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Abstract. Given a graph G and a subset F ⊆ E(G) of its edges, is there
a drawing of G in which all edges of F are free of crossings? We show
that this question can be solved in polynomial time using a Hanani-Tutte
style approach. If we require the drawing of G to be straight-line, but
allow up to one crossing along each edge in F , the problem turns out to
be as hard as the existential theory of the real numbers.

1 Introduction

Angelini, Binucci, Da Lozzo, Didimo, Grilli, Montecchiani, Patrignani, and Tol-
lis [1] asked the following problem:

“Given a non-planar graph G and a planar subgraph S of G, decide
whether G admits a drawing Γ such that the edges of S are not crossed
in Γ , and compute Γ if it exists”.

Their paper studies two variants of this problem: the unrestricted problem in
which Γ is an arbitrary poly-line drawing, and the straight-line variant, in which
Γ is restricted to straight-line drawings. Let us call these the partial planarity
and the geometric partial planarity problem. It seems that these two problems are
new to the literature. The closest previous variant may be the (also very recent)
notion of partially embedded planarity [2], which differs in that a particular
embedding of S is given, and the desired planar embedding of G has to extend
the given embedding of S. For partially embedded planarity, a linear-time testing
algorithm is known [2], as well as an obstruction set [13].

David Eppstein commented on the paper by Angelini et al. [1] in his blog [9]:

“If you’re given a graph in which some edges are allowed to participate
in crossings while others must remain uncrossed, how can you draw it,
respecting these constraints? Unfortunately the authors were unable to
determine the computational complexity of this problem, and leave it as
an interesting open problem”.

In other words, given a graph G and a subset of its edges F ⊆ E(G), is there
a (straight-line) drawing of G in which all edges of F are free of crossings? The
subgraph and subset formulations are equivalent, of course, but we slightly pre-
fer the second, since it emphasizes that we can specify for each edge whether it
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has to be planar (crossing-free) or not: we can pick the planar edges. Looking
at planarity as a local requirement opens it up for combination with other prop-
erties; for example, what happens if we can specify a bound on the number of
crossings along each edge, or on the number of bends?

Previous Research

Angelini, et al. [1] show that (G,S) is always partially planar if S is a spanning
tree of G, even if the embedding of S is required to be a straight-line embedding.
For geometric partial planarity, they show that (G,S) can always be realized if
S is a spanning spider or caterpillar, even in polynomial area. However, they
also exhibit examples of (G,S) where S is a spanning tree of G for which (G,S)
has no geometric partial realization. There are further algorithms in the paper
to test geometric partial planarity for various types of spanning trees S, though
in some cases the layout algorithms require exponential area.

Our Contribution

In Section 2 we show that using a Hanani-Tutte style approach successfully
settles the complexity of the poly-line variant of the problem: partial planarity
can be solved in polynomial time. This is a further example of a planarity-style
problem for which there is (as yet) no traditional polynomial-time algorithm for
the problem, but the Hanani-Tutte approach leads to a solution. Other examples
of this are surveyed in [21].

We have to leave the complexity of the straight-line variant open, but there is a
good chance that it is as hard as the existential theory of the reals (see [20]). One
indication for this is that the layout algorithm for geometric partial planarity
suggested in [1] needs exponential area on some inputs. Secondly, the result is
true if we replace planarity with 1-planarity: testing partial geometric 1-planarity
is as hard as the existential theory of the reals, as we will see in Section 3.
In comparison, the special case of geometric 1-planarity is NP-complete (this
follows from known results in the literature, see Theorem 2).

2 Partial Planarity and Hanani-Tutte

We assume that the reader is somewhat familiar with the Hanani-Tutte charac-
terization of planarity (see [21,22]). Briefly, Hanani [6] and Tutte [27] established
the following algebraic characterization of planar graphs: a graph is planar if and
only if it has a drawing in which every two independent edges cross evenly. This
criterion can be rephrased as a linear system over GF(2): Create variables xe,v

for every e ∈ E(G) and v ∈ V (G), and let iD(e, f) denote the number of times
two edges e and f cross in a drawing D of G. Fix an arbitrary drawing D of G
(e.g. a convex drawing). Let P (D) be the system of linear equations over GF(2)
containing:

iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ 0 mod 2,



Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph 15

for every pair of independent edges uv, st ∈ E(G). Then G is planar if and only
if P (D) is solvable. The heart of the proof is showing that solvability of P (D)
leads to a planar drawing of G; we will not explain this part (see [21, Section 3]
for a detailed discussion). The other direction is a consequence of the following
well-known fact about drawings: as far as the crossing parity between pairs of
independent edges is concerned, one can turn any drawing of a graph into any
other drawing of the graph by performing a set of (e, v)-moves, where an (e, v)-
move consists of taking a small piece of e, moving it close to v and then pushing
it over v; the effect of an (e, v)-move is that the crossing parity between e and
any edge incident to v changes. Imagining one drawing of a graph morphing
into another, it is easy to believe that (e, v)-moves are sufficient to get from one
drawing to another. We state this result without proof. For further details see [7,
Section 4.6] or [22, Lemma 1.12].

Lemma 1. If D and D′ are two drawings of the same graph G, then there is a
set of (e, v)-moves so that

iD′(uv, st) ≡ iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v mod 2,

for all edges uv, st ∈ E(G), where xe,v = 1 if an (e, v)-move is performed, and
xe,v = 0 otherwise.

For a graph G with a set of edges F ⊆ E(G), fix an arbitrary drawing D of
G, and let P (D,F ) be the following system of equations over GF(2):

iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ 0 mod 2,

for every pair of independent edges uv ∈ F and st ∈ E(G).

Lemma 2. G has a drawing Γ in which F is free of crossings if and only if
P (D,F ) is solvable.

Since the solvability of a linear system of equations over a field (in this case
GF(2)) can be decided in polynomial time, the following corollary is immediate.

Corollary 1. Given a graph G with a set of edges F ⊆ E(G), it can be decided
in polynomial time whether G has a drawing in which all edges in F are free of
crossings. In such a drawing we can assume that edges in F are straight-line,
and each edge in E(G)− F has at most |E(G)− F | − 1 bends.

The running time of the algorithm is on the orderO((nm)3), where n = |V (G)|
and m = |E(G)|, since systems of linear equations over a field can be solved in
cubic time, and P (D,F ) can have as many as O(nm) equations and O(nm)
variables (note that we can assume that |F | = O(n): if the graph (V (G), F ) is
not planar, then there is no drawing of G in which all edges of F are free of
crossings; on the other hand, we cannot assume that G is planar). This may
seem impractical at a first glance, but recent experiments with an algorithm of
this type have been quite successful [11].
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The hard direction in the proof of Lemma 2 is covered by the following result
from an earlier paper on the independent odd crossing number [19]. We call an
edge e in a drawing D independently even if it crosses every edge independent of
it an even number of times. More formally, iD(e, f) ≡ 0 mod 2 for every f which
is independent of e.

Lemma 3 (Pelsmajer, Schaefer, Štefankovič [19]). If D is a drawing of
a graph G in the plane, then G has a drawing in which the independently even
edges of D are crossing-free and every pair of edges crosses at most once.

The proof of Lemma 3 is constructive in the sense that the new drawing of G
can be found in polynomial time (there are no explicit time bounds in [19], but
a running time quadratic in O(|G|) seems achievable).

Proof (of Lemma 2). Suppose P (D,F ) is solvable, and fix a solution xe,v ∈
{0, 1}, for e ∈ E(G), v ∈ V (G), for some initial drawing D of G. Construct
a drawing D′ from D by performing an (e, v)-move for every e ∈ E(G) and
v ∈ V (G) for which xe,v = 1. Pick uv ∈ F and let st ∈ E(G) be an arbitrary
edge independent of uv. Then

iD′(uv, st) = iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ 0 mod 2,

since xe,v is a solution of the system P (D,F ). Thus uv is independently even.
Since uv was arbitrary, all edges in F are independently even, and, by Lemma 3,
there is a drawing of G in which all edges of F are free of crossings, and every
pair of edges in E(G)−F crosses at most once. Temporarily replace each crossing
with a vertex, and take a planar straight-line embedding of the resulting graph.
In that drawing, all edges of F are straight-line, and (after turning crossings
into bends and perturbing them slightly), all remaining edges have at most
|E(G)− F | − 1 bends.

