by the algorithm, we assume the pipes incident to w
(the regions R(u) and R(v)) to be modified accordingly.

In order to ensure that horizontal (vertical) pipes whose edges belong to the
same horizontal (vertical) path have the same geometric description, we refine the pipes
by applying the following procedure, that we call PIPEEQUALIZER. As long as there ex-
ist two vertical pipes P’ (u,v) and P” (v, w) incident to the same vertex v such that
x1(P") # 2 (P") or . (P’) # x.(P"), set x;(P") = x;(P") = max(x;(P"), z;(P"))
and z,(P') = x.(P") = min(x,(P’),z,(P")). Analogously, as long as there exist
two horizontal pipes P’ (u, v) and P” (v, w) incident to the same vertex v such that
yu(P') # yp(P") or y(P') # yo(P"), set yo(P') = yo(P") = maz(yp(P'), yo(P"))
and y.(P") = y(P") = min(y(P'),y:(P")). See pipe P(u,v) in Fig. 2 after the
application of PIPEEQUALIZER.

We then perform the following procedure, that we call PIPECHECKER. It first checks
whether there exists a pipe P such that z,(P) < z;(P) or y(P) < yu(P). Then, it
checks whether there exists a PP-overlap between two pipes P(u, v) and P(w, z) such
that: (¢) neither of R(u) or R(v) has a VP-overlap with P(w, z); and (4¢) neither of
R(w) or R(z) has a VP-overlap with P(u, v). If one of the two checks succeeds, then
we conclude that instance I is negative, otherwise we proceed with the algorithm.

In the following, every time a pipe is modified, we will apply procedure PIPEE-
QUALIZER to extend this modification to other pipes, and procedure PIPECHECKER to
test whether such modifications resulted in uncovering a negative instance.
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Fig. 3. Vertices exiting pipes. (a) Vertex w exits P(u,v) from below. The cut of P(u,v) applied
by procedure PIPEBLOCKCHECKER is described by a dashed line. (b) Vertex v exits P(w, )
through w. The cut of R(w) and the consequent cut of P(w, z) applied by procedure VERTEX-
CHECKER is described by a dashed line. (c) A situation recognized by procedure PIPEINTER-
LEAVECHECKER.

The general strategy of the main part of the algorithm is to progressively reduce the
size of the pipes. In particular, at each step we consider the current instance I* and
modify it to obtain an instance I°*! with smaller pipes than I? that admits an anchored
drawing if and only if I? admits an anchored drawing. Eventually, such a process will
lead either to an instance /™ for which it is easy to construct an anchored drawing or to
conclude that instance I = I' is negative.

Let P(u,v) be a horizontal pipe, and w be a vertex having a VP-overlap with
P(u,v). Refer to Fig. 3(a). We say that w exits P from below if there exists a vertex
h such that: (i) yp(P) < yp(w) < y(P) and x,(u) < x(w) < zp(w) < x1(v);
(#4) y¢(h) < yp(P) and z,(u) < 2;(h) < z,(h) < x;(v); and (ii) there exists a path
~ = (w,...,h) in G connecting w to h in which every internal vertex r is such that
R(r) intersects P. Symmetrically, we say that w exits P from above if there exists a
vertex h with the same properties as before, except for the fact that y,(P) < y:(w) <
y+(P), yp(h) > y(P). Otherwise, we say that w exits P through a vertex, either u
or v. In Fig. 3(b), vertex v exits pipe P(w,z) through w. Observe that, since G is
connected and no VV-overlap occurs in I, there always exists a path y = (w, ..., h) in
G connecting w to a vertex h such that i does not have any VP-overlap with P; hence,
w always exits P, either from above or below, or through a vertex.

For the case of a vertical pipe P(u,v), we assume analogous definitions of ver-
tices exiting P from left, right or through a vertex, either u or v. As long as one of the
following conditions is satisfied, we apply one of the procedures described hereunder.

