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Abstract. We investigate the problem of constructing planar drawings with few
bends for two related problems, the partially embedded graph (PEG) problem—
to extend a straight-line planar drawing of a subgraph to a planar drawing of the
whole graph—and the simultaneous planarity (SEFE) problem—to find planar
drawings of two graphs that coincide on shared vertices and edges. In both cases
we show that if the required planar drawings exist, then there are planar drawings
with a linear number of bends per edge and, in the case of simultaneous planarity,
a constant number of crossings between every pair of edges. Our proofs provide
efficient algorithms if the combinatorial embedding information about the draw-
ing is given. Our result on partially embedded graph drawing generalizes a classic
result of Pach and Wenger showing that any planar graph can be drawn with fixed
locations for its vertices and with a linear number of bends per edge.

1 Introduction

In many practical applications we wish to draw a planar graph while satisfying some
geometric or topological constraints. One natural situation is that we have a drawing of
part of the graph and wish to extend it to a planar drawing of the whole graph. Pach and
Wenger [20] considered a special case of this problem. They showed that any planar
graph can be drawn with its vertices lying at pre-assigned points in the plane and with
a linear number of bends per edge. In this case the pre-drawn subgraph has no edges.
If the pre-drawn subgraph H has edges, a planar drawing of the whole graph G
extending the given drawing H of H might not exist. Angelini et al. [1] gave a linear-
time algorithm for the corresponding decision problem; the algorithm returns, for a
positive answer, a planar embedding of G that extends that of H (i.e., if we restrict the
embedding of G to the edges and vertices of H, we obtain the embedding corresponding
to H). If one does not care about maintaining the actual planar drawing of H this is
the end of the story, since standard methods can be used to find a straight-line planar
drawing of G in which the drawing of H is topologically equivalent to the one of H. In
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this paper we show how to draw G while preserving the actual drawing H of H, so that
each edge has a linear number of bends. This bound is worst-case optimal, as proved by
Pach and Wenger [20] in the special case in which H has no edges.

A result analogous to ours was claimed by Fowler et al. [10] for the special case in
which H has the same vertex set as G. Their algorithm draws the edges of G one by
one in a certain order, and they claim a linear number of bends per edge. However, we
give an example where their algorithm produces exponentially many bends, confirming
a claim of Schaefer [23] that greedy extensions can in general give many bends.

We also address the simultaneous planarity problem [4], also known as “simulta-
neous embedding with fixed edges (SEFE)”. The SEFE problem is strongly related
to the partially embedded graph problem and—in a sense we will make precise later—
generalizes it. We are given two planar graphs G; and G5 that share a common subgraph
G (i.e., G is composed of those vertices and edges that belong to both G and G3). We
wish to find a simultaneously planar drawing, i.e., a planar drawing of G; and a planar
drawing of G2 that coincide on G. Graphs G1 and G4 are simultaneously planar if they
admit such a drawing. Both G and G2 may have private edges that are not part of G.
In a simultaneous planar drawing the private edges of G; may cross the private edges
of G5. The simultaneous planarity problem arises in information visualization when we
wish to display two relationships on two overlapping element sets.

The decision version of the simultaneous planarity problem is not known to be NP-
complete, nor solvable in polynomial time, though it is NP-complete if more than two
graphs are given [11]. However, there is a combinatorial characterization of simultane-
ous planarity, based on the concept of a “compatible embedding”, due to Jiinger and
Schulz [16] (see below for details). Erten and Kobourov [8], who first introduced the
problem, gave an efficient drawing algorithm for the special case where the two graphs
share vertices but no edges. In this case, a simultaneous planar drawing always exists,
and they construct a drawing in which each edge has at most three bends and therefore
any two edges cross (when they legally can) at most 16 times. In this paper we show
that if two graphs have a simultaneous planar drawing, then there is a drawing in which
every edge has a linear number of bends and in which any two edges cross at most 24
times. Our result is algorithmic, assuming a compatible embedding is given.

More formally, our paper addresses the following two problems:

— Planarity of a partially embedded graph (PEG). Given a planar graph G and a
straight-line planar drawing H of a subgraph H of G, find a planar drawing of G
that extends H (see [1,15]).

— Simultaneous planarity (SEFE). Given two planar graphs G; and G that share
a subgraph G, find planar drawings of G; and G5 that are the same on the shared
subgraph (see [4]).

We prove the following results:

Theorem 1. Let G be an n-vertex planar graph, let H be a subgraph of G, and let H
be a straight-line planar drawing of H. Suppose that G has a planar embedding £ that
extends H. Then we can construct a planar drawing of G in O(n?)-time which realizes
E, extends H, and has at most 102|V (H)| + 12 bends per edge.
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Theorem 2. Let Gy and G4 be simultaneously planar graphs on a total of n vertices
with a shared subgraph G. Then there is a simultaneous planar drawing in which any
edge of G1 — G and any edge of G2 — G intersect at most 24 times, and one of the
following properties holds:

1. each edge of G is straight, and each private edge of G1 and of G4 has at most T2n
bends; also, vertices, bends, and crossings lie on an O(n?) x O(n?) grid; or

2. each edge of G1 is straight and each private edge of G has at most 102|V (H)|+12
bends per edge.

