Market-Optimized Service Specification
and Matching*

Svetlana Arifulina!, Marie Christin Platenius?, Steffen Becker?,
Christian Gerth!, Gregor Engels', and Wilhelm Schiifer?

! Department of Computer Science, University of Paderborn, Germany
2 Heinz Nixdorf Institute
University of Paderborn, Germany
{s.arifulina,m.platenius}@upb.de

Abstract. Various approaches in service engineering are based on service
markets where brokers use service matching in order to perform service
discovery. For matching, a broker translates the specifications of provi-
ders’ services and requesters’ requirements into her own specification lan-
guage, in order to check their compliance using a matcher. The broker’s
success depends on the configuration of her language and its matcher be-
cause they influence important properties like the effort for providers and
requesters to create suitable specifications as well as accuracy and runtime
of matching. However, neither existing service specification languages, nor
existing matching approaches are optimized in such way. Our approach au-
tomatically provides brokers with an optimal configuration of a language
and its matcher to improve her success in a given market with respect to
her strategy. The approach is based on formalized configuration properties
and a predefined set of configuration rules.

Keywords: Service-Oriented Computing, Service Engineering, Service
Specification, Service Matching, Service Brokers, Service Market.

1 Introduction

Many approaches in service engineering deal with emerging service markets,
where service providers provide software services for trade [10,11]. In order to
buy and use these services, service requesters have to discover services that sat-
isfy their requirements. For this reason, various approaches introduce service
brokers, who serve as intermediaries between requesters and providers [1]. Re-
questers and providers engage such brokers for a successful service discovery
because the brokers have expertise in software services for certain markets [4].
For the discovery, a broker matches the requesters’ requirements specifications
to specifications of the provided services. For this, brokers use a special software
called matcher. The goal of a matcher is based on specifications to determine

* This work was supported by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (CRC 901).

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 543-550, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

544 S. Arifulina et al.

the extent, to which a provider’s service complies with the requesters’ require-
ments. Furthermore, providers and requesters often use different specification
languages. Thus, the broker has to translate their specifications into her own
language, which is supported by a certain matcher. This translation is out of
the scope of this paper as it can be done automatically based on existing ap-
proaches [7].

In the market, different brokers compete with each other for customers [5].
Customers prefer a broker, who delivers most suitable services fast and with
the least possible effort for them. Thus, in order to succeed in this competition,
brokers can distinguish themselves by providing a fast and accurate service dis-
covery with low effort for their customers. For that, brokers have to develop their
own business strategies, which they adjust to the given market. A main part of
this strategy is to find the configuration of a language and a matcher, which is
optimal wrt. the service discovery and the customer’s effort. Depending on the
broker’s strategy and the market characteristics, different configurations can be
optimal because they are subject to multiple trade-offs. For example, a compre-
hensive specification language enables very accurate matching, but it requires
quite a lot of effort for providers and requesters to create such detailed spec-
ifications. In contrast, simpler specifications can be matched much faster, but
matching accuracy may suffer. Therefore, a broker becomes successful if she has
several languages and matchers optimized according to her different strategies in
the given market. However, there are too many different variations of languages
and matchers to explore them manually as it is a tedious and error-prone task.

In this paper, we present a fully automated approach called LM Optimizer.
LM Optimizer supports brokers to find an optimal “language-matcher config-
uration” (LM Config) in a service market. An LM Config refers to a pair of
a service specification language and a corresponding matcher, working on in-
stances of this language. Both the language and the matcher are configured in a
certain manner. Configuration possibilities are determined by five kinds of con-
figuration rules. Depending on the configuration, matching accuracy, matching
runtime, and specification effort can be improved. LM Optimizer takes as an
input market characteristics and the broker strategy described in the form of so-
called configuration properties (CPs). Based on the given CPs, a configuration
procedure applies well-defined configuration rules to configure a holistic service
specification language and its matchers (provided as a part of LM Optimizer).
As an output, the broker receives an LM Config optimal for the given CPs.

