
Fault-Tolerant ANTS

Tobias Langner, Jara Uitto, David Stolz, and Roger Wattenhofer

ETH Zürich, Switzerland

Abstract. In this paper, we study a variant of the Ants Nearby Treasure
Search problem, where n mobile agents, controlled by finite automata,
search collaboratively for a treasure hidden by an adversary. In our ver-
sion of the model, the agents may fail at any time during the execution.
We provide a distributed protocol that enables the agents to detect fail-
ures and recover from them, thereby providing robustness to the proto-
col. More precisely, we provide a protocol that allows the agents to locate
the treasure in time O(D + D2/n + Df) where D is the distance to the
treasure and f ∈ O(n) is the maximum number of failures.

1 Introduction

Ant colonies are a prime example of biological systems that are fault-tolerant.
Removing some or even a large fraction of ants should not prevent the colony
from functioning properly. In this paper we study the so-called Ants Nearby
Treasure Search (ANTS) problem, a natural benchmark for ant-based distributed
algorithms where n mobile agents try to efficiently find a food source at distance
D from the nest. We present a novel distributed algorithm that can tolerate (up
to) a constant fraction of ants being killed in the process.

In distributed computing, most algorithms can survive f crash faults by repli-
cation. Following this path, each ant can be made fault-tolerant by using f + 1
ants with identical behavior, making sure that at least one ant survives an or-
chestrated attack. However, since we allow f ∈ O(n) crash failures, we would
be left with merely a constant number of fault-tolerant “super-ants”, and a con-
stant number of ants cannot find the food efficiently. As such we have to explore
a smarter replication technique, where faulty ants have to be discovered and
replaced in a coordinated manner.

In more detail, we study a variation of the ANTS problem, where the n
agents are controlled by randomized finite state machines and are allowed to
communicate by constant-sized messages with agents that share the same cell.
The goal is to locate an adversarially hidden treasure. There is a simple lower
bound of Ω(D + D2/n) to locate the treasure [10]. This bound is based on the
observation that at least one agent has to move to distance D, which takes time
Ω(D), and that there are Ω(D2) cells with distance at most D while a single
agent can visit at most one new cell per round, which yields the Ω(D2/n) term.
In previous work, it was shown that the treasure can be located with randomized
finite-state machines in optimal time in an asynchronous environment [8]. That
approach, however, is rather fragile and requires the agents to be absolutely

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 31–45, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

32 T. Langner et al.

reliable. The failure of just a single agent can already result in not finding the
treasure.

In the model of this paper, f ∈ O(n) of the agents can fail at any point in
time. However, despite the presence of failures, we show that the treasure can
be located efficiently, i.e., we find the treasure in time O(D + D2/n + Df). In
essence, we implement an error checking mechanism that detects if an agent
died. As we keep track of the progress of the search by “remembering” which
cells have been searched so far, we can then restart the search while avoiding to
search cells that have already been searched.

1.1 Related Work

Searching the plane with n agents was introduced by Feinerman et al. In the
original ANTS problem, the agents only communicate in the origin and thus
search independently for a treasure [9, 10]. Moreover, the agents are controlled
by randomized Turing machines and assuming knowledge of a constant approx-
imation of n, the agents are able to locate the treasure in time O(D + D2/n).
This model was studied further by Lenzen et al., who investigated the effects
of bounding the memory as well as the range of available probabilities of the
agents [13]. Protocols in their models are robust by definition as the agents do
not communicate outside of origin and thus the failure of an agent cannot affect
any other agent.

The main differences between our model and theirs lie in the communication
and computation capabilities of the agents. First, we use a significantly weaker
computation model: our agents only use a constant amount of memory and are
governed by finite automata. Second, our agents are allowed to communicate
with each other during the execution. However, the communication is limited to
constant sized-messages and only allowed between agents that share the same
cell at the same time. The communication and computation model was originally
introduced in a graph setting by Emek et al. [8].

Searching the plane is a special case of graph exploration. In the general
version of the problem, the task is to visit all the nodes/edges by moving along
the edges [1, 6, 7, 12, 16, 17]. In the finite case, it is known that a random walk
visits all nodes in expected polynomial time [2]. In the infinite case, a random
walk can take infinite time in expectation to reach a designated node.

Another closely related problem is the classic cow-path problem, where the
task is to find food on a line. It is known that there is a deterministic algorithm
with a constant competitive ratio. Furthermore, the spiral search is an optimal
algorithm in the 2-dimensional variant [5]. The problem has also been studied
in a multi-agent setting [14].

Searching graphs with finite state machines was studied earlier by Fraigniaud
et al. [11]. Other work considering distributed computing by finite automata
includes for example population protocols [3, 4].

