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Abstract. The assembly of optical components goes along with highest  
requirements regarding assembly precision. Laser products have become an 
integral part of many industrial, medical, and consumer applications and their 
relevance will increase significantly in the years to come. Still economic chal-
lenges remain. Assembly costs are driven by the demanding requirements re-
garding alignment and adhesive bonding. Especially challenging in precision 
bonding are the interdependencies between alignment and bonding. Multiple 
components need to be aligned within smallest spatial and angular tolerances in 
submicron order of magnitude. A major challenge in adhesive bonding is the 
fact that the bonding process is irreversible. Accordingly, the first bonding at-
tempt needs to be successful. Today’s UV-curing adhesives  inherit shrinkage 
effects during curing which are crucial for the submicron tolerances of e.g. 
FACs or beam combiners what makes the bonding of these components very 
delicate assembly tasks. However, the shrinkage of UV-curing adhesives is not 
only varying between different loads due to fluctuations in raw materials, it is 
also changing along the storage period. An answer to this specific challenge can 
be the characterization of the adhesive on a daily basis. The characterization be-
fore application of the adhesive is necessary for precision optics assembly in 
order to reach highest output yields, minimal tolerances and ideal beam-shaping 
results. The work presented in this paper aims for a significantly reduced impact 
of shrinkage effects during curing of highly durable UV-curing epoxy adhesives 
resulting in increased precision. Key approach is the highly precise volumetric 
dispensing of the adhesive as well as the characterization of the shrinkage level. 
These two key factors allow most reproducible adhesive bonding in automated 
assembly cells. These proceedings are essential for standardized automated as-
sembly solutions which will prospectively play a major role in laser technology. 

1 Introduction 

The assembly of optical components goes along with the highest requirements regard-
ing assembly precision in many cases. For instance laser products have become an 
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integral part of many industrial, medical, and consumer applications and their relev-
ance will increase significantly in the years to come. Still, economic challenges of 
laser related products prevent the breakthrough in many applications. Assembly costs 
are driven mainly by the demanding requirements regarding alignment and adhesive 
bonding in all spatial dimensions. Extensive research efforts are being made in mat-
ters of novel bonding methods, whilst the challenges of the state-of the art UV-curing 
adhesive bonding still provide opportunities for improvement as identified in several 
recent research projects and contributions ([1],[2],[3],[4],[5],[6]).  

The major and most appreciated advantages of UV-curing adhesive bonding are its 
low temperature, the automation friendliness, and the reasonable costs for automation 
solutions. Yet, especially challenging in precision assembly are the interdependencies 
between alignment and adhesive bonding. Shrinkage effects during curing of the 
adhesives are crucial for the submicron tolerances of for instance fast-axis collimators 
(FACs). Also beam combiners are a very delicate assembly task. Multiple compo-
nents sharing interdependencies need to be aligned within smallest tolerances in sub-
micron order of magnitude. For such assembly tasks the major challenge in adhesive 
bonding at highest precision level is the fact, that the bonding process is irreversible. 
Accordingly, the first bonding attempt needs to be successful as especially for auto-
mated solutions dissolving the link between two components is not possible. The 
impact of the shrinkage effects can be tackled both by a suitable design of the bonding 
area and a positioning offset of the optic for compensation purposes. Yet, compensat-
ing shrinkage effects is difficult, as the shrinkage of UV-curing adhesives is not nec-
essarily constant between two different loads due to fluctuations in raw materials and 
variations over the storage period even under ideal circumstances. An up-to-date 
characterization of the adhesive is necessary for automation in optics assembly to 
reach highest output yields, minimal tolerances and ideal beam-shaping results. Ac-
cordingly, today the operator needs to adjust the compensation offset data on a daily 
basis during the first assembly processes of the production series as practice shows. 
Chances of creating sub-standard goods are high for these first systems, which is 
problematic for high-value precision optics.  

2 Geometric Model of the Bonding Area  

The work presented in this paper aims for a significantly reduced impact of shrinkage 
effects of UV-curing adhesives and a resulting increase in precision in automated 
assembly cells. Key approach is the highly precise volumetric dispensing of the adhe-
sive as well as an up-to-date characterization of the shrinkage level. These two key 
factors allow reproducible adhesive precision bonding in automated assembly cells.  

