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Abstract. We study balanced circle packings and circle-contact representations
for planar graphs, where the ratio of the largest circle’s diameter to the smallest
circle’s diameter is polynomial in the number of circles. We provide a number of
positive and negative results for the existence of such balanced configurations.

1 Introduction

Circle packings are a frequently used and important tool in graph drawing [3, 5, 10, 11,
18]. In this application, they can be formalized using the notion of a circle-contact rep-
resentation for a planar graph; this is a collection of interior-disjoint circles in R

2, corre-
sponding one-for-one with the vertices of the graph, such that two vertices are adjacent
if and only if their corresponding two circles are tangent to each other [15]. In a classic
paper, Koebe [16] proved that every triangulated planar graph has a circle-contact rep-
resentation, and this has been subsequently re-proved several times. Generalizing this,
every planar graph has a circle-contact representation: we can triangulate the graph by
adding “dummy” vertices connected to the existing vertices within each face, produce
a circle-contact representation for this augmented graph, and then remove the circles
corresponding to dummy vertices. It is not always possible to describe a circle-contact
representation for a given graph by a symbolic formula involving radicals [2, 5], but
they can nevertheless be constructed numerically and efficiently by polynomial-time
iterative schemes [7, 19].

One of the drawbacks of some of these constructions, however, is that the sizes of
the circles in some of these configurations may vary exponentially, leading to drawings
with very high area or with portions that are so small that they are below the resolu-
tion of the display. For this reason, we are interested in balanced circle packings and
circle-contact representations for planar graphs, where the ratio of the maximum and
minimum diameters for the set of circles is polynomial in the number of vertices in the
graph; see Fig. 1.

Related Work. There is a large body of work about representing planar graphs as con-
tact graphs, where vertices are represented by geometrical objects and edges correspond
to two objects touching in some pre-specified fashion. For example, Hliněný [15] stud-
ies contact representations using curves and line segments as objects. Several authors
have considered contact graphs of triangles of various types. For instance, de Frays-
seix et al. [12] show that every planar graph has a triangle-contact representation, and
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(a) (b)

Fig. 1. Two planar graphs with possible circle-contact representations: (a) a representation that is
not optimally balanced; (b) a perfectly-balanced representation

Gonçalves et al. [14] prove that every 3-connected planar graph and its dual can be
simultaneously represented by touching triangles (and they point out that 4-connected
planar graphs also have contact representations with homothetic triangles). Also, Dun-
can et al. [9] show that every planar graph has a contact representation with convex
hexagons all of whose sides have one of three possible slopes, and that hexagons are
necessary for some graphs, if convexity is required. With respect to balanced circle-
contact representations, Breu and Kirkpatrick [4] show that it is NP-complete to test
whether a graph has a perfectly-balanced circle-contact representation, in which every
circle is the same size.

New Results. In this paper, we provide a number of positive and negative results re-
garding balanced circle-contact representations for planar graphs:

– Every planar graph with bounded maximum vertex degree and logarithmic outer-
planarity admits a balanced circle-contact representation.

– There exist planar graphs with bounded maximum degree and linear outerplanarity,
or with linear maximum degree and bounded outerplanarity, that do not admit a
balanced circle-contact representation.

– Every tree admits a balanced circle-contact representation.
– Every outerpath admits a balanced circle-contact representation.
– Every cactus graph admits a balanced circle-contact representation.
– Every planar graph with bounded tree-depth admits a balanced circle-contact rep-

resentation.

2 Bounded Degree and Logarithmic Outerplanarity

A plane graph (that is, a combinatorially fixed planar embedding of a planar graph) is
outerplanar if all of its vertices are on the outer face. A k-outerplanar graph is defined
recursively. As a base case, if a plane graph is outerplanar, then it is a 1-outerplanar
graph. A plane graph is k-outerplanar, for k > 1, if the removal of all the outer vertices



Balanced Circle Packings for Planar Graphs 127

(and their incident edges) yields a graph such that each of the remaining components is
(k− 1)-outerplanar. The outerplanarity of a plane graph G is the minimum value for k
such that G is k-outerplanar.

2.1 Balanced Circle-Contact Representations

Theorem 1. Every n-vertex k-outerplanar graph with maximum degree Δ admits a
circle-contact representation where the ratio of the maximum and the minimum diame-
ter is at most f(Δ)k+log n, for some positive function f . In particular, when Δ is a fixed
constant and k is O(log n), this ratio is polynomial in n.