If we are given a compatible embedding of the two graphs, we can construct such draw-
ings in O(n?) time.

Theorem 1 generalizes Pach and Wenger’s result, which corresponds to the special
case in which the pre-drawn subgraph has no edges. Observe that Theorem 1 directly
provides a weak form of Theorem 2: If G; and G2 are simultaneously planar, then they
admit a compatible embedding. We can hence take any straight-line planar drawing of
(G realizing the embedding and extend the induced drawing of G to a drawing of Gb.
By Theorem 1, we obtain a simultaneous planar drawing where each edge of G is
straight and each private edge of G has at most 102|V(H )| + 12 bends per edge. Our
stronger result of 24 crossings between any two edges is obtained by modifying the
proof of Theorem 1, rather than applying that result directly.

We note that Grilli et al. [12] have a paper in this conference with a result similar
to Theorem 2. They show, using different techniques, that two simultaneously planar
graphs have a simultaneous planar drawing with at most 9 bends per edge, vastly better
than our 72n bound. Our primary goal, however, was to reduce crossings rather than
bends. We achieve 24 crossings per pair of edges. They do not address the number of
crossings, but the obvious bound from their result is 100 crossings per pair of edges.
We also achieve a polynomial-size grid, but the obvious way of forcing their drawing
onto a polynomial-sized grid increases the number of bends per edge to 300n.

1.1 Related Work

The decision version of simultaneous planarity generalizes partially embedded pla-
narity: given an instance (G, H, ) of the latter problem, we can augment # to a draw-
ing of a 3-connected graph G and let G = G. Then GG; and G5 are simultaneously
planar if and only if G has a planar embedding extending . In the other direction, the
algorithm [1] for testing planarity of partially embedded graphs solves the special case
of the simultaneous planarity problem in which the embedding of the common graph G
is fixed (which happens, e.g., if G or one of the two graphs is 3-connected).

Several optimization versions of partially embedded planarity and simultaneous pla-
narity are NP-hard. Patrignani showed that testing whether there is a straight-line draw-
ing of a planar graph G extending a given drawing of a subgraph of G is NP-complete
[21], so bend minimization in partial embedding extensions is NP-complete; Patrig-
nani’s result holds even if a combinatorial embedding of G is given.! Bend minimiza-

! Patrignani does not explicitly claim NP-completeness in the case in which the embedding of
G is fixed, but that can be concluded by checking his construction; only the variable gadget,
pictured in his Figure 3, needs minor adjustments.
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tion in simultaneous planar drawings is NP-hard, since it is NP-hard to decide whether
there is a straight-line simultaneous drawing [9]. Crossing minimization in simultane-
ous planar drawings is also NP-hard, as follows from an NP-hardness result on an-
chored planar drawings by Cabello and Mohar [5] (see Section 4).

As mentioned above, the special cases of PEG and SEFE in which there are no edges
in the pre-drawn subgraph and in the common subgraph have been already studied.

Concerning PEG, Pach and Wenger [20] proved the following result: given an n-
vertex planar graph GG with fixed vertex locations, a planar drawing of GG in which each
edge has at most 120n bends can be constructed in O(n?) time. They also proved that
such a bound is tight in the worst case. A 3n + 2 upper bound improving upon the 120n
upper bound of Pach and Wenger has been proved by Badent et al. [2].

Concerning SEFE, Erten and Kobourov [8] proved the following result: given two
planar graphs GG; and G5 sharing some vertices and no edges with a total number of n
vertices, there is an O(n)-time algorithm to construct a simultaneous planar drawing of
G4 and G> on a grid of size O(n?) x O(n?), with at most 3 bends per edge, hence at
most 16 crossings between any edge of G and any edge of GG2. Building on Kaufmann
and Wiese’s drawing algorithm [17], the number of bends per edge and the number of
crossings per pair of edges can be reduced to 2 and 9, respectively, at the expense of an
exponential increase in the area of the simultaneous drawing.

Haeupler et al. [13] showed that if two simultaneously planar graphs G; and Gs
share a subgraph G that is connected, then there is a simultaneous planar drawing in
which any edge of G; — GG and any edge of G — G intersect at most once. Introducing
vertices at crossing points yields a planar graph, and a straight-line drawing of that graph
provides a simultaneous planar drawing with O(n) bends per edge, O(n) crossings per
edge, and with vertices, bends, and crossings on an O(n?) x O(n?) grid. Our result
generalizes this to the case where the common graph G is not necessarily connected.

1.2 Graph Drawing Terminology

A rotation system for a graph is a cyclic ordering of the edges incident to each vertex. A
rotation system of a connected graph determines its facial walks—the closed walks in
which each edge (u, v) is followed by the next edge (v, w) in the cyclic order at v. The
facial walks are the boundaries of the faces in an embedding of the graph. The size ||
of a facial walk W is the length of W (edge repetitions are counted). A rotation system
is planar if it corresponds to a planar drawing; a planar embedding of a connected
graph consists of a planar rotation system together with a specified outer face.