First step in the approach for increased precision in adhesive bonding is to model 
the bonding system and identify and separate the origins for the misalignment effects 
in order to be able to compensate the shrinkage effects more efficiently. The model of 
the bonding area that was elaborated presumes that the misalignment is mainly caused 
by two effects: A spatial and an angular offset. Figure 1 shows the model of the bond-
ing area. 
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Model for compensation of shrinkage effects 
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the mechanical gripper leads to force amplitudes in both directions and a final relaxa-
tion leading to an increase of the tilt by about 10µrad. The quantification and varia-
tion of the gripper’s closing force allowed an approximation of the forces induced by 
the adhesive during curing process. This knowledge is essential for bonding process 
development when the components shall be kept in place by the application of a re-
taining force. Therefore the gripper was actuated pneumatically allowing a precise an 
easy variation of the clamping force. 

 

Fig. 5. Tilt measurement sample of curing process 

Representative results for a measurement of one sample adhesive are shown in 
Figure 5. The initial wedge angle is this specific case was 8.73mrad (-0,5°). The mean 
tilt resulting from curing in the designated shrink direction (Tilt β) was at 0.287 mrad. 
The undesired parasitic tilt movement (Tilt α) was at 0.0596 mrad which represents 
the measuring uncertainty. Formula (1) is describing the linear shrinkage neglecting 
the linear shrinkage resulting from parallel movements of the components.  

The corresponding shrinkage in this experiment was 2.31% which is roughly dou-
ble the value given in the technical data sheet. This deviation is caused by ageing 
effects of the adhesives during their shelf life. Over the time the UV-curable adhe-
sives partially react even without any exposure to UV-light. Accordingly, the magni-
tude of shrinkage drops with the age of the adhesive.  

However, the severity of shrinkage is not the only factor influencing the achievable 
bonding results. Also highly precise volumetric dosing and minimal adhesive volumes 
minimize the shrinkage effects. Therefore a qualification methodology for dosing 
systems has been elaborated allowing an efficient selection of the best suitable dosing 

lS⋅−=Δ αα  

αΔ  = Tilt induced by shrinkage 

α  = Adjusted wedge-angle  

lS  = linear shrinkage 
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system. Evaluation criteria are minimum dispensing volume, reproducibility, handling 
and costs. Jet dosing systems prove to be most reliable regarding dispensing volume 
reproducibility for the assembly of micro-optical components. A further increase in 
precision of volumetric dispensing could be achieved by creating minimal dropsizes 
and applying several drops to generate one drop of the desired volume. Once again, a 
telecentric camera and an image processing routine were used to characterize the 
reproducibility of the drop diameter. Based on these results a number of suitable ad-
hesives for bonding optics has been validated and characterized regarding shrinkage 
developments over their lifetime.  

4 Conclusion and Outlook 

Result of the work presented in the paper is the precise predictive compensation of 
shrinkage effects of UV-curing adhesives during the curing process. Firstly, the im-
portance of precise volumetric dosing was elaborated. Furthermore the impact of 
shrinkage effects has been modelled, described and quantified. The determination of 
the volumetric shrinkage magnitude is possible with the measurement setup de-
scribed. The shrinkage could be determined as precisely a 0.1 %. During the experi-
mental phase shifts in shrinkage of the same adhesive of more than 5% due to ageing 
effects were observed. For precise and efficient compensation of the shrinkage effects 
a measurement of the shrinkage magnitude instantly before the glue application ap-
pears to be unavoidable. The determination of the shrinkage value is even more im-
portant in automated assembly solutions, as the offset values can thus be calculated 
dynamically.  

Looking ahead automation will play a growingly important role in laser optics as-
sembly. For robust automation solutions in optics assembly producing best results the 
detailed knowledge of the adhesives behaviour as well as a sophisticated compensa-
tion of the shrinkage is obligatory. Accordingly, the proceedings presented in this 
paper are essential for standardized automated assembly solutions. 
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