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Abstract. We present a formulation for a steady fluid-structure interac-
tion problem using fictitious domain technique with penalization. Numer-
ical results are presented.
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1 Setting for a Steady Fluid-Structure Interaction
Problem

Let D ⊂ R
2 be a bounded open domain with boundary ∂D. Let ΩS

0 be the unde-
formed structure domain, and suppose that its boundary admits the decompo-
sition ∂ΩS

0 = ΓD ∪ Γ0, where Γ0 is a relatively open subset of the boundary. On
ΓD we impose zero displacement for the structure. We assume that Ω

S

0 ⊂ D.
Suppose that the structure is elastic and denote by u = (u1, u2) : ΩS

0 → R
2

its displacement. A particle of the structure with initial position at the point
X will occupy the position x = ϕ (X) = X + u (X) in the deformed domain
ΩS

u = ϕ
(
ΩS

0

)
.

We assume that Ω
S

u ⊂ D and the fluid occupies ΩF
u = D\Ω

S

u . We set Γu =
ϕ (Γ0), then the boundary of the deformed structure is ∂ΩS

u = ΓD ∪ Γu and the
boundary of the fluid domain admits the decomposition ∂ΩF

u = ∂D ∪ ΓD ∪ Γu.
The fluid-structure geometrical configuration is represented in Fig. 1.

Generally, the fluid equations are described using Eulerian coordinates, while
for the structure equations, the Lagrangian coordinates are employed. The gradi-
ents with respect to the Eulerian coordinates x ∈ ΩS

u of a scalar field q : D → R

or a vector field w = (w1, w2) : D → R
2 are denoted by ∇q and ∇w. The

divergence operators with respect to the Eulerian coordinates of a vector field
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Fig. 1. Geometrical configuration.

w = (w1, w2) : D → R
2 and of a tensor σ = (σij)1≤i,j≤2 are denoted by ∇ · w

and ∇ · σ.
When the derivatives are with respect to the Lagrangian coordinates X =

ϕ−1(x) ∈ ΩS
0 , we use the notations: ∇Xu, ∇X · u, ∇X · σ.

If A is a square matrix, we denote by det A, A−1, AT its determinant, the
inverse and the transposed matrix, respectively. We write cofA = (det A)

(
A−1

)T

the co-factor matrix of A. We write A−T =
(
A−1

)T .
We denote by F (X) = I + ∇Xu (X) the gradient of the deformation and by

J (X) = det F (X) the Jacobian determinant, where I is the unit matrix.
We introduce the tensor ε (w) = 1

2

(
∇w + (∇w)T

)
and we assume that

the fluid is Newtonian and the Cauchy stress tensor is given by σF (v, p) =
−p I+2μF ε (v), where μF > 0 is the viscosity of the fluid and I is the unit matrix.
We assume that the structure verifies the linear elasticity equation, under the
assumption of small deformations. The stress tensor of the structure written in
the Lagrangian framework is σS (u) = λS (∇ · u) I+ 2μSε (u), where λS , μS > 0
are the Lamé coefficients.

The problem is to find the structure displacement u : Ω
S

0 → R
2, the fluid

velocity v : Ω
F

u → R
2 and the fluid pressure p : Ω

F

u → R such that:

− ∇X · σS (u) = fS , in ΩS
0 (1)

u = 0, on ΓD (2)
−∇ · σF (v, p) = fF , in ΩF

u (3)
∇ · v = 0, in ΩF

u (4)
v = 0, on ∂D (5)
v = 0, on ΓD (6)
v = 0, on Γu (7)

ω
(
σF (v, p)nF

) ◦ ϕ = −σS (u)nS , on Γ0 (8)

where fS : ΩS
0 → R

2 are the applied volume forces on the structure and nS is the
structure unit outward vector normal to ∂ΩS

0 . Similarly, we define fF : ΩF
u → R

2

and nF the fluid unit outward vector normal to ∂ΩS
u .
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We point out that the stress tensor of the structure is defined on the unde-
formed structure domain ΩS

0 , while the Cauchy stress tensors of the fluid is
defined in the deformed domain ΩF

u .
We have used the notation ω (X) =

∥
∥J F−TnS

∥
∥
R2 =

∥
∥cof (F)nS

∥
∥
R2 for X on

∂ΩS
0 , which is a kind of Jacobian determinant for the change of variable formula

for integral over surface.
The Eqs. (1), (2) concern the structure, while (3)–(6) concern the fluid. The

Eqs. (7), (8) represent the boundary conditions on the moving fluid-structure
interface. The fluid and the structure domains ΩF

u , ΩS
u depend on the structure

displacement u which is unknown.