Fault-Tolerant ANTS 33

1.2 Model

We investigate a variation of the Ants Nearby Treasure Search (ANTS) problem,
where a set of mobile agents explore the infinite integer grid in order to locate
a treasure positioned by an adversary. All agents are operated by randomized
finite automata with a constant number of states and can communicate with each
other through constant-size messages when they are located in the same cell. In
contrast to [8] where the agents do not have to deal with robustness issues, our
agents can fail at any time during the execution, thus making it much harder
to develop correct algorithms for the ANTS problem. In all other aspects, our
model is identical to the one of [8].

Consider a set A of n mobile agents that explore Z
2. All agents start the

execution in a dedicated grid cell – the origin (say, the cell with coordinates
(0, 0) ∈ Z

2). The agents are able to determine whether they are located at the
origin or not. The grid cells with either x or y-coordinate being 0 are denoted
as north/east/south/west-axis, depending on the respective location.

We measure the distance dist(c, c′) between two grid cells c = (x, y) and
c′ = (x′, y′) in Z

2 with respect to the �1 norm (a.k.a. Manhattan distance),
i.e., |x − x′| + |y − y′|. Two cells are called neighbors or adjacent if the distance
between them is 1. In each execution step, an agent located in cell (x, y) ∈ Z

2

can move to one of the four neighboring cells (x, y + 1), (x, y − 1), (x + 1, y), (x −
1, y), or stay still. The four position transitions are denoted by the respective
cardinal directions N, E, S, W , and the latter (stationary) position transition is
denoted by P (“stay put”). We point out that the agents have a common sense
of orientation, i.e., the cardinal directions are aligned with the corresponding
grid axes for every agent in every cell.

The agents operate in a synchronous environment, meaning that the execution
of all agents progresses in discrete rounds indexed by the non-negative integers.
The runtime of a protocol is measured in the number of rounds that it takes the
protocol to achieve its goal/terminate. We fix the duration of one round to be
one time unit and thus can take the liberty to use the terms round and time
interchangeably.

In comparison to the original ANTS problem, the communication and com-
putational capabilities of our agents are more limited. An agent can only com-
municate with agents that are positioned in the same cell at the same time. This
communication is restricted though: agent a positioned in cell c only senses for
each state q whether there exists at least one agent a′ �= a in cell c whose current
state is q.

All agents are controlled by the same finite automaton. Formally, the agent’s
protocol P is specified by the 3-tuple P = 〈Q, s0, δ〉, where Q is the finite set
of states, s0 ∈ Q is the initial state, and δ : Q × 2Q → 2Q×{N,S,E,W,P } is the
transition function. At the beginning of the execution, each agent starts at the
origin in the initial state s0. Suppose that in round i, agent a is in state q ∈ Q
and positioned in cell c ∈ Z

2. Then, the state q′ ∈ Q of agent a in round i + 1
and the corresponding movement τ ∈ {N, S, E, W, P } are dictated based on
the transition function δ by picking the tuple (q′, τ) uniformly at random from

34 T. Langner et al.

δ(q, Qa), where Qa ⊆ Q contains state p ∈ Q if and only if there exists at least
one agent a′ �= a such that a′ is in state p and positioned in cell c in round i.
We assume that the application of the transition function and the corresponding
movement occur instantaneously and simultaneously for all agents at the end of
the round i.

Adversarial Failures. In contrast to previous work, the agents in our model are
not immune to foreign influences and thus can fail at any time during the exe-
cution of their protocol. We consider an adaptive off-line adversary (sometimes
also called omniscient adversary) that has access to all the parameters of the
agents’ protocol as well as to their random bits. Formally, the adversary speci-
fies for each agent a the failure time tf (a) as the round at the end of which agent
a fails. If the adversary does not fail a certain agent a at all, we set tf (a) = ∞.
If an agent a fails in round r = tf (a), then it is removed from the grid as well as
the set A; the agent cannot be observed anymore by other agents in any round
r′ > r (failed agents do not leave a corpse behind).

Problem Statement. The goal of ANTS problem is to locate an adversarially
hidden treasure, i.e., to bring at least one agent to the cell in which the treasure
is positioned. The distance of the treasure from the origin is denoted by D while
the maximum number of failures that the adversary may cause is denoted by f .
We say that a protocol is g(n)-robust if it locates the treasure w.h.p. for some
f ∈ Θ(g(n)). A protocol that finds the treasure if (up to) a constant fraction
of the agents fail is hence n-robust. The goal of this paper is to show that such
an n-robust protocol indeed does exist. Therefore, we consider a scenario where
f = α · n for a constant α that will be determined later. The performance of
a protocol is measured in terms of its runtime, which corresponds to the index
of the round in which the treasure is found. Although we express the runtime
complexity in terms of the parameters D, n, and f , we point out that neither of
these parameters are known to the agents (who in general could not even store
them in their constant memory).