To sum up the contribution, our approach provides brokers with an optimal
configuration of a language and a matcher customized for their business strategy
and the given market. This allows brokers to obtain the best possible results in
the service discovery. Thereby, our approach contributes to the development of
successful service markets.

The paper is organized as follows: In the next section, we introduce a running
example. Section 3 presents an overview of our approach, while its details are
explained in Section 4 and 5. Section 6 briefly presents related work and Section 7

Market-Optimized Service Specification and Matching 545

draws conclusions. A longer version of this paper, including an evaluation, has
been published in form of a technical report [2].

2 Running Example

As a running example, we use a service market for University Management
(UM). In this market, customers request software services that facilitate man-
agement tasks at a university. For that, they engage a broker, as shown in Fig. 1.
In the market, three services are available: Course Manager, Exam Manager, and
Room Manager. The broker matches the given requirements to the specifications
of the provided services, in order to find the most suitable one.

Service Market University Management
Market:
Strategy: Exam Room £1
Management | O— o
: anager - Non- i
- Prefer complex Service 8 NorT standardized
K Exam $:| terminology and processes
services Broker o COUl'SEEI O M - Small market
Manager 2nascl

Fig. 1. Example service in the UM market

As shown in Fig. 1, the UM Market has certain characteristics that influence
matching. For example, university structure and its management varies signifi-
cantly from university to university. Therefore, neither terminology nor processes
are standardized for services and their specifications in this market. In addition,
the market is small because there are currently only few offers. According to
the broker’s strategy, this specific broker wants to trade only complex services
because she expects the most profit from them. As a result, the broker needs an
optimal LM Config in order to become as successful as possible.

3 Overview: LM Optimizer

We call our approach for finding an optimal LM Config LM Optimizer. LM
Optimizer is fully automated in order to solve the high effort of finding an
optimal LM Config manually, as elaborated in Section 5.2. Figure 2 provides
an overview of our approach. LM Optimizer takes configuration properties
as an input and delivers an optimal LM Config as an output. The configura-
tion properties represent characteristics of the given market and properties of
the broker strategy. As an output, we obtain an optimal LM Config consisting
of a configured specification language and a set of matchers for it. The match-
ing results delivered by the matcher (based on the service specifications in the
configured language) are optimal for the given configuration properties.

LM Optimizer consists of three parts: (1) A holistic service specification lan-
guage called SSL. (2) A set of matchers called SSL Matchers, which realize

546 S. Arifulina et al.

LM Optimizer
configuration Service Specification Configuration optimal
properties Language (SSL) - - : LM Config
Configuration Configuration
SSL Matchers Procedure Rules

Fig. 2. Overview of the Approach

matching for this language. (3) SSL and SSL matchers are configured by the
Configuration, which is responsible for obtaining an optimal LM Config for
the given configuration properties. It consists of a set of configuration rules
and a configuration procedure. The configuration procedure applies the con-
figuration rules for the given configuration properties, in order to configure the
SSL and its matchers optimally. SSL and its matching are described Section 4,
while the configuration part is explained in Section 5.

4 Service Specification Language and Matching

Our service specification language, or SSL, is a holistic service specifica-
tion language designed as a part of LM Optimizer (see Section 3). SSL consists
of eight different service specification aspects which describe different structural,
behavioral, and non-functional properties of a service. Each service specification
aspect consists of a set of language constructs which describe a certain part of
the corresponding service aspect. SSL can be used for comprehensive service
specification in many different markets. For each aspect in the SSL, there is one
matcher that is able to compare specifications of that aspect. A matcher may
implement different matching approaches. Each matcher can run as a matching
step in a so-called matching process. The technical report [2] explains in detail
the SSL, properties of matching steps, and the matching process.