Procedure VERTEXCHECKER: Consider a vertex w having a VP-overlap with a
horizontal (vertical) pipe P(u,v) such that yp(w) < yp(P) < y:(P) < yi(w)
(resp., z;(w) < z;(P) < z,(P) < zp(w)). If w is incident to two vertical (hori-
zontal) pipes, then we conclude that instance I is negative. Otherwise, if w is incident
toavertical (horizontal)pipe P(w,w’), thenset yp(w) = max(ys(w), yp(P))
(set z1(w) = max(z(w), z;(P)). See Fig. 3(b). Analogously, if w is incident to a
vertical (horizontal) pipe P(w',w), then set y.(w) = min(y:(w), y:(P) (set
zp(w) = min(x, (w), z, (P)).

Procedure PIPEBLOCKCHECKER: Consider a pipe P(u,v) having a VP-overlap
with a vertex w such that w does not exit through a vertex. If w exits P(u,v) both
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from above and from below (a vertical pipe both from left and from right), then
we conclude that instance [ is negative. Otherwise, if w exits P from (i) above, we set
y+(P) = ye(w); (it) below, we set yp(P) = yp(w); (i4i) left, we set ;(P) = ;(w); or
(iv) right, we set z,.(P) = x,.(w). See Fig. 3(a).

Procedure PIPESIDECHECKER: Consider a horizontal (vertical) pipe
P(u,v) and a vertex w exiting P(u, v) both through vertex v and through vertex v. If u
and v are incident to vertical (horizontal) pipes, either P(u,u’) and P(v',v),
or P(u/,u) and P(v,v"), respectively, then we conclude that instance [ is negative.

Procedure PIPEINTERLEAVECHECKER: Suppose that there exist two horizon-
tal (vertical) pipes P(u,v) and P(w, z) such that v and P(w, z) have a VP-
overlap, and w and P(u,v) have a VP-overlap. If either v is incident to a verti-
cal (horizontal)pipe P(v,v") and w isincidentto avertical (horizontal)
pipe P(w,w’), or v is incident to a vertical (horizontal) pipe P(v’,v) and
w is incident to a vertical (horizontal) pipe P(w’,w), then we conclude that
instance I is negative. See Fig. 3(c).

If none of the above procedures can be applied, then we conclude that [ is a positive
1nstance.

Theorem 1. Let I = (G, «, ) be an instance of AGD-Loo-R such that G is con-
nected. Algorithm Algo-AGD-L..-R decides in polynomial time whether (G, c,d)
admits an anchored drawing.

Proof: The initialization of the pipes and their refinement operated by procedure PIPEE-
QUALIZER, both after the initialization and after each further modification, is trivially
necessary to meet the requirements that vertices are placed inside their regions and
edges are drawn as either horizontal or vertical segments.

Suppose that procedure PIPECHECKER concluded that instance [ is negative at some
point of the algorithm. If z,.(P) < x;(P) Gf y:(P) < ys(P)), then there exist two
vertical (horizontal) pipes sharing a vertex that cannot be placed inside its re-
gion while drawing both its incident edges as rectilinear segments. Otherwise, there
exists a PP-overlap between two pipes P(u,v) and P(w, z) not overlapping with re-
gions R(u), R(v), R(w), and R(z). By Observation 2, the instance is negative.

We prove that the modifications operated by VERTEXCHECKER, when a vertex w
has a VP-overlap with a horizontal (vertical) pipe P(u,v) and w is incident to
avertical (horizontal) P(w,w’), do not restrict the possibility of constructing
an anchored drawing of (G, «, 0). Refer to Fig. 3(b). In fact, in this case, in any anchored
drawing of (G, «, ¢), edge (w,w’) cannot traverse P(u,v) from top to bottom. As for
the fact that an instance in which w is incident to two vertical (horizontal)
pipes is correctly recognized as negative, observe that in this case one of the two vertical
edges incident to w necessarily crosses edge (u, v).