For the other direction, assume G has a drawing D′ in which all edges of F
are free of crossings. By Lemma 1 we know that there is a set of (e, v)-moves so
that

iD′(uv, st) ≡ iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v mod 2

for all pairs of independent edges uv, st ∈ E(G). Now if uv ∈ F , then iD′(uv, st) =
0 for every edge st ∈ E(G). In particular,

iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ iD′(uv, st) ≡ 0 mod 2,

so xe,v is a solution to P (D,F ), which is what we had to show. ��

3 Geometric Partial 1-Planarity

In the straight-line version of the partial planarity problem, we ask whether for a
given G and F ⊆ E(G), there is a straight-line drawing of G in which the edges
of F are free of crossings. We cannot settle the complexity of this problem, but
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we have a suggestive result for a generalized version. Suppose we are allowed
to specify sets Fk ⊆ E(G), and ask whether G has a straight-line drawing in
which all edges in Fk have at most k crossings, for every k. The problem posed
by Angelini, Binucci, Da Lozzo, Didimo, Grilli, Montecchiani, Patrignani, and
Tollis [1] corresponds to specifying a set F0 of crossing-free edges. We will show
that if instead we specify a set F1 of edges that may be crossed at most once,
the problem has the same complexity as deciding the truth of statements in the
existential theory of the reals; in the terminology introduced in [24,20], it is ∃R-
complete. In analogy with the notion of 1-planarity (in which every edge may be
crossed at most once), we call the problem geometric partial 1-planarity.

Remark 1 (Equivalent Drawings). Geometric 1-planarity was first studied by
Eggleton [8] and Thomassen [26], and more recently in [12], and several other
papers, but with one important difference: in these papers one is given an intial
1-planar drawing of G and asks whether there is an equivalent geometric 1-planar
drawing, where two drawings are equivalent if they have the same facial structure
(for this definition to make sense, we consider crossings to be vertices). With this
stronger notion, Thomassen [26] was able to identify forbidden subconfigurations,
which led to a linear-time testing algorithm [12]. Similarly, Nagamochi [18] shows
that if we are given a drawing of G and a 2-connected, spanning subgraph S of
G, one can test in linear time whether there is an equivalent drawing of G in
which edges of S are free of crossings. ��

We will not give a formal definition of ∃R and ∃R-completeness (that can
be found in [24,20]), instead we will work with STRETCHABILITY, a complete
problem for the class. This is just like working with SAT, the Boolean satisfiabil-
ity problem, (or any other NP-complete problem) rather than the formal class
NP.

An arrangement of pseudolines in the plane is a collection of x-monotone
curves (that is, each pseudoline has exactly one crossing with every vertical
line) so that every pair of pseudolines crosses exactly once. An arrangement
of pseudolines is stretchable if all pseudolines can be replaced by straight lines
so that the order of crossings along the lines remains the same. See Figure 1
for an example of a pseudoline arrangement, and an equivalent straight-line
arrangement.

Mnëv [17] showed that STRETCHABILITY, the problem of deciding whether
an arrangement of pseudolines is stretchable, is computationally equivalent to
deciding the truth of a sentence in the existential theory of the real numbers (for
an accessible treatment of Mnëv’s proof, see Shor [25]).1 This led to the intro-
duction of the complexity class ∃R, which contains all problems which can be
translated in polynomial time to a sentence in the existential theory of the reals,
see [24,20] for more details. Similar to the theory of NP-completeness, there are
∃R-complete problems including stretchability, and truth in the existential the-
ory of the reals, but many other problems as well, such as the rectilinear crossing

1 Mnëv actually showed a stronger result, his universality theorem, here we are only
interested in the computational aspects.
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Fig. 1. (Left) A pseudoline arrangement. (Right) A straight-line arrangement equiva-
lent to the pseudoline arrangement on the left.

number (there is a wikipedia page, for example [28]). We note that ∃R contains
NP, since the existential theory of the real numbers easily encodes satisfiability,
and in turn ∃R is contained in PSPACE, due to a famous result by Canny [5].
Therefore any ∃R-complete problem, such as partial geometric 1-planarity is
NP-hard, and can be solved in polynomial space.