Matching with the SSL delivers matching results of high accuracy as diverse
properties of services are compared. However, the performance of the match-
ing is rather low because comparing all these service properties requires much
computation time. Furthermore, writing specifications, which cover all aspects,
costs providers and requesters a lot of effort. Thus, we propose a mechanism to
configure the SSL and its matchers so that only service properties are consid-
ered, which are essential for matching in the given market according to a certain
broker strategy. Configuration possibilities for the matchers include ordering,
adaption, and weighting of matching steps. Correspondingly, accuracy, runtime,
and effort can be balanced in an optimal way for this market and the broker
strategy.

5 Configuration

In this section, we describe the configuration performed by LM Optimizer. This
includes a set of configuration rules presented in Section 5.1 and a configuration
procedure presented in Section 5.2.

Market-Optimized Service Specification and Matching 547

5.1 Configuration Rules

LM Optimizer uses configuration rules to find an optimal LM Config. Configu-
ration rules contain the knowledge of how certain configuration properties (CPs)
influence service matching with SSL and its matchers. Thus, they determine the
configuration of the SSL and its matchers for an optimal LM Config.

CPs formalize the properties of a market or the broker’s strategy. One ben-
efit of CPs is that the configuration knowledge condensed in the configuration
rules is defined over a formal notation, which can be applied to every market.
Thereby, we leverage market knowledge using a systematic, repeatable approach.
Furthermore, we allow the broker to control the choice of an optimal LM Config
by explicitly setting the relevant CPs. For these CPs, the broker describes her
target market and her strategy by assigning concrete values to them.

Configuration rules are grouped in five types: (1) Selection of specification
aspects — serves to select specification aspects needed in an optimal LM Config.
(2) Selection of language constructs — helps to select language constructs needed
within individual aspects. These two rule types are applied for configuring the
SSL. (3) Configuration of matching process — are applied to determine an optimal
order of matchers based on matcher dependencies and their runtime. (4) Config-
uration of matcher properties — sets certain matcher properties, e.g., a concrete
algorithm of a matcher suitable for the current configuration. (5) Configuration
of aggregation of matching results — puts the focus at certain matching steps,
which are weighted higher during the aggregation in the final matching result.

Table 1 shows some example configuration properties and rules. For an ex-
tended list of rules as well as a complete overview of all configuration possibilities,
refer to our technical report [2].

In order to understand the rationales of the example rules, let us consider
the CP Standardization. A CP serves as a basis for the rules and has a range
defined as a set of values, which can be assigned to that CP. The CP has the
range of true for standardized terminology and processes, terminology only
for a standardized terminology, processes only for standardized processes, and
false for no standard for both. Well-established terminology can replace behav-
ioral specifications of single operations because the semantics of the used names
is commonly understandable. If the processes are standardized, matching of the
order of operations is not needed as the behavior of equally named services is
understood in the same way. Thus, according to Rule 1, Signatures are needed
in an optimal LM Config but no Pre- and Postconditions or Protocols.

In Rule 2, the internal behavior of a service should be matched additionally to
Signatures. For that, we can use Pre- and Postconditions. Protocols have
to be considered as well, in order to match different orders of service operations
in the non-standardized processes. Rule 3 is used to select language constructs
within the Signatures aspect. Due to the lack of standardization in the market,
matching cannot rely on either operation or parameter names. Thus, they should
not be considered for matching.

Example rules configuring the matchers are Rule 4 — Rule 6. Rule 4 states to
decrease all matching thresholds for a market with a small size by 0.2 resulting in