2 An n-Robust Protocol

The goal of this section is to develop an n-robust protocol that solves the ANTS
problem. In other words, we want to find a protocol that finds the treasure even if
a constant fraction of the agents fails. During the remainder of the paper, we use
a set of definitions which we shall introduce here. We refer to all cells in distance
� from the origin as level �. We say that a cell c is explored in round r if it is
visited by any agent in round r for the first time. Furthermore, a configuration
of the agents is a function C : A → Z

2 that maps each agent a ∈ A to a certain
cell c ∈ Z

2.

Giants. A key concept that will be used throughout this paper is the giant. A
giant is a cluster of k agents that all perform exactly the same operations and

Fault-Tolerant ANTS 35

always stay together during the execution of a protocol. If k > f , where we
recall that f is the maximum number of agents that can fail, we can consider
the cluster as a single (giant) agent that cannot be failed by the adversary.

As we design an n-robust protocol, all our giants will consist of α · n agents
for a constant 0 < α < 1. Observe that there can only be a constant number of
giants. Since our protocol only requires a constant amount of giants, we proceed
to explain how a protocol can create constantly many giants. Consider a proto-
col that requires g giants, each of size Θ(n), plus Θ(n) normal agents. At the
beginning of the execution, each agent uniformly at random transitions to one of
g + 2 distinct states, one state for each of the g giants and two additional states
for the normal agents. By a simple Chernoff bound argument, it follows that the
number of agents per giant is at least n/(g +3) and the number of normal agents
is at least 2n/(g + 3) w.h.p.1 Hence, a protocol that relies on the survival of its
g giants can tolerate n/(g + 3) − 1 failures and still operate correctly.

2.1 Overview

We describe a protocol that uses 10 giants, which can therefore tolerate up to
f = n/13 − 1 failures by the above argument. The remaining agents (w.h.p. at
least 2n/13) will be called Explorers as their job is to explore cells in bulk. At
any time during the execution, we are guaranteed to have at least n/13 surviving
Explorers and we will denote this number by ne.

O

Fig. 1. This figures shows the ring of cells that is supposed to be explored by the
ExpoSweep protocol in iteration 1 (crossed boxes), 2 (filled boxes) and 3 (empty
boxes). The width of the ring increases by factor of (roughly) two in each iteration and
the agents move further outwards.

Our protocol works iteratively and in each iteration, the Explorers explore all
cells in a ring around the origin: The Explorers line up along the north axis on a
1 We say that an event occurs with high probability, abbreviated by w.h.p., if the event

occurs with probability at least 1 − n−β, where β is an arbitrarily large constant.

36 T. Langner et al.

segment with a length that depends on the iteration. Then, all Explorers, together
with the giants, perform a sweep around the origin by moving along the sides of
a rectangle. If the exploration of a ring was not successful, meaning that at least
one cell in the ring was not explored, the agents regroup and re-explore the ring.
If the exploration was successful, the agents move further outwards to prepare
for the exploration of the next ring. Then they approximately double the length
of the segment (as long as possible) and start a new iteration. Figure 1 gives an
illustration of the execution.

2.2 Basis Configuration

All four procedures presented in the following require that at their beginning, the
agents form a special configuration, called a basis. All procedures also ensure that
at their end, the agents are again in a basis. A basis consists of ten giants while all
other (non-giant) agents serve as Explorers. An InnerGiant and a CollectGiant are
positioned on the east, south, and west axis in the cell with distance d1 from the
origin. On the north axis, an InnerGiant, a StartGiant and a TriggerGiant reside
in cell (0, d1) while an OuterGiant is in cell (0, d2) with d2 > d1. All Explorers
are located somewhere along the cells between d1 and d2 on the north axis. If
the parameters are relevant in the context, we write (d1, d2)-basis or (d1)-basis
if the second parameter is not relevant (or not known explicitly). See Figure 2
for an illustration.

2.3 Compacting a Segment

The goal of the Compact procedure is to ensure that the Explorers occupy a
contiguous segment of cells on the north-axis between InnerGiant and OuterGiant
(unless failures occur). If this is not the case, they are compacted towards the
origin to form a contiguous, yet shorter, segment.

Let the agents be in a (d1, d2)-basis. The procedure Compact is started by
the StartGiant, which moves with speed 1/2 (it stays put every second round)
towards the OuterGiant and instructs each group of Explorers that it meets to
start repeated compacting steps. A compacting step consists of two rounds. First,
the Explorer moves one cell closer to the origin. If that cell is empty, it stays there
and does nothing in the second round, otherwise it moves back to its previous
cell in the second round. When an Explorer moves onto the cell containing the
InnerGiant, it moves back and stops compacting. The same happens if an Explorer
moves onto a cell with at least one stopped Explorer.

When the StartGiant has reached the OuterGiant, it instructs the OuterGiant
to perform compacting steps as well. Then, the StartGiant waits two rounds and
then moves back towards the InnerGiant with speed 1/2 until it arrives there
(without further instructing Explorers on the way).