Theorem 1. Partial Geometric 1-Planarity is ∃R-complete.

In particular, we conclude that the problem isNP-hard, and lies inPSPACE.
For the proof we make use of a simple gadget.

Lemma 4. There is no drawing of a K6 and a vertex-disjoint cycle C so that
all edges in the K6 have at most one crossing, and there is a crossing between
an edge of K6 and the cycle.

Proof. Suppose there were a drawing as described in the lemma, in which a K6-
edge e = uv crosses a cycle edge f ∈ E(C). Then e cannot cross any of the edges
in E(C) − {f}, since it has at most one crossing, and thus no edge incident to
u can cross an edge incident to v: to have a common point, one of them would
have to cross C, but then it would have two crossings, one with the cycle, and
one with the other edge. Therefore, the edges adjacent to e do not cross each
other at all. This implies that the drawing of the K6 contains 4 triangles with a
shared edge e whose other edges do not cross each other. On the sphere, there
is only one such drawing: 4 nested triangles (with a common base). But this
implies that two of the endpoints of those triangles are separated by the other
two triangles, which means the original endpoints cannot be joined by an edge in
a 1-planar drawing of the K6, since it would have to cross the other two triangles
(it cannot cross e, since e already has a crossing). ��
Proof (of Theorem 1). The problem can easily be expressed using an existentially
quantified statement over the real numbers: use the existential quantifiers to find
the locations of the vertices of the graph; once the vertices are located, it is easy
to express that each edge in F is crossed at most once. This shows that the
problem lies in ∃R.
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Since stretchability of pseudoline arrangements is ∃R-complete, it is sufficient
to show that stretchability can be reduced to partial geometric 1-planarity to
establish ∃R-hardness of partial geometric 1-planarity. Let A be an arbitrary
arrangement of pseudolines. We construct a graphGA and a set of edges F ⊆ GA
so that A is stretchable if and only if GA has a straight-line drawing in which
every edge in F has at most one crossing.

Let R be a parabola-shaped region (boundary of the form y = x2 + c for
some constant c ∈ R) so that all crossings of pseudolines in A lie within the
region R. Let VA be the intersection points of pseudolines with the parabolic
boundary of R (we can assume that all crossings of pseudolines lie in the convex
hull of V1). The region R is separated by A into faces, some of them adjacent
to the boundary of R, and some of them inner faces of the arrangement. We
choose a set of vertices VI consisting of an interior vertex for each inner face of
the arrangement; for each face on the boundary of R, we pick a vertex on the
interior of a boundary arc of the face, let VB of those boundary vertices; note
that all faces except the infinite face, are incident to a unique boundary arc; the
infinite face is incident to two boundary arcs, of which we pick one arbitrarily
to place the VB-vertex. Finally, pick a vertex p below R so that p can see all
vertices of VA ∪ VB; that is, a straight-line segment between p and any vertex in
VA ∪ VB does not cross the boundary of R. Let V = VA ∪ VR ∪ VI ∪ {p}.

For every two vertices in VA belonging to the same pseudoline, add an edge
between those vertices. Add a frame as follows: connect the vertices of VA ∪ VB

by a cycle that respects the order of those vertices along the boundary of R, and
connect p to every vertex in VA ∪VB by an edge. Identify each edge of the frame
with an edge in a (new) K6. Finally, add the dual graph of the line arrangement
to VI ∪ VB. Let F consist of all edges, except for the edges corresponding to the
original pseudolines. See Figure 2 for an example.

We first note that if A is stretchable, then GA has a straight-line drawing in
which every edge of F has at most one crossing. To see this, start with a straight-
line realization of A. Perform the construction of GA as we described it above.
Because of the convexity of R, we can draw the edges of the cycle on VA ∪ VB

as well as the straight-line edges to p. We can then add a straight-line drawing
of each K6 gadget to the frame so that the shared edge is free of crossings (and
the remainder of K6 does not participate in unnecessary crossings). Finally, the
dual graph of the line arrangement can be added to VI ∪ VB since any edge
connects two vertices in adjacent faces of the line arrangement which is always
possible with a straight-line arrangement, unless the resulting edge coincides
with the boundary of a cell. This cannot occur, however, since VI vertices lie
in the interior of faces, and the VB vertices lie on the boundary of the convex
region R. In this drawing, every edge in F has at most one crossing. Only edges
corresponding to the original pseudolines are crossed more than once by dual
edges.