548 S. Arifulina et al.

Table 1. Example configuration rules

Rule no. Rule type Rule definition
Rule 1 Selection of specification aspects Standardization = true — select Signatures
Rule 2 Selection of specification aspects Standardization = false — select Signatures
& Pre-/Postconditions & Protocols
Rule 3 Selection of language constructs Standardization = false — do not consider
Operation and parameter names in Signatures
Rule 4 Configuration of matching process Market size = small — configure:
decrease all thresholds by 0.2
Rule 5 Configuration of matcher properties Standardization = true — use
string similarity matching
Rule 6 Configuration of aggregation of Privacy important = true — configure
matching results privacy weight: multiply with 2

more services returned. Since in a small market, the probability of a perfect match
is rather low, we can receive more matching results by decreasing the thresholds.
In the matching process, matchers with a higher threshold are moved to the be-
ginning because after their execution fewer services have to be matched. Thus,
this decreases the runtime of the matching process. Rule 5 sets the matching al-
gorithm to string similarity matching if the market has standardized terminology
and processes. This allows sparing the runtime because names in the standardized
market are reliable for matching. Rule 6 configures the aggregation of matching
results by increasing the weight of the privacy matching result by the multiplicity
of 2 if privacy is important for the broker in this market.

We rely on the knowledge of a broker to assign reasonable range values to
her CPs. As future work, we plan to introduce measurable metrics for market
properties, which will allow setting the range values at least semi-automatically.

5.2 Configuration Procedure

In this section, we present the part of LM Optimizer responsible for the config-
uration of the SSL and its matchers. It applies the configuration rules to a set
of CPs assigned with concrete values given as input by the broker.

The configuration procedure configures the SSL by building a view on a sub-
set of its specification aspects. Each aspect is also reduced to a subset of its
language constructs. Thus, the whole aspects like Signatures or their language
constructs, e.g., parameter names, can be omitted. Matching of an SSL con-
figuration is limited to aspects and constructs defined in this configuration. We
show three different example configurations in the technical report [2].

There are two phases in the configuration procedure (their order is important
as the configuration of matching steps depends on the preceding selection):

1. Language Configuration: In this phase, the necessary service aspects
are selected by applying the rule types Selection of specification aspects and
Selection of language constructs described in Section 5.1.

2. Matcher Configuration: In this phase, for each selected language aspect,
a corresponding matcher is added as a matching step in the matching process.
The matching process is configured by ordering the matching steps. Then, the
matching algorithms and the aggregation of results are configured.

Market-Optimized Service Specification and Matching 549

LM Optimizer is a fully automated approach as a manual approach cannot
cope with the high theoretical complexity of the configuration procedure. SSL
consists of 8 aspects, where each one has 1 to 10 language constructs to con-
figure with the mean number of 4.4 language constructs per aspect. The mean
number of configurations per service aspect is 148. Including the possibility to
arbitraryly combine these configurations, the number of all possible SSL config-
urations becomes 3.4-10'%. Then, we compute the number of possible matching
configurations considering that thresholds and weights can be changed in a cer-
tain rate within a given interval. The number of configurations is exponential
in this case. Currently, LM Optimizer supports 128 different language configu-
rations and 256 different matching configurations enabling the choice between
1.6-10* LM Configs. These numbers are based on the extended list of rules from
our technical report [2] also containing an evaluation of our approach.

6 Related Work

In the following, we briefly discuss the approaches mostly related to our work.
We also explain why they do not solve the problem we stated in this paper.

Two comprehensive service specification approaches established in academia
are the Unified Specification of Components (UnSCoM) framework [9] and the
Unified Service Description Language (USDL) [3]. These two aim at comprehen-
sive description and matching of a variety of existing service aspects and language
constructs for them. In comparison to our approach, the authors of these two
approaches do not provide any configuration possibilities either of the languages
or of the corresponding matchers. Furthermore, neither the languages nor the
matchers are optimized for any market characteristics or broker strategies.

Di Ruscio et al. propose a framework called BYADL to create a customized
architectural description language (ADL) by tailoring it, e.g., for domain specifics
or operations like analysis or visualization [6]. The authors tailor an ADL by
extending it with another language. In comparison, we configure the SSL by
view building. In addition, we also configure the operation of matching.