2 Parametrization and Regularization
of the Characteristic Function

The regularization of the characteristic function of the deformed structure domain
is necessary in order to prove the continuity of the solution with respect to the
structure displacement, [3].

Denote by ‖·‖1,∞,Ω the usual norm of the Sobolev space W 1,∞ (Ω) and by
‖·‖m,Ω the usual norm of Hm (Ω), m ≥ 0 with the convention H0 (Ω) = L2 (Ω).

For every 0 < δ < 1, there exists 0 < ηδ < 1 such that

1 − δ ≤ det (I + ∇u) ≤ 1 + δ, a.e. x ∈ ΩS
0 (9)

for all u ∈ (
W 1,∞(ΩS

0 )
)2 that satisfy ‖u‖1,∞,ΩS

0
≤ ηδ.

We define

Bδ = {u ∈ W 1,∞(ΩS
0 )2; ||u||1,∞,ΩS

0
≤ ηδ, u = 0 on ΓD}. (10)

Let j ∈ W 1,∞(D) be a parametrization of ΩS
0 ⊂ D, i.e. :

j(x) > 0, x ∈ ΩS
0 , j(x) < 0, x ∈ D\ΩS

0 , j(x) = 0, x ∈ ∂ΩS
0 .

The parametrization is not necessarily unique.
Let u ∈ Bδ be a given structure displacement. Denote, as before, ΩS

u =
ϕ(ΩS

0 ), where ϕ(X) = X + u(X). Then ϕ : Ω
S

0 → Ω
S

u is bijective and bilip-
schitzian and

ju(y) =

⎧
⎨

⎩

j(x), y = ϕ(x) ∈ ΩS
u

0, y ∈ ∂ΩS
u

−dist(y, Ω
S

u), y /∈ Ω
S

u

is a parametrization of ΩS
u , ju ∈ W 1,∞(D).

If H is the Heaviside function H : R → {0, 1},

H(r) =
{

1, r ≥ 0
0, r < 0

then H(ju(·)) is the characteristic function of ΩS
u .
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For ε > 0, let Ωε
0 ⊂⊂ ΩS

0 . Since j : D → R is Lipschitz continuous and j > 0
in ΩS

0 , there is με > 0 such that j(x) ≥ με > 0, for all x ∈ Ωε
0. Consequently,

με ≤ min
y∈Ω

ε
u

ju(y), ∀u ∈ Bδ.

Then we take Hμε , the Yosida regularization of H

Hμε(r) =

⎧
⎨

⎩

1, r ≥ με
r

με
0 ≤ r < με

0, r < 0

and we set H̃u(x) = Hμε (ju(x)) for all x ∈ D, which is a Lipschitz regularization
of the characteristic function of ΩS

u . We have constructed H̃u : D → R, Lipschitz
on D, 0 ≤ H̃u(x) ≤ 1, for all x in D such that

H̃u(x) =
{

0, x ∈ D\ΩS
u

1, x ∈ Ωε
u

(11)

where Ωε
u ⊂⊂ ΩS

u .

3 Weak Formulation Using Fictitious Domain Technique
with Penalization

We assume that D and ΩS
0 are Lipschitz. Let us introduce the bi-linear forms

aS

(
u,wS

)
=

∫

ΩS
0

(
λS (∇ · u)

(∇ · wS
)

+ 2μSε (u) : ε
(
wS

))
dX

aF (v,w) =
∫

D

2μF ε (v) : ε (w) dx

bF (w, p) = −
∫

D

(∇ · w) p dx

and the Hilbert spaces

WS =
{
wS ∈ (

H1
(
ΩS

0

))2
; wS = 0 on ΓD

}
,

W =
(
H1

0 (D)
)2

,

Q = L2
0 (D) = {q ∈ L2 (D) ;

∫

D

q dx = 0}.