In order to prove the theorem, we need the following result from [18].

Lemma 1 (Malitz-Papakostas). The vertices of every triangulated planar graph G
with the maximum degree Δ can be represented by nonoverlapping disks in the plane
so that two disks are tangent to each other if and only if the corresponding vertices are
adjacent, and for each two disks that are tangent to each other, the ratio of the radii of
the smaller to the larger disk is at least αΔ−2 with α = 1

3+2
√
3
≈ 0.15.

As a direct corollary, every maximal planar graph with maximum degree Δ = O(1)
and diameter d = O(logn) has a balanced circle-contact representation. Theorem 1
goes beyond this.

Proof of Theorem 1: To prove the claim, it is sufficient to show how to augment a given
k-outerplanar graph into a maximal planar graph with additional vertices so that its
maximum degree remains O(Δ) and its diameter becomes O(k+logn). By Lemma 1,
the resulting graph admits a circular contact representation with the given bounds on
the ratio of radii. Removing the circles corresponding to the added vertices yields the
desired balanced representation of the original graph.

Let G be an n-vertex k-outerplanar graph with the maximum degree Δ. If the outer-
planarity k of G is bounded by a constant, we can easily augment G to logarithmic di-
ameter, preserving its constant maximum degree, as follows. Inside each non-triangular
face f of G, insert a balanced binary tree with �log |f |� levels and |f | leaves and
then triangulate the remaining non-triangular faces by inserting an outerpath (an out-
erplanar graph whose weak dual is a path) with constant maximum degree; see Fig. 2.
However, such an augmentation results in a maximal planar graph with the diameter

(a) (b) (c)

Fig. 2. (a) A face, (b) augmentation with a balanced binary tree, (c) triangulation with grey edges
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d = O(k logn), which does not yield a balanced circle-contact representation when k
is non-constant. For k = Ω(logn), we present a different augmentation to achieve the
diameter d = O(k + logn) in the resulting graph.

We augment the graph using weight-balanced binary trees. Let T be a binary tree
with leaves l1, l2, . . . , l|f | and a prespecified weight wi assigned to each leaf li. The
tree T is weight-balanced if the depth of each leaf li in T is O(�log(W/wi)�), where
W =

∑f
i=1 wi. There exist several algorithms for producing a weight-balanced binary

tree with positive integer weights defined on its leaves [13, 21].
To augment G, we label each vertex v of G with the number l + 1, where l is the

number of outer cycles that need to be removed before v becomes an outer vertex. By
our assumption that the outerplanarity of G is k, the label of every vertex is at most k.
It follows from this labeling that, for each vertex v of G with label l > 1, there exists
a face f containing v such that f has at least one vertex of label l − 1 and such that
all the vertices on f have label either l or l − 1. We insert a weight-balanced binary
tree inside f ; we choose an arbitrary vertex of f with label l − 1 as the root of the tree,
and a subset of vertices with label l as the leaves; see Fig. 3. We construct these trees
inside the different faces in such a way that each vertex of G with label l > 1 becomes
a leaf in exactly one of the trees. Finally, we insert another weight-balanced tree T0 on
the outer face containing all the outer vertices as the leaves. Note that we have yet to
specify the weights we assign to these leaves for producing the weight-balanced trees.
By the construction, the union of all these trees forms a connected spanning tree of G;
we can consider the root of T0 to be the root of the whole spanning tree.

Let us now specify the weights assigned to the leaves of the different weight-balanced
trees. We label each tree with the label of its root, and define the weights for the leaves
of each tree in a bottom-up ordering, by decreasing order of the labels of the trees. In
a tree T with label l = (k − 1), all the leaves have label k and are not the root of any
other tree; we assign each of these leave the weight 1. In this case, the total weight of T
is the number of its leaves. Similarly, for a tree with label l < k− 1, we assign a weight

r
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u

Fig. 3. Augmentation of G with a weight-balanced binary trees
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(a) (b)

Fig. 4. Planar graphs with no balanced circle-contact representation: (a) the nested-triangles
graph [8]; (b) a 2-outerplanar graph

of 1 to those leaves v that do not have any tree rooted at them; otherwise, if v is the root
of a tree Tv with label l + 1, the weight of v is the total weight of Tv. The total weight
of T is defined as the summation of the weights of all its leaves.

