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Abstract. We investigate crossing minimization for 1-page and 2-page
book drawings. We show that computing the 1-page crossing number
is fixed-parameter tractable with respect to the number of crossings,
that testing 2-page planarity is fixed-parameter tractable with respect
to treewidth, and that computing the 2-page crossing number is fixed-
parameter tractable with respect to the sum of the number of crossings
and the treewidth of the input graph. We prove these results via Cour-
celle’s theorem on the fixed-parameter tractability of properties express-
ible in monadic second order logic for graphs of bounded treewidth.

1 Introduction

A k-page book embedding of a graph G is a drawing that places the vertices of G
on a line (the spine of the book) and draws each edge, without crossings, inside
one of k half-planes bounded by the line (the pages of the book) [16,19]. In one
common drawing style, an arc diagram, the edges in each page are drawn as
circular arcs perpendicular to the spine [24], but the exact shape of the edges
is unimportant for the existence of book embeddings. These embeddings can be
generalized to k-page book drawings : as before, we place each vertex on the spine
and each edge within a single page, but with crossings allowed. The crossing
number of such a drawing is defined to be the sum of the numbers of crossings
within each page, and the k-page crossing number crk(G) is the minimum number
of crossings in any k-page book drawing [22]. In an optimal drawing, two edges
in the same page cross if and only if their endpoints form interleaved intervals on
the spine, so the problem of finding an optimal drawing may be solved by finding
a permutation of the vertices and an assignment of edges to pages minimizing
the number of pairs of edges with interleaved intervals on the same page.

As with most crossing minimization problems, k-page crossing minimization
is NP-hard; even the simple special case of testing whether the 2-page crossing
number is zero is NP-complete [8]. However, it may still be possible to solve
these problems in polynomial time for restricted families of graphs and restricted
values of k. For instance, recently Bannister, Eppstein and Simons [3] showed the
computation of cr1(G) and cr2(G) to be fixed-parameter tractable in the almost-
tree parameter; here, a graph G has almost-tree parameter k if every biconnected
component of G can be reduced to a tree by removing at most k edges. In this
paper we improve these results by finding fixed-parameter tractable algorithms
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for stronger parameters, allowing k-page crossing minimization to be performed
in polynomial time for a much wider class of graphs.

New Results. We design fixed-parameter algorithms for computing the minimum
number of crossings cr1(G) in a 1-page drawing of a graph G, and the minimum
number of crossings cr2(G) in a 2-page drawing of G. Ideally, fixed-parameter
algorithms for crossing minimization should be parameterized by their natural
parameter, the optimal number of crossings. We achieve this ideal bound, for the
first time, for cr1(G). However, for cr2(G), even testing whether a given graph is
2-page planar (that is, whether cr2(G) = 0) is NP-complete [8]. Therefore, unless
P = NP, there can be no fixed-parameter-tractable algorithm parameterized by
the crossing number. Instead, we show that cr2(G) is fixed-parameter tractable
in the sum of the natural parameter and the treewidth of G. One consequence of
our result on cr2(G) is that it is possible to test whether a given graph is 2-page
planar, in time that is fixed-parameter tractable with respect to treewidth.

We construct these algorithms via Courcelle’s theorem [9,10], which connects
the expressibility of graph properties in monadic second order logic with the
fixed-parameter tractability of these properties with respect to treewidth. Re-
call that second order logic extends first order logic by allowing the quantifi-
cation of k-ary relations in addition to quantification over individual elements.
In monadic second order logic we are restricted to quantification over unary re-
lations (equivalently subsets) of vertices and edges. The property of having a
2-page book embedding is easy to express in (full) second-order logic, via the
known characterization that a graph has such an embedding if and only if it is
a subgraph of a Hamiltonian planar graph [4]. However, this expression is not
allowed in monadic second-order logic because the extra edges needed to make
the input graph Hamiltonian cannot be described by a subset of the existing
vertices and edges of the graph. Instead, we prove a new structural description
of 2-page planarity that is more easily expressed in monadic second order logic.