Analysis. The duration of a Compact execution is defined as the time between
the StartGiant moving away from the InnerGiant and returning to the InnerGiant
again. Observe that if the agents start Compact from a (d1, d2)-basis, they

Fault-Tolerant ANTS 37

form a (d1, d′
2)-basis at the end for some d′

2 ≤ d2. Let Eb = (nd)d1<d<d2 and
Ee = (nd)d1<d<d′

2
be the sequences of the counts of Explorers on the cells (0, d) at

the beginning and the end of the execution of Compact, respectively. Further,
we denote by S|0 the sub-sequence of the sequence S where each 0-element is
removed. Then the following lemma establishes the correctness of Compact.

Lemma 1. If no failures occur during a Compact execution, then Ee = Eb|0.

Proof. Let us call the set of Explorers that occupy the same cell at the beginning
of a Compact execution a team and let us index the teams by 1, 2, . . . , k ac-
cording to increasing distances from the origin. Observe that during Compact,
the Explorers of a fixed team behave (and move) identically and thus it suffices
to examine the individual teams.

By design, team i never overtakes team i − 1 and moreover only meets team
i − 1 if the latter has already stopped. Team i only stops in a cell that does not
contain another stopped team and therefore no two teams will end up at the
same cell at the end of the execution. As a team only stops in the cell directly
next to the cell that contains either a stopped team or the InnerGiant, the teams
will occupy a contiguous segment of cells outwards from the InnerGiant. As the
OuterGiant also performs compacting steps, it will end up directly adjacent to
the outermost team. Thus, all cells between cell (0, d1) and (0, d′

2) are occupied
by the teams 1 to k in that order and the claim follows.
�
As an agent moves one step towards the origin every two rounds unless it has
reached the cell in which it will stop, all agents have stopped in their target
position when the StartGiant arrives back at the InnerGiant.

2.4 Searching a Ring

In this section we introduce the procedure SegSweep (segment sweep) which
aims to search all cells in a ring, i.e., a set of consecutive levels. As all our
procedures, SegSweep requires the agents to be in a basis. Let the agents be
in a (d1, d2)-basis.

A SegSweep consists of four QSweeps (quarter sweep), one for each quarter-
plane, that are executed subsequently. Figure 2 gives an illustration of the dif-
ferent steps of a single QSweep. The first QSweep (of the north-east quarter-
plane) is initiated by the StartGiant which starts moving north towards the
OuterGiant along the north axis and while passing the Explorers tells them to
diagonally move towards the east-axis by alternatingly moving east and south.
As soon as the StartGiant starts moving north, the TriggerGiant moves diagonally
towards the east-axis and will meet the east-InnerGiant and east-CollectGiant in
cell (d1, 0). When the TriggerGiant arrives at cell (d1, 0) in round r, it stops there
and instructs the CollectGiant to move outwards (east).

The CollectGiant moves to cell (d1 + 1, 0) to receive the Explorers that are
exploring distance d1 + 1 and thus should arrive in cell (d1 + 1, 0) soon. Now
we have to distinguish two cases. Either at least one Explorer arrives in round
r + 3 (the Explorer in distance d + 1 starts moving towards the east-axis one

38 T. Langner et al.

d2

d1 S I T CI

O

S

I CI

O

T

S

I

C

I

O

T

S

I I

O

T

(1) (2) (3) (4)

C

Fig. 2. This figure illustrates different stages of a QSweep. The two (perpendicular)
axes between which the QSweep is performed are aligned parallel to each other for the
sake of clarity. (1) shows the (d1, d2)-basis while in (2) the StartGiant (S) has already
sent on their way several Explorers (�) and the TriggerGiant (T). In (3), the TriggerGiant
has reached the CollectGiant (C) on the second axis which is now on the way to collect
the incoming Explorers and in (4) the StartGiant has reached the OuterGiant (O) on the
first axis and is now en route towards meeting the CollectGiant on the second axis.

round later than the Explorer in distance d and has to visit two more cells before
arriving there) which means that the search of the north-east quarter-plane in
distance d1 + 1 was successful or no Explorer arrives in round r + 3, which means
that the search was not successful because the team of Explorers was failed. In
both cases, the CollectGiant moves one cell outwards in round r + 4 to receive
the Explorers of level d1 + 2 which are bound to arrive there in round r + 6. The
CollectGiant continues to move a cell outwards every three rounds and whenever
a group of Explorers meet the CollectGiant, they stop in the respective cell.

When the StartGiant arrives at the OuterGiant on the north-axis, the Outer-
Giant moves inwards (south) and when it arrives at the InnerGiant, it becomes
a CollectGiant and stays put. The StartGiant then moves diagonally towards the
east-axis and will meet the (moving) CollectGiant in cell (d2, 0) to notify it that
the QSweep is complete upon which the CollectGiant becomes an OuterGiant
and stays put. Now the StartGiant moves inwards (west) until it meets the east-
InnerGiant and the TriggerGiant. The configuration of the agents is now identical
(apart from a 90◦-rotation) to the configuration before the first QSweep and
thus QSweeps of the south-east, south-west, and north-west quarter-plane can
be performed in an analogous fashion.

