Estimating Functional Reusability of Services

Felix Mohr

Department of Computer Science, University of Paderborn, Germany
felix.mohr@uni-paderborn.de

Abstract. Services are self-contained software components that can be
used platform independent and that aim at maximizing software reuse. A
basic concern in service oriented architectures is to measure the reusabil-
ity of services. One of the most important qualities is the functional
reusability, which indicates how relevant the task is that a service solves.
Current metrics for functional reusability of software, however, either
require source code analysis or have very little explanatory power. This
paper gives a formally described vision statement for the estimation of
functional reusability of services and sketches an exemplary reusability
metric that is based on the service descriptions.

1 Introduction

During the last decade, the focus in software development has moved towards
the service paradigm. Services are self contained software components that can
be used platform independent and that aim at maximizing software reuse.

A basic concern in service oriented architectures is to measure the functional
reusability of the services in general or for specific tasks. Such a metric would
support the analysis of relations between services, allow to estimate the potential
impact of new services, and indicate the suitability of automatization techniques
like composition; Fig. 1 shows this information gain. Usually, we have no knowl-
edge about how services in a network are related; they are merely members of
a homogeneous set (Fig. 1la). Analyzing their specifications helps us recognize
relations between them and identify reuse potential (Fig. 1b).

Surprisingly, there is no metric of which we could say that it is even close to be
satisfactorial in regards of measuring reusability. The main problem is that most
reusability metrics are based on code analysis [7], e.g. the Halstead metric and
others. However, the idea of services is precisely that the implementation needs
not to be available. Reusability metrics for black box components exist [4,9,10]
but are notoriously inexpressive; that is, they do effectively not say anything
about functional reusability even though that was the design goal.

This paper gives a vision statement for the service reusability question and
hints to possible solutions for the problem. Intuitively, the reusability of a service
s is based on the number of problems for which there is a solution that contains
s. Instead of simply using this number directly as a metric for reuse, it should be
somehow weighted, since the complexity and likelihood of occurrence of prob-
lems strongly varies. Unfortunately, it seems to be very hard, or even impossible,

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 411-418, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

412 F. Mohr

(a) No knowledge about services relations (b) Insights in how service are related

Fig.1. A metric for reusability helps us learn more about how services are related

to effectively compute such a metric in practice. As a consequence, I argue that
the reusability must be estimated by another metric that is reasonably related
to reusability. I give a sketch of an exemplary metric that measures the contri-
bution of services in a service set on the basis of their description. Note that I
use the terms service and component synonymously in this paper, because the
distinguishing feature (way of execution) is irrelevant for us.

Summarizing, this paper contributes to the question of how reusability of
services can be measured. I present a formal problem description for reusability
estimation and give an example for a reusability metric.

The rest of this paper is organized as follows. Section 2 gives a deeper back-
ground for the motivation of this paper. Section 3 introduces the formal problem
definition, and Section 4 sketches one approach to tackle the defined problem.

2 Background and Motivation

First of all, this paper is not about reuse but about reusability; more specifically,
a metric for functional reusability. Reuse means that there is a software artifact
s1 that actually is employing another existing software artifact so. Reusability,
in contrast, talks about the potential that, for a software artifact s, there is a
set S of yet nonexistent software artifacts that would use s. Hence, reusability
is dedicated to what could be done and not to what is done with a software
component. Much has been said about principles of software reuse and reusabil-
ity [2,3,6,8], but that debate is mostly about how to increase reusability through
sophisticated design. In contrast, I assume a certain service architecture as given
and (try to) estimate the reusability under these conditions.

While metrics for software reuse have been around for decades, most of them
are unsuitable for services [7] and do not contribute to the reusability question.

In contrast to classical reuse metrics, metrics that estimate the functional
reusability of black box components are alarmingly poorly studied. The only two
metrics I am aware of are Washisaki [10] and Rotaru [9]. However, none of the
two has an acceptable expressiveness power, since Washizaki only considers the
existence of meta information and Rotaru only counts the number of parameters
in order to express reusability. A comprehensive and exhaustive survey of these
and other works is found in [1].

Estimating Functional Reusability of Services 413

An important property of development environments that aim at increasing
reuse is that software components are described semantically. We know that two
key activities in component based software development are that components
are (i) stored for later reuse and (ii) identified as candidates for a solution of
a current task [2,3]. The second step (look-up problem) requires a sufficiently
abstract description of what a component does in order to avoid or reduce reading
natural language documentation or even source code analysis. The latter may
work in very small environments but not in large organizations with hundreds of
components. Hence, reuse, which is the main goal of services, requires a formal
specification that reasonably abbreviates their functional behavior.