We assume that fF ∈ (
L2(D)

)2, fS ∈ (
L2(ΩS

0 )
)2.

Weak fluid formulation using fictitious domain. For a given u ∈ Bδ, we
define: fluid velocity vε ∈ W and fluid pressure pε ∈ Q, as the solution of the
following problem:

aF (vε,w) + bF (w, pε)

+
1
ε

∫

D

H̃u (vε · w + ∇vε : ∇w) dx =
∫

D

fF · wdx,∀w ∈ W (12)

bF (vε, q) = 0,∀q ∈ Q (13)
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Weak structure formulation. For given u ∈ Bδ, vε ∈ W and pε ∈ Q, we
define the structure displacement uε ∈ WS as the solution of

aS

(
uε,wS

)
=

∫

ΩS
0

fS · wS dX +
∫

ΩS
0

J
(
σF (vε, pε) ◦ ϕ

)
F−T : ∇XwS dX

+
1
ε

∫

ΩS
0

JH̃u(ϕ)
(
(vε ◦ ϕ) · wS + (∇vε ◦ ϕ)F−T : ∇XwS

)
dX

−
∫

ΩS
0

J
(
fF ◦ ϕ

) · wS dX, ∀wS ∈ WS(14)

where ϕ(X) = X + u(X), F(X) = I + ∇Xu(X), J(X) = det F(X).

Remark 1. From the structure equation −∇·σS (uε) = fS , in ΩS
0 using Green’s

formula, we obtain for all wS = 0 on ΓD that

aS

(
uε,wS

)
=

∫

ΩS
0

fS · wS dX +
∫

Γ0

σS (uε)nS · wSdS.

We can prove (see [3]) that the sum of the last three terms in (14) is equal to the
fluid forces acting on the structure which is also equals to

∫
Γ0

σS (uε)nS ·wSdS.
In fact, from (14) and the above weak formulation of the structure, we can get
that the boundary condition at the interface concerning the continuity of the
stress (8) is verified in a weak sense (see [3]). The second boundary condition at
the interface is the continuity of the velocity (7). This is obtained by using the
penalization term in the structure domain in (12).

For each i ∈ N
∗, there exists an unique eigenvalue λi > 0 and an unique

eigenfunction φi ∈ WS , solution of

aS

(
φi,wS

)
= λi

∫

ΩS
0

φi · wSdX, ∀wS ∈ WS (15)

such that ∫

ΩS
0

φi · φjdX = δij , (16)

see [8], Chap. [6]. We assume that λ1 ≤ λ2 ≤ . . . . The set {φi, i ∈ N
∗} forms an

orthonormal basis of L2(ΩS
0 ). Let m ∈ N

∗ be given. Let um
ε be the orthogonal

projection of uε on span
(
φi, i = 1, . . . , m

)
in L2(ΩS

0 ), so um
ε =

∑m
i=1 αiφ

i,
αi ∈ R.

We define

Bm
δ =

{
u ∈ (

W 1,∞(ΩS
0 )

)2
; u = 0 on ΓD, ‖u‖1,∞,ΩS

0
< ηδ,

u =
m∑

i=1

αiφ
i, αi ∈ R

}

. (17)
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We have Bm
δ ⊂ Bδ. For each u ∈ Bδ, we define the nonlinear operator

Tm
ε (u) = um

ε .

A solution of the penalized fluid-structure interaction problem will be, by
definition, a fixed point of Tm

ε in Bm
δ .

Remark 2. As in [3], we can prove the existence of a solution of the penalized
fluid-structure interaction problem Tm

ε (um
ε ) = um

ε using the Schauder fixed point
theorem. In order to obtain supplementary regularity of the Stokes equations,
a non linear penalization term 1

ε

∫
D

H̃u sgn(vε) |vε|α−1 · w dx was employed in
[3], where α > 2. In the present paper, we use a linear penalization term in (12),
but we are working only with a finite number of eigenfunctions of the structure
equations. The behavior of um

ε when ε goes to zero will be studied in [4].