When the StartGiant arrives at the north-axis for the second time, the last
of the four QSweeps is finished. On its way back towards the InnerGiant, the
StartGiant now observes whether each cell between the OuterGiant and the In-
nerGiant contains at least one Explorer. If this is the case, the StartGiant enters
a special complete state, which, as we will later show, implies that all levels �
with d1 ≤ � ≤ d2 have been explored. Otherwise, the StartGiant enters a special
incomplete state, meaning that at least one level might not have been explored
completely.

Analysis. We say that a SegSweep begins in the round in which the StartGiant
starts moving towards the OuterGiant from the cell containing the InnerGiant

Fault-Tolerant ANTS 39

and TriggerGiant. The SegSweep ends when the StartGiant arrives back at the
InnerGiant on the north-axis after the fourth QSweep.

Our agents operate in an adversarial environment and thus we need to show
that the SegSweep procedure works correctly independent of failures of the
agents. Here, that means that all (surviving) agents end up in a (d1)-basis after
a SegSweep and that if the StartGiant enters the complete state, a ring was
completely explored. To see the former, note that the design of the procedure
ensures that, regardless of potential failures, each Explorer is stopped by a Col-
lectGiant when crossing an axis and the StartGiant and CollectGiant will meet
in the cell in distance d′

2 on every axis. All other giants are in their original
position and thus, after four QSweeps, the agents are again in a (d1)-basis. The
following two lemmas are essential for the correctness of the procedure.

Consider a single execution of SegSweep that starts from a (d1, d2)-basis.
We call the execution successful if at the end, all levels � with d1 ≤ � ≤ d2 have
been explored.

Lemma 2. If the StartGiant is in the complete state at the end of a SegSweep,
then the SegSweep was successful.

Proof. Observe that the StartGiant can only enter the complete state if, at the
end of a SegSweep, each cell between InnerGiant and OuterGiant contains at
least one Explorer. The design of the procedure ensures that an Explorer can only
end up in cell (0, d) for d1 < d < d′

2 at the end of a SegSweep if it has started
the SegSweep in cell (0, d) and in between explored all cells of level d (and
in passing almost all cells of level d + 1). As level d1 and d′

2 are explored by
TriggerGiant and StartGiant, the claim follows.
�
Lemma 3. If no agent failed during a Compact execution and the subsequent
SegSweep, then the SegSweep was successful.

Proof. The Compact execution ensures that before the first QSweep all cells
between InnerGiant and OuterGiant contain at least one Explorer. If no agent
fails, all these Explorers will end up in the same cell at the end of the fourth
QSweep by design of the procedure. Hence, the StartGiant will observe at least
one Explorer in each cell between InnerGiant and OuterGiant and thus enter the
complete state. The claim then follows from Lemma 2.
�

2.5 Shifting the Segment

In this section, we introduce the procedure Shift, an additional building block
that allows the agents to move further outwards from the origin. Its concept
is similar to the giant movement during a SegSweep. Shift assumes that all
agents form a (d1, d2)-basis for some d1 < d2 and transforms it into a (d2+1, d3)-
basis for some d3 > d2 + 1.

The StartGiant moves north towards the OuterGiant and sends the Trigger-
Giant away to move diagonally to the cell (d1, 0) on the east-axis, where an
InnerGiant/CollectGiant reside. When the TriggerGiant arrives at there, it stays

40 T. Langner et al.

put and sends the two other giants to move outwards (east) with speed 1/3.
When the StartGiant arrives at the OuterGiant, it moves one cell further out-
wards (to cell (0, d2 + 1)) and then also moves diagonally towards the east-axis.
As the speed of the two giants moving outwards on the east-axis is 1/3, they
will meet the diagonally moving StartGiant in cell (0, d2 +1) and stop there. The
StartGiant moves inwards (west) until meeting the TriggerGiant in cell (0, d1).
This process is repeated three times to move the InnerGiant/CollectGiant on the
other axis outwards to the cell in distance d2 + 1 from the origin.

When the StartGiant has returned to the north-axis and meets the TriggerGiant
in cell (0, d1), it first sends the TriggerGiant and InnerGiant north in order to stop
in cell (0, d2 + 1), which is one cell outwards of the cell currently occupied by
the OuterGiant. Then it moves north with speed 1/2 and whenever it meets a
group of Explorers, it instructs them to move north until they find an empty cell.
Whenever the OuterGiant observes an Explorer in its cell, it moves one cell north
to make sure that it always marks the outermost cell. When the StartGiant arrives
at the cell containing the TriggerGiant/InnerGiant, it stops. Now the agents form
a (d2 + 1, d3)-basis for some d3 > d2 + 1.