These definitions do not handle the situation in which the graph is not connected.
Following Jiinger and Schulz [16], we define a topological embedding of a (possibly
non-connected) graph as follows: We specify a planar embedding for each connected
component. This determines a set of inner faces. For each connected component we
specify a “containing” face, which may be an inner face of some other component or the
unique outer face. Furthermore, we forbid cycles of containment—in other words, if a
connected component is contained in an inner face, which is contained in a component,
etc., then this chain of containments must lead eventually to the unique outer face.

A facial boundary in a topological embedding of a graph is the collection of facial
walks along the (not necessarily connected) boundary of a face. Each face (unless it is
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the outer face) has a distinguished facial walk we call the outer facial walk separating
the remaining inner facial walks from the outer face of the embedding. The size of a
facial boundary is the sum of the sizes of the facial walks part of the facial boundary.
A compatible embedding of two planar graphs G; and G consists of topological
embeddings of G'; and G2 such that the common subgraph G inherits the same topo-
logical embedding from G; as from G2 (where a subgraph inherits a topological embed-
ding in a straightforward way; in particular, if we remove an edge that disconnects the
graph, the face containment is determined by the edge that was removed). Jiinger and
Schulz [16] proved that G; and G2 are simultaneously planar if and only if they have
a compatible embedding. For that proof, they construct a simultaneous planar drawing
of G and G2 by extending a drawing of G (thus proving a form of our Theorem 1).
However, their method does not yield any bounds on the number of bends or crossings.

2 Partially Embedded Graphs

In this section we prove Theorem 1. We will construct a planar drawing of G that
extends #, assuming that we are given a planar embedding of GG that extends . It
suffices to prove the result for a single face F' of H and the connected components of G
that lie inside or on the boundary of F' and are connected to H.

Pach and Wenger [20] proved their upper bound on the number of bends needed to
draw a graph with fixed vertex locations by drawing a tree with leaves at the fixed vertex
locations, and “routing” all the edges close to the tree, sometimes crossing the tree but
never crossing each other. We will adapt their method to our setting.

One important difference is that we have to deal with fixed facial boundaries instead
of fixed vertex locations. The solution is natural: We contract each facial boundary W;
of F' to a single vertex v;, fix vertex v; inside F' near W;, and then apply the Pach-
Wenger method to draw the contracted graph on the fixed vertex locations v;. This must
be done while keeping the drawing inside F'. We keep the drawing at a small distance
from the boundary of F, inside a polygonal region F” that is an “inner approximation”
of F. Inside F’ we draw a tree T with its leaves v; at the fixed vertex locations, suitably
bounding the size of 7" in order to get our bound on the number of bends. We then route
the edges of the contracted graph close to 7" as in Pach-Wenger. Finally, to get back our
uncontracted graph, we route the edges incident to v; to their true endpoint on the facial
boundary W,—these routes use the empty buffer zone between F' and F”.

We now fill in further details. We use n4 and m 4 for the number of vertices and
edges in subgraph A. Let W;, with 1 <14 < b, be the boundary walks of F.

We now introduce the concept of inner e-approximations. The Hausdorff distance
dr (A, B) of two sets (in a space with metric d) is defined as:?

max {sup,c 4 infpe g d(a,b), sup,c g infoca d(a,b)}.
Intuitively, the Hausdorff distance measures how far a point in one set can be from
the other set. Sets A and B are e-close if diy(A, B) < e. Then A is an inner e-
approximation of B if they are e-close and there is a § > 0 so that all the points d-close
to A are a subset of B. The next lemma deals with inner e-approximations of F'.

2 The underlying metric d can be Euclidean or some other appropriate metric.



30 T.M. Chan et al.

Lemma 1. Let k be the size of the boundary of F. For any ¢ > 0 we can efficiently
construct an inner e-approximation F' of F whose boundary has size 3k (see Figure 1).

We prove Lemma 1 using Lemma 2 in which, for every sufficiently small ¢ > 0 we
construct a closed polygonal arc P. that is e-close to the facial walk, does not have too
many bends, and so that the simple polygon bounded by P.: lies in the interior of the
simple polygon bounded by P: for all 0 < ¢’ < ¢ (in particular, any two polygonal
arcs are disjoint). There are various ways to achieve this. Pach and Wenger [20] use the
Minkowski sum of the facial walk (in their case the facial walk of a tree) and a square
diamond centered at 0. We use a slightly different construction, because it seems eas-
ier (both computationally and conceptually) and it gives a slightly better bound on the
number of bends (which is what we are most interested in); namely for the facial walk
of an n-vertex tree, Pach and Wenger construct a polygonal arc with 4n — 2 vertices,
while our polygonal arcs have 2n — 2 vertices. Our construction does have one disad-
vantage: the resulting drawings will get rather tight for sharp (acute or obtuse) angles
(the Minkowski-sum construction has the same problem for highly obtuse angles only).