Related Work. As well as the previous work on crossing minimization for almost-
trees [3], related results in fixed-parameter optimization of crossing number in-
clude a proof by Grohe, using Courcelle’s theorem, that the topological crossing
number of a graph is fixed-parameter tractable in its natural parameter [15]. This
result was later improved by Kawarabayashi and Reed [17]. Based on these re-
sults the crossing number itself was also shown to be fixed-parameter tractable;
Pelsmajer et al. showed a similar result for the odd crossing number [20]. In
layered graph drawing, Dujmović et al. showed that finding a drawing with k
crossings and h layers is fixed-parameter tractable in the sum of these two pa-
rameters; this result depends on a bound on the pathwidth of such a drawing, a
parameter closely related to its treewidth [11].

Like many of these earlier algorithms, our algorithms have a high dependence
on their parameter, rendering them impractical. For this reason we have not
attempted an exact analysis of their complexity nor have we searched for opti-
mizations to our logical formulae that would improve this complexity.
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2 Preliminaries

Bridges vs Flaps and Isthmuses. There is an unfortunate terminological confu-
sion in graph theory: two different concepts, a maximal subgraph that is inter-
nally connected by paths that avoid a given cycle, and an edge whose removal
disconnects the graph, are both commonly called bridges. We need both concepts
in our algorithms. To avoid confusion, we call the subgraph-type bridges flaps
and the edge-type bridges isthmuses. To be more precise, given a graph G and
a cycle C, we define an equivalence relation on the edges of G \ C in which two
edges are equivalent if they belong to a path that has no interior vertices in C,
and we define a flap of C to be the subgraph formed by an equivalence class of
this relation. (Different cycles may give rise to different flaps.) Given a graph G,
we define an isthmus of G to be an edge of G that does not belong to any simple
cycles in G.

Treewidth and Graph Minors. The treewidth of G can be defined to be one less
than the number of vertices in the largest clique in a chordal supergraph ofG that
(among possible chordal supergraphs) is chosen to minimize this clique size [6].
The problem of computing the treewidth of a general graph is NP-hard [1], but
it is fixed-parameter tractable in its natural parameter [5].

A graph H is said to be a minor of a graph G if H can be constructed from
G via a sequence edge contractions, edge deletions, and vertex deletions. It can
be determined whether a graph H is a minor of a graph G, in time that is
polynomial in the size of G and fixed-parameter tractable in the size of H [21].

Logic of Graphs. We will be expressing graph properties in extended monadic
second-order logic (MSO2). This is a fragment of second-order logic that includes:

– variables for vertices, sets of vertices, edges, and sets of edges;

– binary relations for equality (=), inclusion of an element in a set (∈) and
edge-vertex incidence (I);

– the standard propositional logic operations: ¬,∧,∨,→;

– the universal quantifier (∀) and the existential quantifier (∃), both which
may be applied to variables of any of the four variable types.

To distinguish the variables of different types, we will use u, v, w, . . . for vertices,
e, f, g, . . . for edges, and capital letters for sets of vertices or edges (with context
making clear which type of set). Given a graph G and an MSO2 formula φ we
write G |= φ (“G models φ”) to express the statement that φ is true for the
vertices, edges, and sets of vertices and edges in G, with the semantics of this
relation defined in the obvious way. MSO2 differs from full second order logic in
that it allows quantification over sets, but not over higher order relations, such
as sets of pairs of vertices that are not subsets of the given edges.

The reason we care about expressing graph properties in MSO2 is the following
powerful algorithmic meta-theorem due to Courcelle.
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Lemma 1 (Courcelle’s theorem [9, 10]). Given an integer k ≥ 0 and an
MSO2-formula φ of length �, an algorithm can be constructed that takes as in-
put a graph G of treewidth at most k and decides in O

(
f(k, �) · (n + m)

)
time

whether G |= φ, where the function f appearing in the time bound is a computable
function of the treewidth k and formula length �.