2.6 Uniform Splitting

In this section, we introduce the procedure UniSplit (uniform splitting) to line
up the agents properly for the SegSweep procedure. Before we go into the
implementation details of UniSplit, we briefly explain a few important aspects
we have to take into account with the design. First, we do not want the size of
any segment, i.e., the distance between d1 and d2 in a (d1, d2)-basis to be much
larger than the distance to the treasure D. Since it takes at least time linear in
the size of the segment to line the agents up, we might end up using a lot of
time lining up unnecessarily many Explorers.

Second, we want to explore the grid as fast as possible. Therefore, we want
to line up the Explorers as quickly as possible while maintaining the first prop-
erty mentioned above. Since we are interested in the asymptotic runtime and
the memory bounds are constant, we choose an exponential approach. In other
words, we double the segment size after every sweep, as long as there are enough
agents available.

Third, we observe that if some level in the SegSweep is explored with a single
Explorer, it only takes the adversary one failure to force our protocol to repeat
the whole segment. Therefore, as long as we are using segment sizes that are
sub-linear to the number of agents, it makes sense to use many agents per level.
Thus, the aim of UniSplit is to split the agents along the segment uniformly.

Doubling the Segment Size. Assume that the agents form a (d1, d2)-basis. As
before, we call all Explorers residing in the same cell a team. To double the
segment size, the agents perform the following. The TriggerGiant moves north
with speed 1/2 instructing all the cells containing Explorers to perform a split.
Each Explorer a tosses a fair coin and if the coin shows head, a moves north with
speed 1 until it finds the first cell without an Explorer (if the coin shows tail,

Fault-Tolerant ANTS 41

they stay put). To ensure that the OuterGiant marks the end of the segment, it
always moves north whenever it sees an Explorer. When the TriggerGiant reaches
the OuterGiant, it turns around and moves back to the InnerGiant. Once the
TriggerGiant reaches the InnerGiant, the agents again form a (d1)-basis.

We refer to the process of doubling the segment size to as a pass of UniSplit.
Notice that the segment size k does not necessarily double, i.e., it might be that
the new size is k′ ≤ 2k, if some cells contained less than two Explorers. In
addition, there might be empty cells along the segment due to unfortunate coin
tosses or failures. As the next step, we show that the size of the segment grows
by a constant factor in every pass with high probability as long as the team
size distribution is “good enough”. The key to prove this property is to treat the
splitting process as a balls-into-bins experiment.

Consider the situation after the jth pass of UniSplit. The coin tosses per-
formed by the agents so far assign to each agent a bit-sequence of length j. As
there are 2j different possible bit-sequences, one can model our setting as fol-
lows: Each of the n agents throws a single ball into the bin corresponding to its
bit-sequence while there are 2j bins altogether. The following lemma establishes
that only a constant fraction of the bins is empty w.h.p.

Lemma 4. Consider a balls-into-bins experiment where m ≥ 4 balls are thrown
uniformly at random into 2j bins for an integer j with 0 < j < log m. Let Zj be
the number of empty bins at the end of the experiment. We have Zj < 2/e · 2j

w.h.p.

Proof. Let us first consider the case where j ≤ κ log log m for some κ ≥ 2 to
be determined later. Then the number of bins is O(logκ m) and the expected
number of balls per bin is Ω(m/ logκ m). Observe that the probability that a
fixed bin is empty is (1 − 1/2j)m ≤ e−m/2j . By the union bound, the probability
that there exists an empty bin is at most

∑2j

i=1 e−m/2j ∈ e−Ω(m/ logκ m). Thus
we get Pr[Zj ≥ 2/e · 2j] ≤ Pr[Zj ≥ 0] ∈ e−Ω(m/ logκ m) ⊂ o(m−β) for any β > 0.

Now consider the case where j > κ log log m. Let Zj
i be the indicator random

variable for the event that bin i of 2j is empty and we have Zj =
∑2j

i=1 Zj
i . A well-

known result from balls-into-bins is that instead of dissecting the dependencies
between the loads of different bins, one can approximate the scenario well by
modeling the load of each bin by an independent Poisson random variable [15].
We will denote all random variables derived from this approximation with a tilde
and the ones corresponding to the exact scenario without.