Furthermore, there are some configurable service matchers [12]. However, their
configuration possibilities are limited to different signature matching strategies
and not selected automatically. Similarly, there are matchers that configure their
aggregation strategies (but no other features) automatically [8]. Furthermore,
their configuration only influences the matcher but never the specification lan-
guage, and thereby the considered language constructs, as in our approach.

7 Conclusions

In this paper, we presented a fully automated approach LM Optimizer that sup-
ports service brokers to create a language-matcher configuration that is optimal
for a given service market as well as a broker’s strategy. Using this configuration,
a broker can distinguish herself from other brokers competing for customers of
their service discovery commissions. Thereby, LM Optimizer supports brokers

550 S. Arifulina et al.

to be most successful. Three different case studies showed that LM Optimizer
returned configurations with a high quality.

In the future, we want to extend our approach by extending the configuration
rules and the configuration procedure in order to integrate more rules that are
sophisticated. Furthermore, we want to apply our approach to other activities of
a service broker in addition to service matching. For example, we expect tools
for service certification or quality prediction to be configurable in similar ways.

Another field of future work is to adapt a broker’s language matcher config-
uration already in use. Since service markets are changing rapidly [10], a broker
needs to adapt the used matching approaches continuously. For that, the broker
can use our approach to configure the most suitable language and the matcher for
the current changed marker characteristics or the changed strategy. This allows
the broker to remain competitive by being flexible to its changing characteristics.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications, 1st edn. Springer (2010)

2. Arifulina, S., Platenius, M.C., Gerth, C., Becker, S., Engels, G., Schifer, W.: Con-
figuration of Specification Language and Matching for Services in On-The-Fly
Computing. Tech. Rep. tr-ri-14-342, Heinz Nixdorf Institute (2014)

3. Barros, A., Oberle, D. (eds.): Handbook of Service Description: USDL and Its
Methods. Springer, New York (2012)

4. Benatallah, B., Hacid, M.S., Leger, A., Rey, C., Toumani, F.: On automating web
services discovery. The VLDB Journal 14(1), 84-96 (2005)

5. Caillaud, B., Jullien, B.: Chicken & Egg: Competition among Intermediation
Service Providers. The RAND Journal of Economics 34(2), 309-328 (2003),
http://www.jstor.org/stable/1593720

6. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Devel-
oping next generation adls through mde techniques. In: Proceedings of the ICSE
2010, USA, vol. 1, pp. 85-94 (2010)

7. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
Transformation By-Example: A Survey of the First Wave. In: Diisterhoft, A., Klet-
tke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Founda-
tions. LNCS, vol. 7260, pp. 197-215. Springer, Heidelberg (2012)

8. Klusch, M., Kapahnke, P.: The iSeM Matchmaker: A Flexible Approach for Adap-
tive Hybrid Semantic Service Selection. Web Semantics: Science, Services and
Agents on the World Wide Web 15(3) (2012)

9. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Soft-
ware Components. In: Weske, M., Liggesmeyer, P. (eds.) NODe 2004. LNCS,
vol. 3263, pp. 169-184. Springer, Heidelberg (2004)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: A Research Roadmap. International Journal of Cooperative Information
Systems 17(2), 223-255 (2008)

11. Schlauderer, S., Overhage, S.: How perfect are markets for software services? an
economic perspective on market deficiencies and desirable market features. In:
Tuunainen, V.K., Rossi, M., Nandhakumar, J. (eds.) ECIS (2011)

12. Wei, D., Wang, T., Wang, J., Bernstein, A.: Sawsdl-imatcher: A customizable and
effective semantic web service matchmaker. Web Semantics: Science, Services and
Agents on the World Wide Web 9(4), 402-417 (2011)

http://www.jstor.org/stable/1593720

	Market-Optimized Service Specification
and Matching

	1 Introduction
	2 Running Example
	3 Overview: LM Optimizer
	4 Service Specification Language and Matching
	5 Configuration
	5.1 Configuration Rules
	5.2 Configuration Procedure

	6 Related Work
	7 Conclusions
	References