We prove that the modifications operated by PIPEBLOCKCHECKER, when a vertex
w overlaps a pipe P(u,v) and does not exit through one of its vertices, do not restrict
the possibility of constructing an anchored drawing of (G, «, §). Suppose that w exits
P(u,v) from below, the other cases being analogous. Refer to Fig. 3(a). The statement
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Fig. 4. Construction of the drawing when none of the procedures can be applied. (a) Two maximal
horizontal paths (u1, u2, us) and (v1, v2) whose pipes have the same y-coordinates. Path (v1, v2)
is assigned a y-coordinate slightly larger than (u1, u2, u3). (b) Three maximal horizontal paths
(u1,u2,us), (vi,v2), and (w1, w2)whose pipes have the same y-coordinates. Path (v1, v2) is
assigned a y-coordinate slightly larger than (w1, w2).

follows from the fact that, in any anchored drawing of (G, «, ), the drawing of path
v = (w,...,h) blocks visibility from R(u) to R(v) inside P(u,v) at least for all the
y-coordinates in the range between the point where w is placed and the point where h
is placed. Since y:(h) < yp(P), the point where w is placed determines a new lower
bound for the value of y,(P). Since such a point cannot be below y;,(w), the statement
follows. As for the fact that an instance containing a vertex w that exits a horizon-
tal pipe both from above and from below (a vertical pipe both from left and from
right) is correctly recognized as negative, observe that in this case the two paths starting
from w completely block visibility between from R(u) to R(v) inside P(u, v).

We prove that an instance containing a vertex w that exits P(u,v) through both of
its vertices, and such that u and v are also incident to pipes P(u,u’) and P(v',v),
or vice versa, reaching them from different sides, is correctly recognized as negative
by procedure PIPESIDECHECKER. Namely, observe that in this case path (v, u, v, v’)
necessarily crosses one of the two paths starting from w.

Finally, suppose that procedure PIPEINTERLEAVECHECKER concluded that instance
I is negative. Refer to Fig. 3(c). Itis easy to observe that the fact that v and w are reached
from the same side is not compatible with an anchored drawing of (G, «v, ).

We conclude the proof of the theorem by showing that, when none of the described
procedures can be applied, it is always possible to draw every edge (u, v) inside its pipe
P(u,v), as follows.

Consider every maximal horizontal path (u1, . . ., u, ). Note that, each vertex u;, with
1 < i <, isincident to at least a vertical pipe, either (u;, u}) or (u}, u;), as other-
wise edges (u;—1,u;) and (u;, u;+1) would have been replaced with edge (u;—1, Ui41)-
If all the vertices u; are incident to a vertical (u;,u}), then assign y-coordinate
equal to y¢(u;) to u,, fori = 1,... r; if all the vertices u; are incident to a vertical
(uf, u;), then assign y-coordinate equal to y,(u;) to u;, fori = 1,. .., r; finally, if there
exists at least a vertex u; incident to a vertical (u;, u}) and at least a vertex u; in-
cident to a vertical (u},u;), then assign y-coordinate equal to yb(“i);y‘(“i) to u;,
for: =1,...,r. Assign x-coordinates to vertices of every maximal vertical path equal
to z;(u;), to @, (u;), or to m’(“i);“(“i), in an analogous way.

With a straightforward case analysis, it is possible to observe that, since none of
the conditions activating the described procedures is satisfied, there exists no cross-
ing in the drawing, apart from possible overlaps between edges belonging to different
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maximal horizontal (vertical) paths whose pipes have the same bottom and top y-
coordinates (the same left and right z-coordinates). However, these overlaps can be
always eliminated by increasing (decreasing) of an arbitrarily small amount the coordi-
nates of the overlapping paths (see two examples in Fig. 4(a) and 4(b)), again due to the
fact that none of the conditions activating the described procedures is satisfied. O

4 Hardness Results

In this section we prove the hardness of the ANCHORED GRAPH DRAWING problem
in different settings. In particular, Theorem 2 is devoted to the hardness of the AGD-
L5-S problem, i.e., the problem of generating planar straight-line drawings of the input
graph where the vertex regions are circles of radius 6. Theorem 3, instead, is devoted to
the hardness of the AGD-L,-R problem, where the regions are circles of radius § and
edges are required to be drawn as horizontal or vertical segments.

The proofs of hardness for the remaining variants of the problem listed in Table 1
can be derived from these two and, thus, will not be explained in detail. Namely, the re-
duction to AGD-L1-R is very similar to that used for AGD-Ly-R, and can be obtained
by suitably replacing circles with diamond-shaped regions that ensure analogous geo-
metric visibility and obstruction properties. The same holds for the hardness proof of
AGD-L-S, that can be obtained from AGD-L»-S with small adaptations of the gad-
gets. Finally, the reduction to AGD-L;-S is the same as the one for AGD-L,-S where
all the geometric constructions are rotated by 45°, transforming the square-shaped re-
gions of AGD-L,-S into the diamond-shaped regions of AGD-L;-S.