Let B̃j
i be the random variable indicating the number of balls in bin i and

observe that Pr[B̃j
i = r] = e−μμr/(r!) for μ = m/2j as B̃j

i has a Poisson
distribution with parameter μ where we observe that μ > 1. Let Z̃j

i be the
indicator random variable for the event that B̃j

i = 0 and observe that E[Z̃j
i] =

Pr[B̃j
i = 0] = e−μ < 1/e. Let Z̃j =

∑2j

i=1 Z̃j
i be the random variable for the

total number of empty bins and by linearity of expectation we get E[Z̃j] < 2j/e.
As the Z̃j

i are independent by assumption, we can use a Chernoff bound to get
Pr[Z̃j ≥ 2/e · 2j] ≤ Pr[Z̃j ≥ 2E[Z̃j]] ≤ e−2j/(3e). Observe that since m ≥ 4,

42 T. Langner et al.

κ ≥ 2, and j > κ log log m, it holds that κ log m ≤ logκ m and we get

Pr[Z̃j ≥ 2/e · 2j] = e− logκ m/(3e) ≤ e−κ log m/(3e) < m−κ/(3e) .

We can now use a result from [15] stating that any event that takes place with
probability p in the Poisson approximation takes place with probability at most
pe

√
m in the exact case where m is the number of balls thrown. Hence, we get

for the exact case Pr[Zj ≥ 2/e · 2j] <
√

me · m−κ/(3e) ≤ m−β for any β > 0 and
a large enough value of κ.
�
Lemma 5. Let E be any subset of (surviving) Explorers of size ne. After the jth

iteration of UniSplit for 0 < j < log(ne), the Explorers in E are members of
Ω(2j) different teams w.h.p.

Proof. Lemma 4 states that after the jth iteration there are at most 2/e · 2j

empty bins w.h.p. Thus there are at least (e−2)/e ·2j ∈ Ω(2j) many non-empty
bins w.h.p., which the Explorers in E must occupy. The claim follows.
�
Recall that ne, the minimum number of surviving Explorers, is guaranteed to
be Θ(n). Thus, Lemma 5 implies that no matter which subset of Explorers the
adversary lets survive, these Explorers will be members of Ω(2j) different teams
after the jth pass of UniSplit for 0 < j < log(ne) w.h.p.

Corollary 6. The number of teams after the jth pass of UniSplit is Ω(2j) for
0 < j < log(ne) w.h.p.

2.7 Putting Everything Together

In this section we explain how we can connect the procedures presented in the
previous section in order to obtain the n-robust protocol ExpoSweep (expo-
nential sweep) for the ANTS-problem.

The protocol starts with all agents located at the origin. Then the agents
create the 10 giants required by SegSweep as described earlier. Now, the agents
ensure that the StartGiant, InnerGiant, and TriggerGiant, are located in cell (0, 1),
the OuterGiant in cell (0, 3), and an InnerGiant/CollectGiant-pair on the east-,
south-, west-axis in the cell with distance 1 to the origin. Observe that this
configuration is a (1,3)-basis. Then the agents iteratively perform the protocol
described in Algorithm 1.

It is easy to verify that all the aforementioned subroutines of our protocol
only require a constant amount of states and therefore, the total number of
states required by our protocol is also a constant.

3 Runtime

We begin the runtime analysis by bounding the time needed for any SegSweep
in terms of distance to the treasure.

Fault-Tolerant ANTS 43

Algorithm 1. ExpoSweep
1. The StartGiant triggers the execution of Compact as described in Section 2.3.
2. The StartGiant triggers the execution of SegSweep as described in Section 2.4.

When the SegSweep is finished, there are two cases: If the StartGiant enters the
incomplete state, go to step 2. Otherwise, proceed to step 3.

3. The StartGiant triggers the execution of Shift as described in Section 2.5.
4. The StartGiant triggers the execution of UniSplit as described in Section 2.6.

Lemma 7. If the treasure has not been found at the start of iteration i of Seg-
Sweep and the agents form a (d1, d2)-basis, then d1 < D and d2 ≤ 2D.

Proof. Observe that the agents only move to a (d1)-basis after SegSweep has
explored all levels � < d1, and hence, d1 < D. Assume for contradiction that
d2 > 2D. Since d2 can at most double in UniSplit, there must have been
a pass of UniSplit that started from a (d′

1, d′
2) basis, where d′

1 ≤ D ≤ d′
2.

Since UniSplit is only performed after a successful execution of SegSweep,
the treasure must have already been found.
�
Lemma 8. Any iteration i of ExpoSweep before the treasure was found lasts
at most O(D) rounds.

Proof. By Lemma 7, d2 ≤ 2D for any (d1, d2)-basis at the start of iteration i.
By looking at the details of the ExpoSweep protocol, we first observe that the
time complexity of Compact is clearly O(D) since the time needed is bounded
simply by the time it takes the StartGiant to move from InnerGiant to OuterGiant
and back. Second, it is easy to see that each QSweep takes at most O(D) rounds
to finish. Since searching a ring consists of four QSweeps, the second step of our
protocol takes O(D) rounds. A similar argument holds for the Shift procedure.
The time complexity of step 4 is again bounded by the time that it takes the
TriggerGiant to move back and forth a distance of at most d2 ≤ 2D and thus,
the claim follows.
�
Now we can combine the previous results to establish the total runtime of the
ExpoSweep protocol.