Lemma 2. Let W be a facial walk in a face F' of a drawing of a graph G in the plane.
We can efficiently construct a disjoint family of polygonal arcs P: so that P; is e-close
to W and each P- has at most max{3, |W|} vertices.

Proof. Lete,v, f be a corner of W, that is, two consecutive edges e, f and their shared
vertex v. At v erect the angle bisector of ¢ and f of length ¢ (inside F'), and let v’ be the
endpoint of the bisector different from v. For computational reasons, it may be better to
use the ¢1-norm at this point (the Euclidean norm will lead to square root expressions
in the coordinates). If (v;)%_, is the sequence of vertices along W, with k = W],
then (v})¥_, defines a closed polygonal arc. If ¢ is sufficiently small, namely less than
half the distance between any vertex of W and a non-adjacent edge on W, the arc is
free of self-crossings, and therefore bounds a simple polygon with |I¥| vertices. There
are two special cases in which this argument does not work: if the boundary walk is a
boundary walk on an isolated vertex or an isolated edge. In both of these cases, we can
approximate W using a triangular shape. g

Lemma 2 allows us to replace a facial boundary with a simple polygon with holes,
that is, a collection of closed polygonal arcs that bound a face which is very close
to the original boundary, has bounded complexity, and can be constructed efficiently.
This leads to a proof of Lemma 1. Namely, approximate each facial walk of the facial
boundary with an e-close polygonal arc lying in F'. The union of those arcs is a simple
polygon with holes as long as ¢ is less than half the distance between any two non-
adjacent vertices or edges. The upper bound of 3k will generally be a large overestimate,
but allows for the possibility that all the inner walks are walks on isolated vertices.

We now return to the proof of Theorem 1. After constructing an inner e-approximation
I’ of F by using Lemma 1, the next step is to construct tree T'. Triangulate F” using at
most mps + 2(b — 2) triangles® and use a result of Bern and Gilbert [3] to construct a

3 Every n-vertex polygon with b boundary components can be triangulated by inserting edges
in O(nlog n) time. The number of resulting triangles is n + 2(b — 2) (see [19, Lemma 5.1]).
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(a) (b)

Fig. 1. A face I with outer and inner and boundary walks W, and W. (a) The 5 edges of G — H.
(b) The inner approximation F (heavy blue lines), a triangulation of it (fine lines), and the dual
spanning tree (dashed red) with extra vertices v and vz close to Wy and Wa, respectively.

straight-line drawing of the dual of the triangulation. Bern and Gilbert place a vertex at
the incenter of each triangle (where the angle bisectors of the triangle meet) and prove
that the straight-line edge joining two vertices in adjacent triangles lies within the union
of the two triangles. Now take a spanning tree 71" of the dual. For each boundary walk
W;, we augment T" with a new leaf v; close to W; and inside F”. This adds b vertices to
T, so the number of vertices of T is now np = mpg/ + 3b — 4.

Let G be the embedded multi-graph obtained by restricting G to vertices and edges
lying inside or on the boundary of F' and by contracting each boundary walk W; of F’
to a single vertex v;. We can now use the following result (extending ideas of Pach and
Wenger) to embed G'r close to 7.

Lemma 3. Let G be a multi-graph with a given planar embedding and fixed locations
Sor a subset U C V(Q) of its vertices. Suppose we are given a straight-line drawing
of a tree T whose leaves include all the vertices in U at their fixed locations. Then
for every ¢ > 0 there is a planar poly-line drawing of G that is e-close to T, that
realizes the given embedding, where the vertices in U are at their fixed locations, and
where each edge has at most 12np bends. Moreover, each edge of G comes close to
each vertex in U at most six times (where coming close means entering and leaving an
e-neighborhood of the vertex or terminating at the vertex).

The proof of Lemma 3 is long and involved, hence we defer it to the end of the
section, and we first proceed with the reminder of the proof of Theorem 1.

We use Lemma 3 to embed G along T so that vertices v; are drawn at their fixed
locations. Each edge of G has at most 12n7 bends.

We now want to connect edges in GG i to the boundary components they belong to. We
will use the buffer between F’ and F to do this. In fact, we need to split the buffer zone
into two, so we apply Lemma 1 a second time to obtain an inner ¢ /2-approximation F"
of F', so that F/ C F" C F. See Figure 2. The size of the boundary of F is at most
3mp (just like F”). Now for each walk WW; we extend the edges ending at v; to their
endpoint on ;. Since we maintained the cyclic order of G p-edges at v;, we can simply
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(@)

Fig.2. A close-up of the situation near inner boundary walk W5. (a) After drawing G around
the tree T' (heavy dashed line), edges 1,...,5 are incident to v2 in the correct cyclic order, but
two other edges e and f pass by between vz and F”. (b) We add a second approximation F” and
route the edges e and f (in dashed red) around W in the buffer zone between I’ and F’. (c) We
route the edges incident to W2 in the buffer zone between F and F".