Combinatorial Enumeration of Crossing Diagrams. In order to show that the
properties we study can be represented by logical formulas of finite length, we
need to bound the number of combinatorially distinct ways that a subset of
edges in a k-page graph drawing can cross each other.

We define a 1-page crossing diagram to be a placement of some points on the
circumference of a circle, together with some straight line segments connecting
the points such that each point is incident to a segment, no segment is uncrossed
and no three segments cross at the same point. Two crossing diagrams are com-
binatorially equivalent if they have the same numbers of points and line segments
and there exists a cyclic-order-preserving bijection of their points that takes line
segments to line segments. The crossing number of a 1-page crossing diagram is
the number of pairs of its line segments that cross each other.

We define a 2-page crossing diagram to be a 1-page crossing diagram together
with a labeling of its line segments by two colors. For a 2-page crossing diagram
we define the crossing number to be the total number of crossing pairs of line
segments that have the same color as each other.

Lemma 2. There are 2O(k2) 1-page crossing diagrams with k crossings, and
there are 2O(k2) 2-page crossing diagrams with k crossings.

Proof. Place 4k points around a circle. Then every 1-page crossing diagram with
k or fewer crossings can be represented by choosing a subset of the points and
a set of line segments connecting a subset of pairs of the points. There are 4k
points and 4k(4k − 1)/2 pairs of points, so 2O(k2) possible subsets to choose.

Similarly, every 2-page crossing diagram can be represented by a subset of the
same 4k points, and two disjoint subsets of pairs of points, which again can be
bounded by 2O(k2). 	


Two combinatorially equivalent crossing diagrams, as defined above, may have
a topology that differs from each other, or from combinatorially equivalent dia-
grams with curved edges. This is because, for an edge with multiple crossings, the
order of the crossings along this edge may differ from one diagram to another, but
this ordering is not considered as part of the definition of combinatorial equiv-
alence. For our purposes such differences are unimportant, as we are concerned
only with the total number of crossings. So we consider two crossing diagrams to
be equivalent if they have the same crossing pairs of edges, regardless of whether
the crossings occur in the same order.

3 1-page Crossing Minimization

Outerplanarity. Recall that a graph is outerplanar if there exists a placement of
its vertices on the circumference of a circle such that when its edges are drawn
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as straight line segments they do not cross. Topologically, the circle and the half-
plane are equivalent, so a graph is outerplanar if and only if it has a crossing-free
1-page drawing. For incorporating a test of outerplanarity into methods using
Courcelle’s theorem, it is convenient to use a standard characterization of the
outerplanar graphs by forbidden minors:

Lemma 3 (Chartrand and Harary [7]). A graph G is outerplanar (1-page
planar) if and only if it contains neither K4 nor K2,3 as a minor.

Lemma 4 (Corollary 1.15 in [10]). Given any fixed graph H there exists a
MSO2-formula φ such that, for all graphs G, G |= φ if and only if G contains
H as a minor. We will write minorH for φ.

Let outerplanar be the formula ¬minorK4 ∧¬minorK2,3 . Then Lemma 3
implies that, for all graphsG, G |= outerplanar if and only if G is outerplanar.
Because outerplanar graphs have bounded treewidth (at most two), Courcelle’s
theorem together with Lemma 4 guarantee the existence of a linear time algo-
rithm for testing outerplanarity. There are of course much simpler linear time
algorithms for testing outerplanarity [18, 25].

Crossings vs Treewidth. Next, we relate the natural parameter for 1-page crossing
minimization (the number of crossings) to the parameter for Courcelle’s theo-
rem (the treewidth). This relation will allow us to construct a fixed-parameter-
tractable algorithm for the natural parameter.

Lemma 5. Every graph G has treewidth O(
√

cr1(G)).