4 Fixed Point Iterations

We replace H̃u in (12) and (14) by χS
u the characteristic function of ΩS

u in order
to simplify the computation. The regularization of the characteristic function
was necessary to obtain continuity of the solution with respect to the structure
displacement.

Under the assumption of small displacements for the structure, we can app-
roach the Jacobian determinant J by 1 and the gradient of the deformation F
by the unit matrix I.

Algorithm 1 by fixed point iterations
Step 1. Given the initial displacement of the structure um,0 =

∑m
i=1 α0

i φ
i,

compute the characteristic function χS
u0 , put k := 0.

Step 2. Find the velocity vk
ε ∈ (

H1(D)
)2, vk

ε = g on ∂D and the pressure
pk

ε ∈ Q by solving the fluid problem

aF

(
vk

ε ,w
)

+ bF

(
w, pk

ε

)

+
1
ε

∫

D

χS
uk

ε

(
vk

ε · w + ∇vk
ε : ∇w

)
dx =

∫

D

fF · w dx, ∀w ∈ W

bF

(
vk

ε , q
)

= 0, ∀q ∈ Q.

Step 3. Find the new displacement of the structure um,k+1
ε =

∑m
i=1 αk+1

i φi by
solving

αk+1
i λi =

∫

ΩS
0

(
fS − fF

) · φi dx

+
∫

ΩS
0

2μF ε
(
vk

ε

)
: ε

(
φi

)
dx −

∫

ΩS
0

(∇ · φi
)
pk

ε dx

+
1
ε

∫

ΩS
0

((
vk

ε ◦ ϕk
ε

) · φi +
(∇vk

ε ◦ ϕk
ε

)
: ∇φi

)
dx, i = 1, . . . ,m

where ϕk
ε(X) = X + um,k

ε (X).



134 A. Halanay and C.M. Murea

Step 4. Stopping test: if
∥
∥um,k

ε − um,k+1
ε

∥
∥
0,ΩS

0
≤ tol, then Stop.

Step 5. Compute the characteristic function χS
um,k+1

ε
, put k := k + 1 and Go

to Step 2.
A similar fixed point algorithm was used in [7].

5 Least Squares Approach

The previous algorithm converges if the operator Tm
ε is a contraction. But, the

Algorithm 1 fails for some physical parameters. For this reason, we introduce
a second algorithm which is more robust.

For α = (α1, . . . , αm) ∈ R
m, we can define β = (β1, . . . , βm) ∈ R

m by

Tm
ε

(
m∑

i=1

αiφ
i

)

=
m∑

i=1

βiφ
i.

We set the cost function J(α) = 1
2

∑m
i=1 (αi − βi)

2 and now the problem to be
solved is infα∈Rm J(α). In order to solve the optimization problem, we employ
the quasi-Newton iterative method called Broyden, Fletcher, Goldforb, Shano
(BFGS) scheme (see for example [2], Chap. [9]).

Algorithm 2 by the BFGS method
Step 0. Choose a starting point α0 ∈ R

m, an m×m symmetric positive matrix
H0. Set k = 0.
Step 1. Compute ∇J(αk).
Step 2. If

∥
∥∇J(αk)

∥
∥ < tol Stop.

Step 3. Set dk = −Hk∇J(αk).
Step 4. Determine αk+1 = αk + θkdk, θk > 0 by means of an approximate
minimization

J(αk+1) ≈ min
θ≥0

J(αk + θdk).

Step 5. Compute δk = αk+1 − αk.
Step 6. Compute ∇J(αk+1) and γk = ∇J(αk+1) − ∇J(αk).
Step 7. Compute

Hk+1 = Hk +
(

1 +
γT

k Hkγk

δT
k γk

)
δkδT

k

δT
k γk

− δkγT
k Hk + HkγkδT

k

δT
k γk

Step 8. Update k = k + 1 and go to the Step 2.

The matrices Hk approach the inverse of the Hessian of J . For the inaccurate
line search at the Step 4, the methods of Goldstein and Armijo were used. If we
denote by g : [0,∞) → R the function g(θ) = J(αk + θdk), we determine θk > 0
such that: g(0) + (1 − λ) θkg′(0) ≤ g(θk) ≤ g(0) + λθkg′(0), where λ ∈ (0, 1/2).