route these edges around W; using approximations to W; via Lemma 1, and we can do
soin F'— F". This adds at most myy, +2 bends to an edge with endpoint on W;; the two
additional bends are needed to separate edges at v;, and turn to connect to W;. There
is one difficulty: there are edges of Gy that pass by v;, separating it from the segment
of F’ close to v; (which is our gate to ;). To remedy this difficulty, we first route all
of these edges around the whole obstacle W; in the F”” — F" part of the buffer, which
adds myy, + 2 bends to an edge every time it passes v;. Now we are free to route the
G r-edges incident to v; to their endpoints along W;. Since an edge can pass by and/or
terminate at a vertex at most six times, the total number of additional bends in each edge
caused by going around W; is 6(my, + 2) < 6(mps + 2) < 18mp + 12. Since each
Gr edge started with 12np bends, each G edge now has at most 12np + 18mp + 12
bends. Using mp < mpyg < 3ng,andny < mp +3b—4 < 3mp +3b—4 < 4dng
we conclude that each edge has at most 48ny + 54ng + 12 = 102ng + 12 bends.

Let us now analyze the running time of the algorithm. Most of the steps in the
construction can be performed in linear time. Building the triangulation takes time
O(npglogng). The overall running time is thus bounded by the size of the resulting
drawing which contains a linear number of edges each with a linear number of bends,
yielding the quadratic running time.

We conclude the section by proving Lemma 3. Pach and Wenger’s [20] algorithm
to draw a planar graph G with vertices at fixed locations has three ingredients: (i) they
show how to assume that G is Hamiltonian, (4¢) they show how to draw the Hamiltonian
cycle of G, and (7i7), they show how to draw the remaining edges of G. In order to prove
Lemma 3, we will follow their structure closely. We will use their result (4) directly:

Lemma 4 (Pach, Wenger [20]). Given a planar graph G we can in linear time con-
struct a Hamiltonian graph G' with |E(G")| < 5|E(G)|—10 by adding and subdividing
edges of G (each edge is subdivided by at most two new vertices).
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We will use a slightly stronger version of Lemma 4 in which G is allowed to be a
mulitgraph. Pach and Wenger’s proof of Lemma 4 works for this case.

For part (i¢) Pach and Wenger show that a Hamiltonian cycle can be drawn at fixed
vertex locations e-close to a star connecting all the vertices. For our application, we
replace their star with a straight-line drawing of a tree 7" whose leaves are the vertices v;.
Independently of our result, the generalization of part (i7) to trees has essentially been
shown by Chan et al. [6]. Since their goal was the minimization of the edge lengths,
they did not give an estimate on the number of bends. We now show how to draw the
Hamiltonian cycle. We will later show how to draw the remaining edges.

Lemma 5. Let C' be a cycle with fixed vertex locations, and suppose we are given a
straight-line planar drawing of a tree T, in which the vertices of C are leaves of T at
their fixed locations. Then for every € > 0 there is a planar poly-line drawing of C' with
at most 2|E(T')| — 1 bends per edge and e-close to T.

Proof. Let py,...,p, be the vertices of C' in their order along the cycle. We build a
planar poly-line drawing of C as follows. Let ©; be an ic/n-approximation of T for
1 <4 < n (which we can construct using Lemma 2). We start at p;. Suppose we have
already built the poly-line drawing of p1, ..., p; and we want to add p;p;11. Let Q; be
the unique path in T' connecting p; to p;11. Create O} from ©; by keeping only the
vertices of ©; close to (approximating) vertices in 7; := i<i @;- This removes parts
of the walk along ©; which we patch up as follows: suppose v is an interior vertex of
T;, and v is incident to e which does not lie on 7;. Then v is approximated by two
vertices v; and vy which lie on bisectors formed by e with neighboring edges. Now v
and vy belong to O}, but the path along ©; between them got removed (since e does
not belong to T;). We add vjv; to O/ to connect them. Note that v1v2 does not pass
through v since v is incident to at least three edges (e and two edges of T;), and it does
not cross any edges of any @ with j < i, since 7; is monotone: if e ¢ E(6;), then
e & E(O;) for j < i. See Figure 3 for an illustration. Now both p; and p; 11 correspond
to unique vertices on ©;, (since they are leaves), so we can pick a facial walk vq, ..., vk
on @ which connects p; to p;+1 and which avoids passing by p;. We now add line
segments p;vg, V23, . . ., Vg—2Vk—1, Vg—1Pi+1 to the poly-line drawing of C. We treat
the final edge py,p; similarly, except that we move along ©;,_, back to p; in the last
step, which we can do, since none of the intermediate paths passed by p;. Each edge of
C'is replaced by a polygonal arc with at most 2| E(T)| — 1 bends. O

As mentioned earlier, the following lemma is close to a result by Chan et al. [6],
except for the claim about the number of bends, and the rotation system (which we
require for our main result).