Now, for each vertex v of G, the distance to v from the root r of T0 is O(k + logn).
Indeed, assume that v = ul is a vertex with label l and ul−1, . . ., u1, u0 = r are the
root vertices of the successive weight-balanced trees Tul−1

, . . ., Tu1 , T0 with labels l−
1, . . . , 1, 0, respectively on the way from v to r; see Fig. 3. Then the distance from v to r
is O(�logw(r)/w(u1)�)+O(�logw(u1)/w(u2)�)+ . . .+O(�logw(ul−1)/w(v)�) =
O(k + logw(r)). Here w(ui) denotes the weight of vertex ui as the root; w(r) is the
weight of the root of T0, which is equal to the total number of vertices, n, in G. There-
fore, the diameter of the augmented graph is O(k + logn), where the first term, k,
comes from the ceilings in the summation. Finally, we triangulate the graph by insert-
ing outerpaths with constant maximum degree inside each non-triangular face to obtain
a maximal planar graph with constant maximum degree and O(k+log n) diameter. The
result follows from Lemma 1. ��

2.2 Negative Results

Next we show that, for a graph with unbounded maximum degree or unbounded outer-
planarity, there might not be a balanced circle-contact representation with circles.

Lemma 2. There is no balanced circle-contact representation for the graphs in Fig. 4.

Lemma 2, which we prove in the full version of this paper [1], shows the tightness
of the two conditions for balanced circle-contact representations in Theorem 1. Note
that the example of the graph in Fig. 4(b) can be extended for any specified maximum
degree, by adding a simple path to the high-degree vertex. Furthermore, the example is
a 2-outerplanar graph with no balanced circle-contact representation.
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Fig. 5. Construction of a balanced circle-contact representation

3 Trees and Outerplanar Graphs

Theorem 2. Every tree has a balanced circle-contact representation. Such a represen-
tation can be found in linear time.

Proof: We first find a contact representation Γ of a given tree T with squares such that
the ratio of the maximum and the minimum sizes for the squares is polynomial in the
number of vertices n in T . To this end, we consider T as a rooted tree with an arbitrary
vertex r as the root. Then we construct a contact representation of T with squares where
each vertex v of T is represented by a square R(v) such that R(v) touches the square
for its parent by its top side and it touches all the squares for its children by its bottom
side; see Figs. 5(a) and 5(b). We choose the size of R(v) as l(v) + ε(n(v) − 1), where
ε > 0 is a small positive constant and n(v) and l(v) denote the number of vertices and
the number of leaves in the subtree of T rooted at v. In particular, the size of R(v) is 1
when v is a leaf. If v is not a leaf, then suppose v1, . . ., vd are the children of v in the
counterclockwise order around v. Then we place the squares R(v1), . . ., R(vd) from
left-to-right touching the bottom side of R(v) such that for each i ∈ {1, . . . , d − 1},
R(vi+1) is placed ε unit to the right of R(vi); see Fig. 5(b). There is sufficient space
to place all these squares in the bottom side of R(v), since n(v) = (

∑d
i=1 n(vi)) − 1

and l(v) =
∑d

i=1 l(vi). The representation contains no crossings or unwanted contacts
since for each vertex v, the representation of the subtrees rooted at v is bounded in the
left and right side by the two sides of R(v), and all the subtrees rooted at the children
of v are in disjoint regions ε unit away from each other. The size of the smallest square
is 1, while the size of the largest square (for the root) has size l(T )+ ε(n− 1) = O(n),
where l(T ) is the number of leaves in T .

Using Γ , we find a balanced circle-contact representation of T as follows. We replace
each square R(v), representing vertex v, by an inscribed circle of R(v); see Fig. 5(c).
The operation removes some contacts from the representation. We re-create these con-
tacts by a top-down traversal of T and moving each circle upward until it touches its
parent. Note that a given circle will not touch or intersect any circle other than the cir-
cles for its parent and its children, as for every vertex in the infinite strip between its
leftmost and rightmost point for its circle, the closest circle in the upward direction is
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its parent’s one. Thus, we obtain a contact representation of T with circles. The repre-
sentation is balanced since the diameter for every circle is equal to the side-length for
its square and we started with a balanced representation Γ .