Although software is currently rarely semantically described, current trends
in software development suggest that this may change in near future. This can
be mostly observed in a shift in the programming style that is less technical
than before and that tends towards workflows [5]. Business workflow oriented
software is much more suitable for business domain specific descriptions than
former, rather technical component models.

Assuming that this trend continues, this paper presents one way to estimate
software reusability by analyzing semantic descriptions.

3 Problem Description

This section describes the formal frame of this paper. First, I describe my idea of
an ideal reusability metric in terms of composition problems to whose solution
a service may contribute. Second, I explain the obstacles that occur with that
metric and the necessity for alternatives. Third, I introduce the formal service
model that underlies the rest of the paper.

3.1 An Ideal Metric for Functional Reusability

An ideal metric for the functional reusability of a service would be based on
the number of composition problems to whose solution it contributes. This is
because a service is (re)used if and only if there is a program that invokes it. In
the service world, we would call such a program a service composition. A service
composition, in turn, is only created if there is a problem that it solves. If P
is the set of all imaginable (composition) problems, let Ps C P be the set of
composition problems p € P for which there is a service composition that solves
p and that invokes s.

Instead of just counting the number of problems, consider the probability that
p € Ps occurs at all, which yields the following ideal reusability metric:

r¥(s) = Z probabilityOfOccurrence(p)
PEPs

This metric only captures the functional reusability and ignores other factors
that may affect the practical suitability of solutions. In fact, non-functional as-
pects may cause that a service s is never part of a chosen solution for problem
p. However, we shall focus on the purely functional aspect here.

414 F. Mohr

The problem set P is usually infinite, but we may expect the metric to con-
verge towards a finite number for every service s. Of course, divergence is an
issue, because there will be probably infinitely many ” potential” problems where
a service s could be part of a solution. However, I think that the number of ac-
tually occurring problems to whose solution a service s may contribute is quite
limited. The probability of occurrence of other problems to whose solution s may
contribute, hence, is either zero or converges to zero very fast. Concludingly, we
may assume that r*(s) takes a fix value in R for every service s.

The reusability of a reference service may normalize the metric. Using service
s* as the reference service, the normalized reusability of a service s is:

I 1i(s) = .

This allows us to say that a service is, for example, twice as reusable as the
reference service; this makes the metric more intuitive.

3.2 The Need for Estimation

It is not possible to compute the metric r* in practice. Computing Py requires
to actually solve all composition problems in P under the condition that s is
part of the solution. Even if P is finite, it is probably very large and cannot
efficiently be traversed, not to mention solving a complex composition task in
every iteration. Apart from that, the probability of occurrence is usually not
known and estimating it can be cumbersome.

Consequently, the task is to find a function that estimates the normalized
ideal reusability. Formally, for a set S of services, the task is to find an efficiently
computable function r : § — R, that comes reasonably close to ||r*||.

Due to the lack of benchmark possibilities, I argue that it would not be ap-
propriate for this task to speak of approximation. Approximation usually is
associated with an approximation error € € R that describes the maximum dis-
crepancy between the approximation and the optimum. For example, we would
like to have (r(s) —r*(s))®> < e for all s € S. It is anything but clear how this
kind of assertions about ||r*|| can be achieved, so, strictly spoken, we cannot
claim to approximate reusability.

However, it is absolutely possible to define other metrics that, due to some
semantic link to reusability, are indicators for reliability. As a consequence, ap-
proaches for estimating reusability must qualitatively explain why it is reasonable
to believe that they are a reliable indicator of reusability.

3.3 The Formal Framework for the Service Environment

To obtain commonsense about the nature of problems in P, we shall not rely
on natural language descriptions but on formal descriptions. In this paper, I
assume that services are described through inputs, outputs, preconditions, and
effects (IOPE), and where problems are characterized by an initial state and a

Estimating Functional Reusability of Services 415

goal state that must be reached from the initial state through the application of
services.

Definition 1. A service description is a tuple (I, O, P, E). I and O are dis-
joint sets of input and output variables. P and E describe the precondition and
effect of the service in first-order logic formulas without quantifiers or functions.
Variables in P must be in I; variables in E must be in I U O.

As an example, consider a service getAvailability that determines the avail-
ability of a book. The service has one input b for the ISBN of a book and one
output a for the availability info; we have I={b} and O={a}. The precondition
is P = Book(b) and requires that the object passed to the input b is known
to have the type Book. The effect is E = HasAvInfo(b, a) and assures that the
object where the output a is stored contains the info whether b is available.