See the full version of this paper (arXiv:1408.6321) for the proof.

Logical Characterization. Let G be a graph with bounded 1-page crossing num-
ber, and consider a drawing of G achieving this crossing number. Then the set
of crossing edges of the drawing partitions the halfplane into an arrangement
of curves, and we can partition G itself into the subgraphs that lie within each
face of this arrangement. Each of these subgraphs is itself outerplanar, because
it lies within a subset of the halfplane (with its vertices on the boundary of the
subset) and has no more crossing edges; see Figure 1. This intuitive idea forms
the basis for the following characterization of the 1-page crossing number, which
we will use to construct an MSO2-formula for the property of having a drawing
with low crossing number.

Lemma 6. A graph G = (V,E) has cr1(G) ≤ k if and only if there exist edges
F = {e0, . . . , er} with r = O(k), vertices W = {v0, . . . , v�} with � = O(k),
and a partition U0, . . . , U� of V \W into (possibly empty) subsets, satisfying the
following properties:

1. W is the set of vertices incident to edges in F .
2. F contains all edges in the induced subgraph on W .
3. There are no edges between Ui and Uj for i �= j.

http://arxiv.org/abs/1408.6321
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Fig. 1. A 1-page drawing of a
graph with two crossings and
five outerplanar subgraphs.

Fig. 2. A 2-page planar graph with its edges parti-
tioned into the six sets Ab (green edges), Ac (blue
edges), Ai (red edges), Bb (yellow edges), Bc (pur-
ple edges), and Bi (gray edges).

4. There is an outerplanar embedding of the induced subgraph on Ui∪{vi, vi+1}
with vi and vi+1 adjacent for all 0 ≤ i < �.

5. The edges in F produce at most k crossings when their endpoints (the vertices
in W ) are placed in order according to their indices.

We now construct a formula onepagek, based on Lemma 6, such that G |=
onepagek if and only if cr1(G) ≤ k. The formula onepagek will have the
overall form of a disjunction, over all crossing configurations, of a conjunction
of sub-formulas representing Properties 1–4 in Lemma 6. Property 5 will be
represented implicitly, by the enumeration of crossing configurations. The first
three properties are easy to express directly: the formulas

θ1(W,F ) ≡ (∀v)[v ∈ W → (∃e)[e ∈ F ∧ I(e, v)]]

θ2(F,W ) ≡ (∀e)[(∀v)[I(e, v) → v ∈ W ] → e ∈ F ]

θ3(Ui, Uj) ≡ ¬(∃e)(∃u, v)[I(e, u) ∧ I(e, v) ∧ u ∈ Ui ∧ v ∈ Uj]

express in MSO2 Properties 1, 2, and 3 of Lemma 6 respectively.
To express Property 4 we first observe that it is equivalent to the property

that the induced subgraph on Ui∪{vi, vi+1} with vi and vi+1 identified (merged)
to form a single supervertex is outerpalanar. That is, the requirement in Prop-
erty 4 that vertices vi and vi+1 be adjacent in the outerplanar embedding can be
enforced by identifying the vertices. To express this property we need the follow-
ing lemma, which can be proved in straightforward manner using the method of
syntactic interpretations. (For details on this method see [13, 15].)

Lemma 7. For every MSO2-formula φ there exists an MSO2-formula φ∗(v1, v2)
such that G |= φ∗(a, b) if and only if G/a ∼ b |= φ, where G/a ∼ b is the graph
constructed from G by identifying vertices a and b.

Now, to construct θ4(Ui, vi, vj) we first modify the formula outerplanar
by restricting its quantifiers to only quantify over vertices (and sets of vertices)
in Ui ∪ {vi, vj} and edges (and sets of edges) between these vertices. This mod-
ified formula describes the outerplanarity of Ui ∪ {vi, vj}. We then apply the
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transformation of Lemma 7 to produce the formula θ4(Ui, vi, vj), expressing the
outerplanarity of the induced graph on Ui ∪ {vi, vj} with vi and vj identified.