The linear running time can be achieved by a linear-time traversal of T . First, by a
bottom-up traversal of T , we compute the values n(v) and l(v) for each vertex v of T .
Using the values for each vertex, we compute the square-contact representation for T
by a linear-time top-down traversal of T . Finally, in another top-down traversal of T ,
for each vertex v of T , we can compute the exact translation required for the inscribed
circles of R(v) to touch the parent circle. ��

Let us now describe how to compute a balanced circle-contact representation for a
cactus graph, which is a connected graph in which every biconnected component is
either an edge or a cycle. We use the algorithm described in the proof of Theorem 2,
and we call it Draw Tree.

Let T be a rooted tree with a plane embedding. For each vertex v of T , add an
edge between every pair of the children of v that are consecutive in the clockwise order
around v. Call the resulting graph an augmented fan-tree for T . Clearly for any rooted
tree T , the augmented fan-tree is outerplanar. We call an outerplanar graph a fan-tree
graph if it is an augmented fan-tree for some rooted tree. A star is the complete bipartite
graph K1,n−1. The center of a star is the vertex that is adjacent to every other vertex.
An augmented fan-tree for a star is obtained by taking the center as the root. Thus, an
augmented fan-tree for a star is a fan. The center of a fan is again the vertex adjacent to
all the other vertices.

Lemma 3. Every subgraph of a fan admits a contact representation with circles in
which, for each circle c(v) representing a vertex v other than the center, the vertical
strip containing c(v) is empty above c(v).

Proof: Let G be a subgraph of a fan and let T be the star contained in the fan. We now
use the contact representation Γ of T obtained by Draw Tree to compute a representa-
tion for G. Consider the square-contact representation computed for T in the algorithm.
This defines a vertical strip for each circle c(v) in Γ representing a vertex v, and for all
the vertices other than the center, these strips are disjoint; see Fig. 6(a). Call the left and
right boundary of this strip the left- and right-line for c, respectively.

We now consider a set S of circles, one for each vertex of G other than the center,
with the following properties:

(P1) The circles are interior-disjoint.
(P2) Each circle c′(v) representing a vertex v spans the entire width of the vertical strip

for v, and the vertical strip above c′(v) is empty.
(P3) For each vertex v, the circle c′(v) touches the circle c0 representing the center in

Γ if v is adjacent to the center; otherwise, c′(v) is exactly ε distance away from
c0, for some fixed constant ε > 0.

(P4) If a vertex v is not adjacent to the vertex on its left (or if v is the leftmost vertex),
then the leftmost point of c′(v) is on the left-line of v; similarly, if v is not adjacent
to the vertex on its right (or if v is the rightmost vertex), then the rightmost point
of c′(v) is on the right-line of v.
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Fig. 6. (a) A star T and a contact representation of T with circles; (b) a subgraph of the fan for T
and its contact representation with circles

(P5) The sizes for the circles are maximal with respect to the above properties.

Note that there exists a set of circles with the properties (P1)–(P4); in particular,
the set of circles in Γ representing the vertices of T other than the center is such a
set. We now claim that the set S of circles with properties (P1)–(P5) together with the
circle c0 gives a contact representation for G; see Fig. 6(b). First note that a circle c′(v)
cannot touch any circle other than c0 and the two circles c(vl) and c(vr) representing
the vertices vl and vr on its left and right, respectively. Indeed, it cannot pass the vertical
strip for vl and vr above them due to (P2) and behind them due to (P3). Furthermore,
the ε distance between c0 and the circles for vertices non-adjacent to the center and
the restriction on the left and right side in (P4) ensures that there is no extra contact.
Hence, it is sufficient to show that for each edge in G, we have the contact between the
corresponding circles.

Since each circle c′(v) is maximal in size, it must touch at least three objects. One of
them is either the circle c0 or the ε offset line for c0. Thus, if vl and vr are the left and
right neighbors of v (if any), then c′(v) must touch two of the followings: (i) c′(vl) (or
the left line of v if vl does not exists), (ii) the right line for vl, (iii) c′(vr) (or the right line
of v if vr does not exists), and (iv) the left line for vr. Assume without loss of generality
that both vl and vr exist for v. Then if c′(v) touches both c′(vl) and c′(vr), we have the
desired contacts for v. Therefore, for a desired contact of c′(v) to be absent, either c′(v)
touches both c′(vl) and the right-line of vl (and misses the contact with c′(vr)), or it
touches both c′(vr) and the left-line of vr (and misses the contact with c′(vr)).