Lemma 6. Let G be a Hamiltonian multi-graph with a given planar embedding and
fixed vertex locations. Suppose we are given a straight-line drawing of a tree T’ whose
leaves include all the vertices of G at their fixed locations. Then for every € > 0 there
is a planar poly-line drawing of G that is e-close to T, that realizes the given embed-
ding, where the vertices of G are at their fixed locations, where each edge has at most
4|E(T)| — 1 bends, and where each edge comes close to any leaf of T' at most twice.
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Fig. 3. The underlying tree 7T is in black (thick edges), angle bisectors in gray; the ©; are drawn
as thin black edges; to reduce clutter, we are not showing the remaining edges of ©;; the drawing
of C'is indicated by the green line.

The obvious idea—routing edges along the Hamiltonian cycle C—only gives a
quadratic bound on the number of bends, since each edge would follow the path of
a linear number of edges of C, and each edge of C' has a linear number of bends. Pach
and Wenger came up with an ingenious way to construct auxiliary curves with few
bends based on the level curves @, which carry the cycle C in the proof of Lemma 5.

Proof. Let C be the Hamiltonian cycle of G and let G; and G4 be the two outerplanar
graphs composed of C and, respectively, of the edges of GG outside and inside C'. Using
Lemma 5 we find a planar poly-line drawing of C on V (G). We need to show how to
draw G; and G+ respecting the planar embeddings induced by the given embedding
of G. Let n = |V(G)| and m; = |E(G;)|. We only describe how to draw G, since
G2 can be handled analogously. Let A; , 1 < k < my be a ke/(nm1)-approximation
of @) constructed using Lemma 2. For a fixed 4, each A; j, crosses C' twice: when C'
moves from p; to O] ;, and when it finally moves back from @, to p;. As in Pach and
Wenger, we can then split A; ;. at the crossings and connect their free ends to p; and p;,
resulting (for each k) in two curves A; ; and A/} connecting p; to p;, where A; ; lies
outside C' (these are the curves we use for (G1) and A;’ « inside C' (these are the curves
we use for G'2). Each such curve has at most 2|E(T')| — 1 bends. As in the proof of
Pach and Wenger, we can create edges p;p; € E(G1) by concatenating A; ; with A’ .
Since we chose m such approximations, we can do this for each edge in G;. There are
two problems remaining: edges p;p; now all pass through p; and they could potentially
cross (rather than just touch) there. Pach and Wenger show that any two edges touch,
so the drawing can be modified close to p; so as to separate all edges p;p; from each
other. This introduces at most one more bend per edge, so that the resulting edges have



Drawing Partially Embedded and Simultaneously Planar Graphs 35

2(2|E(T)|—1)+1 = 4|E(T')| — 1 bends. Finally, note that each edge p;p; comes close
to each leaf of T' (including p;) at most twice, once for A;ﬁ & and once for A;y . O

Now we are ready to finish the proof of Lemma 3. We show how to apply Lemma 6
in case G is not Hamiltonian, and not all its vertices are assigned fixed locations.

By Lemma 4, we can construct a graph G’ with a Hamiltonian cycle C by sub-
dividing each edge of G at most twice, and by adding some edges, where G’ has a
planar embedding extending the embedding of G. Traverse C: whenever we encounter
an edge of C with at least one endpoint not in U, contract that edge. This yields a new
Hamiltonian graph G” with V(G”) = U and a planar embedding induced by the planar
embedding of G'. Use Lemma 6 to embed G’ at the fixed vertex locations, and e-close
to T, so that each edge of G” has at most 4| E(T')| — 1 bends. Each vertex u € U of G”
corresponds to a set of vertices V,, C V(G') which was contracted to u, so the subgraph
G, of G’ induced by V,, is connected. Since we embedded G” with the induced planar
embedding of G’, we can now do some surgery to turn u back into G,.

To this end, we define a graph G, which consists of G/, of a cycle C,, containing
G!, in its interior, and of some further edges. Each vertex of C,, corresponds to an edge
of G’ “incident to” G, i.e., with an end-vertex in V,, and with an end-vertex not in V.
Vertices appear in C, in the same order as the corresponding edges incident to G/, leave
G, (this order also corresponds to the cyclic order of the edges incident to v in G”');
each vertex of C,, corresponding to an edge e of G’ is connected to the end-vertex of e
in V. Finally, G; contains further edges that triangulate its internal faces.

Now consider a small disk § around u. We erase the part of the drawing of G
inside 0. We construct a straight-line convex drawing of G/ in which each vertex of
C,, is mapped to the point in which the corresponding edge crosses the boundary of
§. This drawing always exists (and can be constructed efficiently), given that G} is 2-
connected and internally-triangulated. Removing the edges that triangulate the internal
faces of G} completes the reintroduction of G',.