Lemma 2 tells us that there are 2O(k2) ways of satisfying Property 5 of Lemma 6.
For each crossing diagramDwith k crossingswe can construct a formulaαD(v0, . . . ,
v�, e0, . . . , er) specifying that the vertices v0, . . . , v� and edges e0, . . . , er are in con-
figurationD. We then construct the formula

βD ≡ (∃v0, . . . v�)(∃e0, . . . , er)(∃U0, . . . , U�)

[
αD(v0, . . . , v�, e0, . . . , er) ∧

�⋃

0

Ui = V \ {v0, . . . , v�} ∧
∧

i�=j

Ui ∩ Uj = ∅

∧ θ1(v0, . . . , v�; e0, . . . , er) ∧ θ2(e0, . . . , er; v0, . . . , v�)

∧
∧

i�=j

θ3(Ui, Uj) ∧
�∧

i=0

θ4(Ui, vi, vi+1)
]

of length O(k2). This formula expresses the property that, in the given graph G,
we can construct a crossing diagram of type D, and a corresponding partition of
the vertices into subsets Ui, that obeys Properties 1–4 of Lemma 6. By Lemma 6,
this is equivalent to the property that G has a 1-page drawing with k crossings
in configuration D. Finally, we construct onepagek by taking the disjunction
of the βD where D ranges over all crossing diagrams with ≤ k crossings. Thus,
onepagek is a formula of length 2O(k2), expressing the property that cr1(G) ≤ k.

Theorem 1. There exists a computable function f such that cr1(G) can be com-
puted in O(f(k)n) time for a graph G with n vertices and with k = cr1(G).

Proof. We have shown the existence of a formula onepagek such that a graph
G |= onepagek if and only if cr1(G) ≤ k. By Lemma 5, the treewidth of any
graph with crossing number k is O(k). Applying Courcelle’s theorem with the
formula onepagek and the O(k) treewidth bound, it follows that computing
cr1(G) is fixed-parameter tractable in k . 	


4 2-page Planarity

A classical characterization of the graphs with planar 2-page drawings is that
they are exactly the subhamiltonian planar graphs:

Lemma 8 (Bernhart and Kainen [4]). A graph is 2-page planar if and only
if it is the subgraph of planar Hamiltonian graph.

However, this characterization does not directly help us to construct an MSO2-
formula expressing the 2-page planarity of a graph, as we do not know how to
construct a formula that asserts the existence of a supergraph with the given
property. Hamiltonicity and planarity are both straightforward to express in
MSO2, but there is no obvious way to describe a set of edges that may be of
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more than constant size, is not a subset of the existing edges, and can be used
to augment the given graph to form a planar Hamiltonian graph.

For this reason we provide a new characterization, which we model on a stan-
dard characterization of planar graphs: a graph is planar if and only if, for every
cycle C, the flaps of C can be partitioned into two subsets (the interior and
exterior of C) such that no two flaps in the same subset cross each other. For
instance, this characterization has been used as the basis for a cubic-time divide
and conquer algorithm for planarity testing, which recursively subdivides the
graph into cycles and non-crossing subsets of flaps [2,14,23]. In our characteriza-
tion of 2-page graphs, we apply this idea to a special set of cycles, the boundaries
of maximal regions within each halfplane that are separated from the spine of a
2-page book embedding by the edges of the embedding. The cycles of this type
are edge-disjoint, and if a single cycle of this type has been identified then its
interior flaps can also be identified easily: each interior flap is a single edge, and
an edge forms an interior flap if and only if it belongs to the same page as the
cycle in the book embedding and has both its endpoints on the cycle. As well
as identifying which of the two pages each edge of a given graph is assigned
to, our MSO2 formula will partition the edges into three different types of edge:
the ones that belong to these special cycles, the ones that form interior flaps
of these special cycles, and the remaining isthmus edges that, if deleted, would
disconnect parts of their page.