Assume, for the sake of a contradiction, that there are two consecutive vertices x and
y that are adjacent in G but c′(x) and c′(y) do not touch each other. Let l and r be the
vertices to the left of x and to the right of y, respectively. Then it must be the case that
x touches both c′(l) and the right line for l and y touches both c′(r) and the left line of
r; see Fig. 7(a). One can then increase the size of either c′(x) or c′(y) (say c′(y)) such
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Fig. 7. Illustration for the proof of Lemma 3: if the circles for x and y do not touch each other, at
least one can be increased in size

that it now touches c′(x) and the left-line for r (but not c′(r)), a contradiction to the
maximality for the circles; see Fig. 7(b). ��

Using the lemma, we can obtain a quadratic-time algorithm as follows. Given a sub-
graph G of a fan, compute the balanced circle-contact representation Γ for the corre-
sponding star T using Draw Tree. Then pick the vertices of T other than the center
in an arbitrary order and for each vertex v, replace the circle c(v) in Γ by a circle of
maximum size that does not violate any of the properties (P1)–(P4) in the proof of
Lemma 3. This takes a linear time. Now for every edge (x, y) for which c(x) and c(y)
do not touch, replace one of the two circles (say, c(y)) with a circle that touches c(x)
as in Fig. 7(b). Note that this may result in a loss of a contact between c(y) and the
circle to its right. We perform a similar operation for the circle to the right of c(y),
then possibly for the circle on its right and so on, until all missing contact are repaired.
This process requires linear time per edge; hence, the total running time to compute the
desired contact representation is quadratic. The contact representation is balanced since
the representation obtained by Draw Tree is balanced and afterwards we only increase
the size of circles that are not of the largest size.

Theorem 3. Every n-vertex fan-tree graph has a balanced circle-contact representa-
tion. Such a representation can be found in O(n2) time.

Proof: Let G be a fan-tree graph and let T be the corresponding tree for which G is
the augmented fan-tree. Using Draw Tree, we first obtain a balanced circle-contact
representation of T . As in the proof of Lemma 3, this defines a vertical strip for each
vertex in T . In a top-down traversal of T , we can find a contact representation of G with
circles by repeating the quadratic-time algorithm for the subgraphs of fans. Hence, the
total complexity is

∑

v∈V (T )

deg2T (v) = O(n2). ��

As a corollary of Theorem 3, we obtain an algorithm for creating balanced circle-
contact representation of a cactus graph.

Corollary 1. Every n-vertex cactus graph has a balanced circle-contact representa-
tion. Such a representation can be found in O(n2) time.
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(a) (b)

Fig. 8. (a) A cactus graph G; (b) augmenting G to a fan-tree so that the directed edges form a
rooted tree and are oriented towards the root

Proof: Given cactus graph G, choose a root vertex v arbitrarily. For each cycle C of G,
add an edge from each vertex of C to the (unique) closest vertex to v in C (Fig. 8). The
resulting supergraph of G is a fan-tree; the result follows by Theorem 3. ��

In the full version of this paper [1], we provide a linear-time algorithm for balanced
circle-contact representation of outerpaths. The main idea of this construction is to par-
tition a given outerpath into a sequence of fans, use unit circles to represent the zigzag
outerpath formed by the vertices at the ends of each fan, and then perturb these circles
by small rotations to make room for the other circles that should go between them.

Theorem 4. Every outerpath has a balanced circle-contact representation. Such a rep-
resentation can be found in linear time.

4 Bounded Tree-Depth

A graph G has tree-depth t if there exists a supergraph of G, and a depth-first search
tree T of the supergraph, with at most t vertices on every root–leaf path in T . A family
of graphs has bounded tree-depth if and only if there is a constant bound on the length
of the longest path that can be found in any of its graphs [20].

Theorem 5. For every constant bound d, every planar graph with tree-depth at most d
has a balanced circle-contact representation.