Overall, we added one bend to an edge with exactly one endpoint in V,,. Since an
edge can have endpoints in at most two V,,, this process adds at most two bends per
edge, so every edge has at most 4| E(T")|+1 bends. Since each edge of G was subdivided
at most twice to obtain G’, each edge of G has at most 3(4|E(T)|+1)+2 = 12|E(T) |+
5 < 12|V(T)| bends. Each edge of G’ comes close to each leaf of T" at most twice, so
each edge of G comes close to each vertex of U at most six times. This concludes the
proof of Lemma 3.

3 Extending Partial Straight-Line Planar Drawings Greedily

Let G be an n-vertex plane graph, let H be a spanning subgraph of G, let H be a
straight-line planar drawing of H, and let o = [ey, . . ., e,,] be an ordering of the edges
in G\ H. A drawing I" of G greedily extends H with respect to o if it is obtained
by drawing edges ey, . . ., ,, in this order, so that e; is drawn as a polygonal curve that
respects the embedding of G and with the minimum number of bends, fori = 1,...,m.

Fowler et al. claimed in [10] that, for every ordering o of the edges in G\ H such that
the edges between distinct connected components of H precede edges between vertices
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WN WN-1

Fig. 4. A drawing I" of G that greedily extends H with respect to o. Drawing H consists of the
black circles. The first edges n — N — 1 edges in ¢ are (black) straight-line segments. The last
N edges (u;,v;) are (colored) polygonal lines whose bends have been made smooth to improve
the readability. Only four of the latter edges are shown.

in the same connected component of H, there exists a drawing I" of G greedily extend-
ing H with respect to o where each edge has O(n) bends. However, in the following
we confirm a claim of Schaefer [23] stating that greedy extensions do not, in general,
lead to drawings with a polynomial number of bends.

Theorem 3. For every n, there exists an n-vertex plane graph G, a planar drawing H
of the spanning empty subgraph H of G, and an order o of the edges in G such that any
drawing of G that greedily extends H with respect to o has edges with 2°(") bends.

Proof. We adapt an example by Kratochvil and Matousek [18]. Refer to Fig. 4. Let
N = |} | -6, for any integer n. Graph H consists of n isolated vertices; namely vertices
ULy ooy UN, Vs e e, UN, W,y - -, WN, Qb Cid e 71, ..., Tn_3n—5. The firstn — N —1
edges in o are (u;,w;) fori = 1,... N, (w;,w;41) fori =1,...,N =1, (r;,riy1)
fori =1,...,n —3N — 6, (c,w1), (b,¢), (c,e), (e,d), (a,d), and (a,7,_3n—5). All
these edges are straight-line segments in any drawing I" of G that greedily extends H
with respect to o. The last NV edges in o are (u1,v1), ..., (un,vy) in this order.

Consider any drawing I" of G that greedily extends H with respect to 0. We claim
that edge (u;,v;) has 2°=! bends in I. In fact, it suffices to prove that (u;, v;) has 2¢~1
intersections with the straight-line segment ab in I". Indeed, (u1, v1) has exactly one in-
tersection with ab in I'. Inductively assume that (u;, v;) has 2°~! intersections with ab
in I'"; we prove that (u; 11, v;11) has 2% intersections with ab in I". This proof is accom-
plished by citing Kratochvil and Matousek [18] almost verbatim. Since (w;t1,vi+1)
does not cross (u;,v;), it has a bend b;41 around v;, i.e., inside the square defined by
U;—2, Wi—2, w;—1, and u;_1. Thus the polygonal curve representing (u;41,v;+1) in I’
consists of two parts — one from u;41 to b; 1, the other from b; ;1 to v; 1. Both of these
parts may be used as an edge joining u; and v; — after contracting ;41 and v; 1 into
u;, and b;41 into v;. Hence, by induction, each of these two parts has 21 intersections
with ab, and the whole edge (u; 11, v;41) has 2¢ intersections with ab.

Hence, in any drawing I” of G that greedily extends H with respect to o, one edge
has 2V—1 = 2131-7 ¢ 22(n) pends, which concludes the proof.

Note that the graph G in the proof of Theorem 3 is a tree, thus all of its edges connect
vertices in distinct connected components of H. O
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4 Simultaneous Planarity

Before turning to our algorithm for drawing simultaneously planar graphs, we justify
our claim that minimizing the number of crossings in a simultaneous planar drawing
is NP-hard. This result follows from Cabello and Mohar’s proof of NP-hardness for
the anchored planarity problem [5, Theorem 2.1], but a more direct proof of a slightly
stronger result is possible by reduction from the NP-complete crossing number prob-
lem. We briefly explain the reduction. Given a graph G with m edges, subdivide each
edge 2m times. Let G; consist of all the edges incident to the original vertices of G
together with every other edge along the paths connecting the original vertices. Let G2
consist of the remaining edges. Note that G; and G2 do not share any edges. It can
be easily seen that the crossing number of G equals the smallest number of crossings
between edges of G and edges of G5 in a simultaneous drawing of G and G.* We
now turn to the proof of Theorem 2.