All our proofs are based on a reduction from the NP-complete problem PLANAR
3-SATISFIABILITY [8], defined as follows. Problem: PLANAR 3-SATISFIABILITY
(P3SAT). Instance: A planar bipartite graph G = (V,,, V¢, E)) where: (i) V, is a set
of variables; (i7) V. is a set of clauses, each consisting of exactly three literals repre-
senting variables in V;,; and (zi¢) E is a set of edges connecting each variable v € V,,
to all the clauses containing a literal representing v. Question: Does there exist a truth
assignment to the variables so that each clause has at least one true literal?

For each of our problems, we describe gadgets that, given an instance ¢ of P3SAT,
can be combined to construct an instance y of the considered problem. Namely, we
describe a gadget for each of the following: variable, not, turn, split, and clause.

The variable gadget has two families of planar drawings, corresponding to the two
truth values. The not gadget admits planar drawings that invert its input truth value. The
turn gadget admits planar drawings that propagate its input truth value in a direction that
is orthogonal to the original one. The split gadget admits planar drawings that propagate
its input truth value to two different directions. Finally, the clause gadget is planar if and
only if at least one of its input literals is true. The gadgets are combined following
the structure of a planar drawing of ¢, so that any planar drawing of ~ corresponds to
a truth assignment for the variables satisfying ¢. Similarly, given a truth assignment
for the variables that satisfies ¢, the gadgets for variables can be drawn accordingly to
obtain a planar drawing of .
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Fig. 5. Variable gadget for the reduction to the AGD-L2>-S problem in its false (a) and true (b)
configurations. (¢) Propagation of the true configuration of a variable gadget. (d) Turn gadget in
its false configuration.

R(ve)
R(va) /,,/I//
y = ~ R(va)
R(wy)
(a)

(b)

Fig. 6. (a) Split gadget in its true configuration. (b) Not gadget.

Theorem 2. AGD-L5-S is NP-hard.

Proof: To prove hardness we reduce problem P3SAT to AGD-L5-S, under the hy-
pothesis that Property A is satisfied (no overlap among vertex regions).

Let ¢ be an instance of P3SAT with n variables and m clauses. We describe how to
construct an equivalent instance v of AGD-Ls-S. For each variable z;, i = 1,...,n,
we create a variable gadget, whose two families of planar drawings are depicted in
Figs. 5(a) and 5(b), consisting of four vertices vy, vo, vs, and v4 and edges (v, v2)
and (vs, v4). The regions assigned to the vertices are placed as follows: (¢) the centers
of R(vi) and of R(vz) lie on the same vertical line; (i¢) the centers of R(vs) and
of R(v4) lie on the same horizontal line; (i4i) pipe P(v1,v2) has an intersection of
arbitrarily small area with both R(v3) and R(v4); and (iv) pipe P(vs,v4) intersects
neither R(v;) nor R(v2). Hence, in any anchored drawing of v, edge (v1, v2) is drawn
either to the left of v3 (as in Fig. 5(a)) or to the right of v4 (as in Fig. 5(b)). In both cases,
edge (v1,v2) is drawn almost vertical. We call these two configurations false and true
configurations for the variable gadget, respectively, and associate them with the false
and true values for the corresponding variable x;. The truth value of a variable can be
propagated by concatenating a sequence of variable gadgets 1, . . ., py in which R(vy)
of u; is identified with R(ve) of p;41, foreachi =1,...,k — 1. See Fig. 5(c).

The turn gadget can be constructed by concatenating three variable gadgets, 11, L2
and 3, as depicted in Fig. 5(d), in such a way that yo has a clockwise rotation of 45°
with respect to 111, and 3 has a clockwise rotation of 90° with respect to ji1.
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Fig.7. Clause for the reduction to the AGD-L2-S problem. Vertices v1, vz, and v3 represent
the three literals of the clause. For readability, we show only pipes P(v1,v2) and P(vs, vs).
(a) Arrangement of the regions. (b) All literals are assigned false, and edges (vs,vs) and
(vs, v4) cross. The darker wedge represents all the possible positions for edge (vs,v4) in this
truth assignment, which implies that the crossing is unavoidable. (c) Assigning true to any of
the literals allows for a planar drawing.