I acknowledge that this formalization may not always be adequate, but it
is the by far most established service description paradigm besides finite state
machines (FSM), and even FSM service representations can often be efficiently
transformed into an IOPE representation. The introduction of a(n even) more
sophisticated formalism is beyond the scope.

Definition 2. A composition problem is a tuple (S, pre, post) where pre is a
precondition that must be transformed into the postcondition post by arranging
services from a set S described as in Def. 1. pre and post are first-order logic
formulas without quantifiers and functions.

For simplicity, I leave a knowledge base out of the model. A knowledge base
is usually used to express ontological information and logical implications in the
model but is not needed to explain the idea of this paper.

4 Estimating Reusability Using Semantic Descriptions

This section gives a brief sketch about one possibility to use semantic service
descriptions to estimate their reusability. A service s is most likely to be reused
if there are many other services that can do something with the effect of s; then
s contributes to those services. This section defines the relevance of a service
based on its contribution to other services and the relevance of those services in
turn. The higher the relevance of a service, the higher the number of problems
that can be solved with it; this relevance is a good estimation for reusability.

4.1 The Service Contribution Graph

We can capture the direct relation of two services in a service contribution graph.
Given a set of services S with descriptions as in Def. 1, a service contribution
graph is a graph (V, E) with exactly one node in V for every service in S and
with an edge (s;,s;) € E if and only if at least one literal in the effect of s;
and the preconditions s; can be unified. Intuitively, there is a link between from

416 F. Mohr

Fig. 2. An exemplary contribution graph for 6 services

s; and s; if the effect of s; has something to do with the precondition of s;. A
service contribution graph is directed and usually cyclic.

The service contribution graph exploits the idea that a service composition
contains a service only if it is necessary for a (possibly indirect) successor service
or for the desired result of the entire composition. An edge between u and v
indicates a chance that there may be compositions that invoke v after u. Thereby,
the service contribution graph gives a rough insight into how control flows of
service compositions in this environment could look like.

To give consideration to the fact that contributions of services to the precon-
ditions of other services usually vary, the edges in the service contribution graph
should carry a weight. A weight function w : E — [0, 1] indicates for an edge
(u,v) to which degree service u contributes to v. That is, to which extent the
effects of u cover the preconditions of v. An example is depicted in Fig. 2.

A good implementation for the weight function is a modified leveled matching.
Usually, a leveled matching algorithm determines to which degree the precon-
ditions of services s; and sy match and to which degree the effects of s; and
so match. In this case, however, we want to know to which degree the effect of
s1 matches the precondition of so; the precondition of s; and the effect of s
are not of interest here. If preconditions and effects are conjunctions, a basic
matcher could return the percentage of literals in the precondition of so that
are contained in the effects of s1. For other precondition structures, the matcher
would need more sophisticated techniques.

The matcher should take into account the explanatory power of the different
description elements. For example, a data type information is much less signifi-
cant for the service description than an ontological concept or even a relation.

4.2 Basic Service Relevance

A basic reusability estimation could measure the recursive contribution of a
service to the preconditions of other services. For example, if a service s; only
contributes to a service so that does not contribute to any other service, s; is
probably less reusable than a service s3 that contributes to a service s4 that
contributes to five services, each of which contributing to another five services.

Since the contribution graph is usually cyclic, we must be cautious to avoid
an infinite recursion for the relevance metric. We can reasonably avoid infinite

Estimating Functional Reusability of Services 417

recursion by assuming that no service is called twice in one composition. A good
argument to do this is that we want to measure the relevance of a service by
its benefits to other services. Otherwise the relevance of a service value would
be increased only due to the possibility to invoke itself, which does not make
sense. There will be compositions that are excluded by this assumption, but this
should not be the usual case. In addition and in order to reduce computational
efforts, we reduce a bound k € N for the considered recursion depth.

The formal basis for the metric is a composition tree. Every node in that tree
corresponds to a sequence of services, and the root corresponds to the sequence
of length 1 that is just the service s itself. There is an edge from node (s1, ..., s,)
to node (s1,...,8n41) if (Sn,Snt+1) is an edge in the contribution graph and if
Sn+1 is not already in {s1,...,8,}. The relevance of the service s sums up a
default value of each node (here 1), weighted with the multiplied path weights
from that node to the root.