Proof (of Theorem 2). We show how to find in O(n?) time a simultaneous planar draw-
ing I such that any private edge of G; and any private edge of G5 intersect at most 24
times, such that every edge of (3 is straight, and such that every private edge of G2 has
at most 102|V (H)| + 12 bends. In order to construct a simultaneous planar drawing I’
on an O(n?) x O(n?) grid such that any private edge of G and any private edge of
G intersect at most 24 times, such that each edge of G is straight, and such that every
private edge has at most 72n bends, it suffices to introduce dummy vertces at the O(n?)
crossing points in ", and then to construct a straight-line drawing of the resulting planar
graph on a small grid. In particular, the number of bends per edge in I is at most 72n,
since each edge in I crosses less than 3n edges, each at most 24 times.

We start by constructing any straight-line planar drawing I'; of G1. We now construct
a drawing I, of Gy by exploiting an approach analogous to the one of the proof of
Theorem 1. Drawing I} induces a straight-line planar drawing I” of G. Thus, in order
to determine /%, it remains to describe how to draw the private edges of G3. We will
accomplish this independently for each face F' of G.

We construct a triangulation X' of F' by using all the vertices and edges of G; that
lie inside F', as well as some extra edges. Next, we execute the same algorithm as for
the proof of Theorem 2. Namely, we construct a straight-line drawing of the dual D of
27 and we take a spanning tree T of D. For each boundary walk WW; of F', we augment
T with a leaf v; close to W; and inside F’, where F’ is an inner e-approximation of
F. Let GE be the embedded multi-graph obtained by restricting G'» to the vertices and
edges inside or on the boundary of F', and by contracting each boundary walk W; of F'
to a single vertex v;. We use Lemma 3 to construct a planar poly-line drawing of G’
that realizes the given embedding, that is e-close to 7', and in which vertices v; maintain
their fixed locations. Finally, we reconnect edges in G£ to the boundary components
they belong to. In order to do this, we first “wrap” the edges of G1" passing by a vertex

# Using the fact that crossing number is hard for cubic graphs [14], we can even show that
minimizing the number of crossings in a simultaneous drawing of two graphs one of which is
the disjoint union of paths of length at most two and the other is a matching is NP-hard. This
is in some sense sharp, since the union of two matchings is always planar.
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v; around W;, and we then extend the edges of Gg incident to v; to their endpoint on
W;, by routing them around W;.

By construction every edge of G is straight. By Theorem 1 every private edge of
G2 has at most 102|V (H)| + 12 bends. Also, the algorithmic steps are the same as for
the proof of Theorem 1, hence the algorithm runs in O(n?) time. It remains to prove
that any private edge of (G; and any private edge of G5 intersect at most 24 times.

Consider any private edge e of G2 and any private edge ¢’ of G;. Recall that ¢’ is an
edge of X. Denote by W; and W; the boundary walks the end-vertices of ¢’ belong to.
Edge e intersects e’ in two situations: when passing by v; or v; and when passing by
the point pr in which the edge of D dual to e’ crosses e’. We prove that each of these
two types of intersections happens at most 12 times.

For the first type of intersections, we have by Lemma 3 that edge e passes by each
of v; or v; at most 6 times, hence at most 12 times in total. For the second type of
intersections, we have by Lemma 4 that edge e is subdivided into at most three edges
e1, €2, and es in order to turn Gf into a Hamiltonian graph. For each j = 1,2,3,
e; either belongs to the Hamiltonian cycle of the subdivided G& or not. In the former
case, e; is drawn as part of an ie /n-approximation ©; of T', as in the proof of Lemma 5,
hence it crosses ¢’ at most twice. In the latter case, e; is composed of two parts, denoted
by A7 ;. and A} ;, orby A7, and A7 in the proof of Lemma 6. Each of A7 ;, A ;.
Al and AT 1s partof a kf—: /(nmq)- approx1mat10n of O}, which is part of (9 Hence,
each of Ap o A; P A”’k and A” o} CTOSses e’ at most twice; thus e; crosses e’ at most
four times, and e crosses ¢’ close to pr at most 12 times. g

5 Conclusions and Open Problems

We proved that if a graph has a planar drawing extending a straight-line planar drawing
of a subgraph then there is such a drawing with at most 102n + O(1) bends per edge.
This is asymptotically tight, but can the constant 102 be reduced? Our second result
is that any two simultaneously planar graphs have a simultaneous planar drawing with
at most 24 crossings per pair of edges and a linear number of bends per edge with a
drawing on a polynomial-sized grid. The only lower bound on the number of crossings
between two edges in a simultaneous planar drawing is 2 (see [7] or the figure in the
margin for the entry “simultaneous crossing number” in [22]). There is a large gap
between 2 and 24. Can two edges be forced to cross more than twice in a simultaneous
planar drawing? Grilli et al. [12] showed that two simultaneously planar graphs have a
drawing with at most 9 bends per edge, though with a larger constant for the number of
crossings and not on a grid. Is it possible to achieve the best of both results: 9 bends per
edge, 24 crossings per pair of edges, and a nice grid?
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