The split gadget can be constructed by combining two turn gadgets 7, = (u¥, u&, )
and 7r = (uff, uf, pudt), with ul = 1 and where 77, is obtained from 75 by a vertical
mirroring. See Fig. 6(a).

The not gadget is constructed as follows. Consider two horizontally (vertically)
aligned variable gadgets p; and ps. Add an edge connecting vy of g to vy of o,
as in Fig. 6(b). Place between p; and uo two pairs of adjacent vertices (v,,vp) and
(ve, v4) Whose regions are placed in such a way that: (¢) any drawing of edge (vq, vp)
blocks the visibility between the true configurations of 1 and pg; (i4) any drawing of
edge (v., vq) blocks the visibility between the false configurations of 11 and p9; and
(ii7) edges (vq,vp) and (ve, vg) can be drawn in such a way that there exists visibility
between different truth configurations of 117 and p2. Hence, in any anchored drawing of
v, the configurations of p1 and uo are different.

The clause gadget is constructed as follows. Refer to Fig. 7(a). Consider three ver-
tices v1, ve, and v3 whose regions are placed in such a way that their centers induce
a non-degenerated triangle 7 and the centers of R(v1) and of R(v2) lie on the same
horizontal line. These three vertices represent the three literals of the clause. While
R(v2) and R(v3) maintain the usual convention to encode the truth value of the repre-
sented variable, for R(v;) it is inverted. It can be easily realized by negating the value
of the variable. The gadget contains three more vertices: v4, vs, and vg, and edges
(v1,v2), (v2,v3), (v1,v3), (vs,v4), and (vs, ve). The center of R(v;), with i = 4,5, 6,
lies inside 7. Region R(v4) is completely contained in pipe P(v1, v2), except for an
arbitrarily small part II, which lies inside 7. Consider the two points [ and 7 in which
the boundary of R(v4) intersects P(v1, v2). The boundary of R(vs) is tangent to the
leftmost segment of the convex hull H of {l, r} U R(vs3). Region R(vg) completely lies
to the right of the rightmost segment of [, except for an arbitrarily small part. Neither
R(vs) nor R(ve) intersects P(v1, v2).

If all the literals are set to £alse, then vy must lie below edge (v, v2) (and hence in
IT). However, visibility between II and R(vs) is prevented by edge (vs, vg) (Fig. 7(b)).
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Otherwise, if at least one of the literals is set to true, then an anchored drawing of ~y
can be realized (see Fig. 7(c) for an example). O

Theorem 3. AGD-L5-R is NP-hard.

Proof sketch: To prove hardness we reduce problem P3SAT to AGD-Ls-R, un-
der the hypothesis that Property A is satisfied (no overlap among vertex regions). The
adopted gadgets are similar to those used in the proof of Theorem 2 with the exception
of the clause gadget. That gadget is based on creating three horizontal strips that are the
only possible containers of a specific edge. If all the literals are false, then suitable
edges obstruct such strips and make it not possible to construct an anchored drawing. O

5 Conclusions and Open Problems

We considered the ANCHORED GRAPH DRAWING problem in several settings, show-
ing that, provided that the input instance do not have overlaps between vertex regions
(Property A), the problem of producing planar drawings is NP-hard in most of the set-
tings. The only exception is for the case with rectilinear drawings and uniform dis-
tances (square-shaped regions), for which a polynomial-time algorithm is provided in
Section 3.

We leave open the following questions: (¢) Does problem AGD belong to class NP?
(#4) The instances in our NP-hardness proofs can be augmented to equivalent instances
whose graphs are biconnected (we omit details for space reasons). In these instances,
different truth values correspond to different embeddings. What is the complexity of
AGD when the input graph is triconnected or has at least a fixed embedding? (ii:) What
if we allow the vertex regions to (at least partially) overlap?
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