Suppose we are given a graph G = (V,E) and a partition of its edges into two
subsets A,B, intended to represent the two pages of a 2-page drawing of G. We
define the graph separate(G;A,B) that splits each vertex of G into two vertices,
one in each page, with a new edge connecting them. Thus, separate(G;A,B) has
2n vertices, which can be labeled by pairs of the form (v,X) where v is a vertex
in V and X is one of the two sets in A,B. It has an edge between (x,X) and
(y, Y ) if either of two conditions is met: (1) x = y and X �= Y , or (2) X = Y
and there is an edge between x and y in X .

Lemma 9. A graph G = (V,E) is 2-page planar if and only if there exists a
partition Ab, Ac, Ai, Bb, Bc, Bi of E into six subsets such that, for each of the
two choices of X = A and X = B, these subsets satisfy the following properties:

1. Xc is a union of edge-disjoint cycles.
2. Xc ∪Xb does not contain any additional cycles that involve edges in Xb.
3. For every edge e in Xi there exists a cycle in Xc containing both endpoints

of e.
4. The graph formed by the edges Xi ∪Xc ∪Xb is outerplanar.
5. For each cycle C in Xc it is not possible to find two vertex-disjoint paths

P1 and P2 in E such that neither path is a single edge in Xi, all four path
endpoints are distinct vertices of C, neither path contains a vertex of C in its
interior, and the two pairs of path endpoints are in crossing position on C.

6. The subdivision separate(G;Ab ∪ Ac ∪ Ai, Bb ∪Bc ∪Bi) is planar.

Figure 2 illustrates the division of edge into six subsets described in Lemma 9.
For the proof of Lemma 9, see the full version of this paper.
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We construct a formula twopage based on Lemma 9 with the property that
G |= twopage if and only if G is 2-page planar. First, we construct formulas
θ1, . . . , θ5 expressing Properties 1 through 5 in Lemma 9, as we did for 1-page
crossing; each of these properties has a straightforward expression in MSO2. To
express Property 6 we will need the following technical lemma, which can be
proved using the method of syntactic interpretations.

Lemma 10. For every MSO2-formula φ there exists an MSO2-formula φ∗(A,B)
such that G |= φ∗(A,B) if and only if separate(G;A,B) |= φ.

Now, we can express Property 6 as an MSO2-formula θ6 using Lemma 10, as
planarity is expressible by Lemma 4 and the fact that planar graphs are the
graph that avoid K5 and K3,3 as minors. Thus, we define twopage to be the
formula expressing the existence of Ab, Ac, Ai, Bb, Bc, Bi satisfying θ1, . . . θ6.

Theorem 2. There exists a computable function f and an algorithm that can
decide whether a given graph with treewidth k is 2-page planar in O(f(k)n) time.

Proof. The result follows from Courcelle’s theorem together with the construc-
tion of the MSO2 formula twopage representing the existence of a two-page
planar embedding. 	


5 2-page Crossing Minimization

We now extend the results of the previous section from 2-page planarity to 2-
page crossing minimization. As in the 1-page case, we will use a formula that
involves a disjunction over crossing diagrams. Given a crossing diagramD with k
crossings and r+1 edges, whose graph is G, we define the planarization of G with
respect to D to be the graph in which each edge ei is replaced by a path of degree
four vertices, such that two of these replacement paths share a vertex if and only
if the original two edges cross in D. As explained earlier, we do not care about
the order of crossings along each edge (two crossing diagrams with the same
sets of crossing pairs but with different crossing orders are considered equivalent.
Nevertheless, we do preserve the order of crossings from (one representative of
an equivalence class of) crossing diagrams to their planarizations, in order to
ensure that the planarizations form planar graphs.