In this paper, we compute ∇J(α) by the Finite Differences Method ∂J
∂αk

(α) ≈
(J(α + Δαkek) − J(α)) /Δαk, where ek is the k-th vector of the canonical base
of Rm and Δαk > 0 is the grid spacing.
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Concerning the convergence rate, the fixed point algorithm is slower than
the BFGS Method. If the starting point is not sufficiently close to the solution,
the fixed point algorithm diverges. On the contrary, the BFGS Method is less
sensitive to the choice of the starting point and, in general, it is convergent to
a local minimizer from almost any starting point. This is the main advantage,
(see [6]).

6 Numerical Results. Deformation of a Tall Building
Under the Action of Wind

We have performed numerical simulations using a 2D model adapted from [1]
(see Fig. 2).

The dimensions of a rectangular tall building are: height H = 180 m, length
L = 30 m. The computational domain of the fluid D is a rectangle of height
H1 = 3H and length L1 = L + 4H, its left bottom corner is at (0, 0). We shall
allow nonhomogeneous Dirichlet data in the numerical experiments.

The distance between the left side of the fluid and the left side of the structure
is H. We denote by Σ1, Σ3 the left and the right vertical boundaries and by Σ2,
Σ4 the bottom and the top boundaries, respectively.

The mechanical properties of the building assumed to be an elastic structure
are: Young modulus ES = 2.3×105 N/m2, Poisson’s ratio νS = 0.25, the applied
volume forces on the structure fS : ΩS

0 → R
2, fS = (0, 0)N/m3. If the Young

modulus is ES = 2.3×108 N/m2 as in [1], the displacements of the structure are
very small.

The fluid is the air with: dynamic viscosity μF = 7.03 × 10−2 N · s/m2,
the applied volume forces on the fluid fS : D → R

2, fF = (0, 0) N/m3. The
inflow velocity profile is g(x1, x2) = 100

(
x2
H

)0.19 m/s. The considered boundary
conditions for the fluid are more natural from the point of view of applications
and differ slightly compared with the previous sections. We impose: vε = g on
Σ1 ∪ Σ4, vε = 0 on Σ2 and σF (v, p)nF = 0 on Σ3.

Σ 1

Σ

Σ

Σ

2

3

4

D

Γ

Γ 0
uΓ

D

Ω
F

Ω
S
u

u

Fig. 2. Geometrical configuration for the numerical results
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Fig. 3. The fixed mesh of the fluid domain (left). The finer zone [H − L,H + 2L] ×
[0, H + L] of the fluid mesh covers the structure mesh which occupies initially the
rectangle [H,H + L] × [0, H] (zoom, right). The fluid and structure meshes are not
compatible, for example, a vertex on the structure boundary is not necessary a vertex
on the fluid mesh (right).

Fig. 4. Velocity (left) and pressure (right) of the fluid around the deformed structure.

The numerical tests have been produced using the software FreeFem++ [5].
For the approximation of the fluid velocity and pressure we have employed the
triangular finite elements P1+bubble and P1 respectively on a mesh of 34871
triangles and 17550 vertices. The finite element P1 was used in order to solve the
structure problem on a mesh of 192 triangles and 125 vertices. The characteristic
function was approached by P0 finite element.

We have performed the simulation using the Algorithm 2 described in the
previous section. We have used the initial displacement α0 = 0 at the Step 0
and the tolerance tol = 0.0001 for the stopping criterion at the Step 2. The
penalization parameter is ε = 0.001 and the number of the eigenfunctions is
m = 5. The stopping criterion holds after 6 iterations of the BFGS algorithm,
the initial value of the cost function is 34.30 and the final value is 5.9 × 10−13.
The maximal structural displacement is 0.148m.

The fluid velocity is almost zero in the deformed structure domain, more
precisely ‖vε‖1,ΩS

uε
=

√∫
D

χS
uε

(vε · vε + ∇vε : ∇vε) dx = 0.00555.
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