For the other direction, start with a straight-line drawing of GA in which all
edges in F have at most one crossing. Suppose f is an edge of the frame and
let e be another edge in GA which does not belong to f ’s K6 gadget. If e and
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• VA
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Fig. 2. The graph GA corresponding to the pseudoline arrangement A shown in Fig-
ure 1. K6-gadgets are not shown, and some edges are curved to improve readability.

f are adjacent, they cannot cross, since the drawing is straight-line. Hence e
either belongs to another K6-gadget or is one of the edges between vertices in
VA ∪ VB ∪ VI . In either case, e belongs to a cycle which is vertex-disjoint from
f ’s K6-gadget, so Lemma 4 implies that e does not cross f . This means that
after removal of all the K6-gadgets, the frame is free of crossings. In particular,
the cycle C on VA ∪VB is crossing-free, and hence its vertices occur in the order
determined by the line arrangement A. Let A′ be the line arrangement obtained
from GA by erasing the frame (and its gadgets), the dual graph, and extending
the edges corresponding to pseudolines to infinite lines. We claim that A′ is
equivalent to A.

We just saw that the order of pseudolines along C is correct, and, since the
frame does not cross edges corresponding to pseudolines, every two such edges
have to cross inside the region bounded by C (since their endpoints along C
alternate in A′ just as they do in A (recall that every pair of pseudolines crosses
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once). We now show that the dual graph of A forces the facial structure of the
line arrangement to be unique.

Let v ∈ VI ∪VB be an arbitrary vertex representing a face of the line arrange-
ment, and e an edge corresponding to some line in A. We show that v lies on
the same side of e (within the region bounded by the cycle C through VA ∪ VB)
in both A and A′, so the two line arrangements have to be equivalent. If v ∈ VB

this is forced by the cycle C; if v ∈ VI , we argue as follows: let s and t be the
VB-vertices closest to e (along C) and on the same side of e as v. We claim
that there is an st-path of length |A| − 1 on VI vertices that passes through v.
Clearly, any such path must have length at least |A| − 1, so we only need to
argue that a path of this length exists. To see this, start at s. Since v is an inner
vertex, s and v do not lie in the same face of the line arrangement, hence there
must be an edge f corresponding to a line of A so that s and v lie on opposite
sides of f . More strongly, there must be such an edge f which contributes to the
boundary of the cell v lies in (if the two vertices were on the same side of all
lines contributing to the boundary of the cell, they would have to be in the same
cell); in other words, there is a cell adjacent to the cell containing v (sharing f),
which is closer to s (note that t and v have to lie on the same side of f , since
otherwise s and t lie on the same side of both e and f , but then they cannot
both be closest to e). By induction we can now show that there are paths sv and
vt containing at most |A|−1 edges together (since e need never be crossed). But
then the path svt in GA on |A| − 1 edges cannot cross e, since it has to cross all
|A| − 1 edges corresponding to pseudolines (other than e). Hence v lies on the
same side of e in both A and A′.

Since A′ is a straight-line arrangement equivalent to A, we conclude that A
is stretchable, which is what we had to show. ��

In contrast, geometric 1-planarity is only NP-complete. This follows from
two well-known results: 1-planarity is NP-complete [10,14,4], and geometric 1-
planarity can be tested in linear time if a rotation system is given [26,12].

Theorem 2 (Folklore). Testing geometric 1-planarity is NP-complete.

Proof. The problem lies in NP, since we can guess the rotation system, and then
use the linear time algorithm from [12] to check whether there is an obstruction
to geometric 1-planarity with that rotation system. To see NP-hardness, we use
the NP-hardness of testing 1-planarity. If a graph G is 1-planar, then it has a
1-planar drawing in which each edge has at most one bend: simply apply Fary’s
theorem to the graph obtained from G by replacing each crossing by a dummy
vertex. To avoid that crossings and bends occur at the same location, we replace
each edge in G with a path of length three to get a new graph G′. Then G is
1-planar if and only if G′ has a geometric 1-planar embedding in which all edges
incident to the original vertices of G are free of crossings. And that we can easily
guarantee by identifying all of these edges with an edge of a K6-gadget. Let H
be this new graph. Then G is 1-planar if and only if H is geometrically 1-planar.
Therefore, geometric 1-planarity is NP-hard. ��
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4 Future Research

What can we say about traditional approaches to partial planarity? More specif-
ically, can PQ-trees or SPQR-trees be used to solve this problem?