Lemma 11. A graph G = (V,E) has cr2(G) = k if and only if there exists edges
e0, e1, · · · , er with r < 2k and a 2-page crossing diagram D with k crossings on
these edges such that when G is planarized with respect to D the resulting graph
GD = (VD, ED) has a partition of ED into Ab, Ac, Ai, Bb, Bc, Bi such that, for
X = A,B:

1. Xc is a union of edge disjoint cycles.
2. None of the cycles Xc ∪Xb contains an edge in Xb.
3. If e is an edge introduced in the planarization, then e ∈ Ab ∪ Ac ∪ Ai if e is

in the first page of D, and e ∈ Bb ∪Bc ∪Bi if it is in the second page of D.
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4. For every edge e in Xi, there exists a subgraph P containing e and a cycle C
in Xc such that P consists only of vertices of C and of degree-four vertices
introduced in the planarization, P contains at least two vertices of C, and P
includes all four edges incident to each of its planarization vertices.

5. For each two edges e and f in Xi, the two subgraphs Pe and Pf satisfying
Property 4 do not each have a pair of endpoints in crossing position on the
same cycle C.

6. For each cycle C in Xc there do not exist two paths in E, such that neither
path uses edges of Xi or interior vertices of C, with four distinct endpoints
on C in crossing position.

7. the subdivision separate(G;Ab ∪ Ac ∪ Ai, Bb ∪Bc ∪Bi) is planar.

Now, we construct a MSO2-formula ζk based on Lemma 11 such that G |= ζk if
and only if cr2(G) = k. To handle the planarization process we use the following
lemma. In the lemma, the notation Ge1×e2 describes the graph obtained from a
graph G by deleting two edges e1 and e2 that do not share a common endpoint,
and adding a new degree-4 vertex connected to the endpoints of e1 and e2.

Lemma 12 (Grohe [15]). For every MSO2-formula φ there exists an MSO-
formula φ∗(x1, x2) such that G |= φ∗(e1, e2) if and only if Ge1×e2 |= φ.

Given any MSO2-formula φ and crossing diagram D, we can repeatedly apply
the lemma above to construct a formula φD such that G |= φD(e0, . . . , er) if
and only if GD |= φ. With this tool in hand it is straightforward to construct
a formula γD , expressing the property that, in a given graph G we can build
a crossing diagram with the structure of D, and partition the planarization GD

into six sets, satisfying Lemma 11. So we can define ζk to be the disjunction of
the γD ranging over all 2-page crossing diagrams with k-crossings.

Theorem 3. There exists a computable function f such that cr2(G) can be
computed in O(f(k, t)n) time for a graph G with n vertices, k = cr2(G), and
t = tw(G).

6 Conclusion

We have provided new fixed-parameter algorithms for computing the crossing
numbers for 1-page and 2-page drawings of graphs with bounded treewidth. The
use of monadic second order logic and Courcelle’s theorem in our solutions causes
the running times of our algorithms to have an impractically high dependence
on their parameters. We believe that it should be possible to achieve a better
dependence by directly designing dynamic programming algorithms that use
tree-decompositions of the given graphs, rather than by relying on Courcelle’s
theorem to prove the existence of these algorithms. Can this dependency be
reduced to the point of producing practical algorithms? For 2-page crossing min-
imization the runtime is parameterized by both the treewidth and the crossing
number. Is 2-page crossing minimization NP-hard for graphs of fixed treewidth?
We leave these questions open for future research.
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Dujmović and Wood asked [?], “is there a polynomial-time algorithm for com-
puting the book thickness of graphs with bounded treewidth?” Our Theorem 2
provides a partial solution to this question for book thickness 2. Can the graph
property of having book thickness k be expressed in MSO2, answering the ques-
tion of Dujmović and Wood? The special case of k = 3 is of particular interest,
to provide a computational attack on the still-open problem of whether there
exist planar graphs that require four pages [12,26]. Heath has shown that every
planar graph of treewidth three has a planar 3-page drawing [?], but recognizing
three-page graphs of higher treewidth efficiently remains open.
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