We sketch the proof from the full version of this paper [1]. The first step characterizes
the planar graphs with bounded tree-depth, using block-cut trees and SPQR trees to
represent the 2-vertex-connected and 3-vertex-connected components of a graph. We
show that a family of planar graphs has bounded tree-depth if and only if the block-
cut trees of graphs in the family have bounded depth, the SPQR trees of 2-connected
components of these graphs have bounded depth, and each 3-connected component has
a bounded number of vertices. If all three conditions are true, the longest path length can
be bounded by a recursion of bounded height and branching factor. Conversely, if any
one of these conditions is violated, then there exist paths of unbounded length: a long
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path in one of the trees leads directly to a long path in the graph and large 3-connected
components have long paths by results of Chen and Yu [6].

Because each 3-connected component must have bounded size, the circle packing
theorem gives it a balanced circle packing. Next, we construct a contact representation
for a supergraph of the given graph, by using Möbius transformations to glue together
these packings. The virtual edge representing two adjacent components in an SPQR tree
should be represented by a pair of tangent circles shared by the packings for the two
components; two tangent circles may be shared by an unbounded number of compo-
nents. We find a family of Möbius transformations that pack all these components into
the space surrounding the two shared tangent circles, so that the components are oth-
erwise disjoint from each other, and each is distorted by a polynomial factor. By using
this method to combine adjacent nodes of the block-cut and SPQR trees, we obtain a
balanced circle packing for the whole graph in which each component is transformed a
constant number of times with polynomial distortion per transformation. However, we
may have additional unwanted tangencies between circles, coming from virtual edges
in an SPQR tree node that do not correspond to graph edges.

The final part of our proof of Theorem 5 shows how to perturb these glued-together
packings, in a controlled way, to eliminate the contacts between pairs of vertices that
are connected by virtual edges but not by edges of the input graph while still allowing
the Möbius gluing to work correctly. The existence of a Möbius transformation from
one pair of circles to another is controlled by an invariant of pairs of circles called their
inversive distance that equals 1 for tangent circles, is less than 1 for crossing circles, and
is greater than 1 for disjoint circles. The theory of inversive distance circle packings is
not as well-developed as the theory of tangent circle packings, but a theorem of Luo [17]
implies that, for a maximal planar graph with specified positions for the centers of the
three circles representing the outer face of the graph and specified inversive distances
on each edge of the graph, a circle packing of this type is unique when it exists. By
combining this fact with Brouwer’s theorem of invariance of domain, we show that
for any fixed maximal planar graph (and fixed three outer circle centers) the space of
feasible assignments of inversive distances to edges of the graph forms an open set.
Therefore, for all sufficiently small ε > 0, there exist packings for which all virtual-
but-not-actual edges have inversive distance 1 + ε and all actual edges have inversive
distance 1. Choosing ε to be inverse-polynomially small allows the same gluing method
to complete the construction and the proof.

5 Conclusion

We studied balanced circle packings for planar graphs, showing that several rich classes
of graphs have balanced circle packings. One interesting open problem is whether or
not every outerplanar graph has a balanced circle packing representation. While we
identified several subclasses of outerplanar graphs that admit such representations, the
question remains open for general outerplanar graphs.
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3. Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization and
meshing. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp.
14–25. Springer, Heidelberg (2001)

4. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. Th.
Appl. 9(1-2), 3–24 (1998)

5. Brightwell, G., Scheinerman, E.: Representations of planar graphs. SIAM J. Discrete
Math. 6(2), 214–229 (1993)

6. Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory B 86(1), 80–99 (2002)
7. Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Th. Appl. 25(3),

233–256 (2003)
8. Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Advances in Com-

puting Research 2, 147–161 (1984)
9. Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal

representation of planar graphs. Algorithmica 63(3), 672–691 (2012)
10. Eppstein, D.: Planar Lombardi drawings for subcubic graphs. In: Didimo, W., Patrignani, M.

(eds.) GD 2012. LNCS, vol. 7704, pp. 126–137. Springer, Heidelberg (2013)
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20. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms. Springer

(2012)
21. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. SIAM J. Comput. 2,

33–43 (1973)


	Balanced Circle Packings for Planar Graphs
	1 Introduction
	2 Bounded Degree and Logarithmic Outerplanarity
	2.1 Balanced Circle-Contact Representations
	2.2 Negative Results

	3 Trees and Outerplanar Graphs
	4 Bounded Tree-Depth
	5 Conclusion
	References