Recall that a bridge of S in G is either an edge in E(G) − E(S) with both
endpoints in S (a trivial bridge) or a connected component of G − S together
with its edges and vertices of attachment to S. Given an embedding of S, a
group of vertices of S is mutually visible [2] if there is a face of S containing all
vertices in the group on its boundary. The poly-line variant can be rephrased
as follows: is there a poly-line embedding of S so that for every bridge of S in
G, the vertices of attachment of the bridge are mutually visible? It seems quite
likely that SPQR-trees could be used to decide that question, even in linear time,
extending ideas for deciding partially embedded planarity developed in [2].

Another solution may come from progress on simultaneous embeddings, since
partial planarity can be viewed as a special case of simultaneous planarity.2 Two
graphs G1, G2 are simultaneously planar if there is a drawing of G1 ∪ G2 in
which the induced drawings of G1 and G2 are (each by itself) planar. Given a
graph G and S, we add edges in S to both G1 and G2. All other edges E(G)−S
we subdivide 2|E(G)| times, and assign the pieces along each subdivided edge
of G to G1 and G2 alternatingly. If G has a drawing in which all edges in S are
crossing-free, we can turn this into a simultaneous drawing of G1 and G2, since
we can assume that any two edges in E(G)−S cross at most once, so every edge
has less than |E(G)| crossings which we can now realize by matching up G1 and
G2 pieces of the subdivided edges.

Weak Realizability

Before we leave partial planarity, we want to draw one more connection, to the
weak realizability problem introduced by Kratochv́ıl [15,16]: Given a graph G
and a symmetric relation R on E(G), we can ask whether the abstract topological
graph (G,R) is weakly realizable, that is, if there is a drawing in which only pairs
of edges (e, f) ∈ R are allowed to cross (but do not have to cross). The general
problem is NP-complete [15,23], so one could ask whether there are special cases
which are solvable. Let us shift the focus by viewing R itself as the edge set of
a graph on the vertex set E(G).

From this point of view, R = ∅ corresponds to the planarity problem for
G, which can be solved in linear time. On the other hand, letting R be the
complete graph on E(G) leads to a trivial problem. What happens if we let R
be a complete graph on a subset E′ ⊆ E(G) of all edges of G? It turns out that
this captures partial planarity: (G,R) is weakly realizable, if and only if (G,E′)
is partially planar.

This could be the starting point of an attack on weak realizability using
structural properties of R, an approach from the intersection-graph point of
view. We quickly get into uncharted waters: If R is a complete bipartite graph,

2 This is based on a suggestion by Ignaz Rutter.
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then weak realizability of (G,R) expresses a simultaneous planarity problem
for two graphs: if R is a complete bipartite graph on E1(G) and E2(G), and
E0(G) contains the remaining (isolated) vertices of E(G), then (G,R) is weakly
realizable, if and only if G1 with edge set E0(G) ∪ E1(G) and G2 with edge set
E0(G)∪E2(G) have a simultaneous embedding with fixed edges. The complexity
of this problem is famously open, and related to several other open problems in
graph drawing (e.g. c-planarity [21]). If R is a complete k-partite graphs, then
the weak realizability problem corresponds to the sunflower case of the SEFE
problem for k graphs, which is NP-complete even for k = 3 [3,21].

If R consists of two disjoint complete graphs that together partition the vertex
set E(G), we get a problem which is the opposite of the SEFE problem: it asks
whether we can draw the two graphs G1 and G2 simultaneously (so that shared
edges are drawn the same way) so that edges belonging to the same graph may
cross each other, but edges belonging to different graphs may not. As far as we
know, nobody has investigated this version of the problem. Even the case where
R is a tree (or even a matching) does not seem immediately obvious.
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Tóth, G., Pach, J. (eds.) Geometry—Intuitive, Discrete, and Convex—A Tribute to
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