The basic relevance of a service s for depth k is then:

1+ > w(s,s) r(s,k—1)ifk>0
r(s’ k) = s’€c(s)
1 else

where ¢(s) are the child nodes of service s in the composition tree’ and w(s, s)
is the weight of the edge in the contribution graph. Since the maximal recur-
sion depth k will usually be a parameter that is chosen once and then remains
unchanged, let the relevance value of a service be denoted as ri(s) := r(s, k).

4.3 Discussion

The above metric is obviously very rudimentary, but it gives a clue of what a
reusability estimating metric may look like. For example, the constant factor
of a node could be substituted by an expert’s estimation. Also, it would be
a good idea to not only consider the outgoing edges of a service, but also its
incoming edges in the contribution graph. However, compared to the absence of
information as depicted on the left of Fig. 1, this metric already gives very useful
insights. We can argue even for this simple measure that it is an estimator for
reusability: The more compositions that start with a service are imaginable, the
more problems will exist for which that service may be part of a solution.

Note that the alleged redundancy of execution paths that are merely per-
mutations of each other is intended. For example, a service sy may contribute
to both s; and so while in turn s; contributes to so and vice versa. Thereby,
the relevance of sy is increased twice, once by s1,s2 and once for ss,s;. This
may seem unreasonable at first, but it is actually quite what we want. The edge
(s1,82) only has a high weight if s; contributes for so and vice versa. If one of
the paths does not make sense, it will have a low weight anyway and will only
marginally affect the relevance value of sq.

1 More precisely, the last service in the child, since nodes are service sequences.

418 F. Mohr

5 Conclusion

This paper gives a vision statement for metrics of functional reusability of ser-
vices and sketches service relevance as one possible such metric. It defines an ideal
reusability metric and explains why such a metric is usually not computable. The
sketched metric tackles this problem by estimating service reusability through
service relevance, a recursive metric based on the contribution of services to the
preconditions of other services in the network. Its explanatory power is limited
by the quality of the service descriptions.

This paper is merely a first step into the direction of analyzing functional reusabil-
ity, so there is great potential for future work; I just mention some options. First,
it would be interesting to estimate the reusability of services in a completely dif-
ferent way; for example, we could use a simplification of the service model that
makes the number of composition problems tractable. Second, the presented
metric only works with forward edges in the contribution graph, yet we could
take into account the provision of required service inputs. Third, the weights in
the composition tree could be discounted depending on the depth in order to
consider possible noise between the model and the real services that may affect
composition. Fourth, the proposed metric could be integrated with a learning
approach that collects information about how services are used together.

Acknowledgments. This work was partially supported by the German Re-
search Foundation (DFG) within the Collaborative Research Center ”On-The-
Fly Computing” (SFB 901).

References

1. Fazal-e Amin, A., Oxley, A.: A review of software component reusability assessment
approaches. Research Journal of Information Technology 3(1), 1-11 (2011)

2. Caldiera, G., Basili, V.R.: Identifying and qualifying reusable software components.
Computer 24(2), 61-70 (1991)

3. Cheesman, J., Daniels, J.: UML components. Addison-Wesley, Reading (2001)

4. Choi, S'W., Kim, S.D.: A quality model for evaluating reusability of services in
soa. In: Proceedings of the 10th IEEE Conference on E-Commerce Technology, pp.
293-298. IEEE (2008)

5. Frakes, W.: Software reuse research: status and future. IEEE Transactions on Soft-
ware Engineering 31(7), 529-536 (2005)

6. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Computing Sur-
veys (CSUR) 28(2), 415-435 (1996)

7. Gill, N.S.; Grover, P.: Component-based measurement: few useful guidelines. ACM
SIGSOFT Software Engineering Notes 28(6), 4 (2003)

8. Krueger, C.W.: Software reuse. ACM Computing Surveys 24(2), 131-183 (1992)

9. Rotaru, O.P., Dobre, M.: Reusability metrics for software components. In: Pro-
ceedings of the 3rd ACS/IEEE International Conference on Computer Systems
and Applications, p. 24. IEEE (2005)

10. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A metrics suite for measuring
reusability of software components. In: Proceedings of 5th Workshop on Enterprise
Networking and Computing in Healthcare Industry, pp. 211-223. IEEE (2003)

	Estimating Functional Reusability of Services
	1 Introduction
	2 Background and Motivation
	3 Problem Description
	3.1 An Ideal Metric for Functional Reusability
	3.2 The Need for Estimation
	3.3 The Formal Framework for the Service Environment

	4 Estimating Reusability Using Semantic Descriptions
	4.1 The Service Contribution Graph
	4.2 Basic Service Relevance
	4.3 Discussion

	5 Conclusion
	References