Theorem 9. The runtime of the ExpoSweep protocol is O(D + D2/n + Df)
for f = n/13 w.h.p.

Proof. By Lemma 8 we know that the furthest level that is searched by the
ExpoSweep protocol is O(D). As the failure of a single agent can cause at
most one repetition of a ExpoSweep iteration, the maximum time that it takes
the ExpoSweep protocol to recover from the failure of an agent is O(D). Thus,
we can account for all failure-induced runtime costs by an additional term of
O(Df). In the remainder of the proof, we will therefore only bound the runtime
of ExpoSweep iterations without any failures.

Let us first examine the case when D ∈ o(n), which means that the Explorers
are still performing splits when the treasure is in range. Consider the ith itera-
tion of ExpoSweep. Using Corollary 6, we can bound the maximum distance

44 T. Langner et al.

explored by the preceding iterations from below by d(i) =
∑i−1

j=0 Ω(2j) = Ω(2i).
The treasure will be explored in the smallest iteration i′ such that d(i′) ≥ D.
Observe that i′ ∈ c log D for some constant c > 0. As iteration i explores at most
level d(i) + 2i ∈ O(2i), we can bound the time required to complete iterations 1
to i′ by

c log D∑

i=0
O(2i) ∈ O(D) .

Now let us consider the case when D ∈ Ω(n). By Corollary 6, we know that after
O(log n) iterations of ExpoSweep, there are Ω(n) teams of Explorers. Hence,
the treasure will be discovered after O(D/n) additional iterations. By Lemma 8,
any iteration takes at most O(D) rounds. The total runtime is therefore

c log D∑

i=0
O(2i) +

O(D/n)∑

i=c log D+1
O(D) = O(D2/n) .

Including the O(Df) term for the runtime costs caused by agent failures yields
the theorem.
�

4 Conclusion

In this work we presented an algorithm that solves the ANTS problem in time
O(D+D2/n+Df) while tolerating f ∈ O(n) failures during the execution w.h.p.
Our algorithm uses a combination of a constant number of fault-tolerant giants
and Θ(n) Explorer agents, working together. The few “expensive” giants are used
to manage the algorithm such that it is fault-tolerant, and the many “cheap”
Explorers are responsible for solving the problem efficiently. It is an interesting
open question whether one can solve the ANTS problem in a fault-tolerant way
without making use of classic replication, and we conjecture that this is not the
case, i.e., that some structure like giants is necessary to solve the ANTS problem
in the presence of failures.

References

1. Albers, S., Henzinger, M.: Exploring Unknown Environments. SIAM Journal on
Computing 29, 1164–1188 (2000)

2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks,
Universal Traversal Sequences, and the Complexity of Maze Problems. In: Proceed-
ings of the 20th Annual Symposium on Foundations of Computer Science (SFCS),
pp. 218–223 (1979)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
Networks of Passively Mobile Finite-State Sensors. Distributed Computing, 235–
253 (March 2006)

4. Aspnes, J., Ruppert, E.: An Introduction to Population Protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer (2009)

Fault-Tolerant ANTS 45

5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. In-
formation and Computation 106, 234–252 (1993)

6. Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. Journal of Graph
Theory 32, 265–297 (1999)

7. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little Mem-
ory. Journal of Algorithms 51, 38–63 (2004)

8. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS Problem with
Asynchronous Finite State Machines. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 471–482.
Springer, Heidelberg (2014)

9. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative
Search and Implications for Biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 61–75. Springer, Heidelberg (2012)

10. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the
Plane Without Communication. In: Proceedings of the 31st ACM Symposium on
Principles of Distributed Computing (PODC), pp. 77–86 (2012)

11. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a
Finite Automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

12. Förster, K.-T., Wattenhofer, R.: Directed Graph Exploration. In: Baldoni, R., Floc-
chini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 151–165. Springer,
Heidelberg (2012)

13. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between Selection
Complexity and Performance when Searching the Plane without Communication.
In: Proceedings of the 33rd Symposium on Principles of Distributed Computing,
PODC (2014)

14. López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In: Proceedings of
the 13th Canadian Conference on Computational Geometry (CCCG), pp. 125–128
(2001)

15. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

16. Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In: Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 316–
322 (1998)

17. Reingold, O.: Undirected Connectivity in Log-Space. Journal of the ACM
(JACM) 55, 17:1–17:24 (2008)

	Fault-Tolerant ANTS
	1 Introduction
	1.1 Related Work
	1.2 Model

	2 Ann-Robust Protocol
	2.1 Overview
	2.2 Basis Configuration
	2.3 Compacting a Segment
	2.4 Searching a Ring
	2.5 Shifting the Segment
	2.6 Uniform Splitting
	2.7 Putting Everything Together

	3 Runtime
	4 Conclusion
	References

