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Abstract. All currently available Network-based Intrusion Detection Systems 
(NIDS) rely upon passive protocol analysis which is fundamentally flawed as 
an attack can evade detection by exploiting ambiguities in the traffic stream as 
seen by the NIDS. We observe that different attack variations can be derived 
from the original attack using simple transformations. This paper proposes a 
semantic model for attack mutation based on dynamic description logics 
(DDL(X)), extensions of description logics (DLs) with a dynamic dimension, 
and explores the possibility of using DDL(X) as a basis for evasion composi-
tion. The attack mutation model describes all the possible transformations and 
how they can be applied to the original attack to generate a large number of at-
tack variations. Furthermore, this paper presents a heuristics planning algorithm 
for the automation of evasion composition at the functional level based on 
DDL(X). Our approach employs classical DL-TBoxes to capture the constraints 
of the domain, DL-ABoxes to present the attack, and DL-formulas to encode 
the objective sequence of packets respectively. In such a way, the evasion com-
position problem is solved by a decidable tableau procedure. The preliminary 
results certify the potential of the approach. 
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1 Introduction 

A weakness of most currently available Network-based Intrusion Detection Systems 
(NIDS) that rely upon passive protocol analysis is their inability to recognize an at-
tack that evades detection by exploiting ambiguities in the traffic stream as seen by 
the NIDS. Exploitable ambiguities may arise in different ways: (1) The NIDS may 
lack complete analysis for the full range of behavior allowed by a particular protocol. 
(2) Without detailed knowledge of the victim end-system’s protocol implementation, 
the NIDS may be unable to determine how the victim will treat a given sequence of 
packets if different implementations interpret the same stream of packets in different 
ways. (3) Without detailed knowledge of the network topology between the NIDS and 
the victim end-system, the NIDS may be unable to determine whether a given packet 
will even be seen by the end-system[1,2]. Advanced Evasion Techniques (AET's) is a 
lately established term in network security industry referring to a set of non-trivial and 
expensive means to bypass NIDS in order to deliver an exploit, attack, or other form 
of malware to a target network or system, without detection. Advanced evasion tech-
niques can be identified according to certain underlying principles: (1) Delivered in a 
highly liberal way; (2) Employ rarely used protocol properties; (3) Use of unusual 
combinations; (4) Craft network traffic that disregards strict protocol specifcations; 
(5) Exploit the technical and inspection limitations of security devices: memory ca-
pacity, performance optimization, design flaws[3]. 

Since we are interested in testing the ability of a NIDS to properly identify real in-
trusions, we need a way to ensure that executing each of mutants generated by ad-
vanced evasion techniques against the vulnerable application, we are going to obtain 
the same effect as executing the original exploit script. In this article, we define an 
attack mutation model that describes all the possible transformations and how they 
can be applied to the original attack to generate a large number of attack variations. 
The semantic model for attack mutation is based on dynamic description logics 
(DDL(X)), extensions of description logics (DLs) with a dynamic dimension. The 
attack mutation model is self explanatory. Given an original attack, the attack muta-
tion model can provide a proof that a sequence of transformations used for obfusca-
tion is a real attack. Developers can use the model to analyze attacks and to identify 
the exact transformation that their NIDS fails to handle. The attack mutation model is 
exhaustive, capable of generating all attack variations from a known base attack using 
a set of rules. All the mutation techniques are individually sound, and also that any 
possible composition of them is sound. So the model is sound, generating only in-
stances that implement the original attack. 

In this article, we present an approach for automatic evasion method plans based 
on dynamic description logics[4-6] named DDL(X), extensions of DLs [7] with a 
dynamic dimension[8,9]. Our approach used classical DL-TBoxes to capture the  
domain constraints, DL-formulas to encode the objective sequence of packets, and 
DL-ABoxes to be a special representation of the attack that provides to the underlying 
mutation engine the mechanism to manipulate the attack, respectively. Actions in 
DDL(X) were used to abstract the functionalities of the available evasion methods. In 
such a way, the automatic evasion plans can be reduced to formula satisfiability 
checking in DDL(X) and solved by a decidable tableau procedure. 
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In the following sections, we firstly illustrate how variants of a real exploit can be 
derived from the original exploit script in Section 2. In Section 3, we demonstrate the 
descriptions of evasion techniques can be formalized as actions in DDL(X), and for-
malize the notion of the attack mutation model using dynamic description logics. 
Afterwards, in Section 4 we detail the problem of evasion composition can be solved 
by reasoning about actions in DDL(X) and present a heuristic planning algorithm for 
automated composition of evasions. Finally, we summarize the paper in Section 5. 

2 Approach Overview 

First of all, we need an instance of the exploit script that we want to mutate. The base 
instance is then used to derive another attack instance by repeatedly applying single 
step transformations. Our example vulnerability is a published buffer overflow in a 
commonly used Windows XP SP2 host (MSRPC Server Service Vulnerability, CVE-
2008-4250 in www.cve.mitre.org.); exploiting the overflow may allow arbitrary code 
execution. The exploit causes the overflow by providing a crafted RPC request that 
triggers the overflow during path canonicalization. We call this exploit EMSRPC. 

Given an exploit E, Trace(E) denotes a sequence of packets from a NIDS perspec-
tive and the function Post(E) to be the post-conditions of the execution of E against a 
target system. Consider the following twelve transformation rules in Table 1 that can 
be applied to an existing operational description of how a vulnerability is exploited to 
generate a new different version of the same exploit. 

We call these rules semantics preserving because they do not alter the semantics of 
E, i.e. the transformation does not affect the results of the execution of the exploit. If 
E is an instance of the EMSRPC attack, then by using rules in Tab.1 it is possible to 
derive the conclusion that the E’ is also an instance of EMSRPC and the instance E’ 
contains the necessary data for a successful EMSRPC attack. For example, we apply r1 
on E to send extra NetBIOS packets to break the packet flow. Then, we apply r9 and 
change the order of TCP segments. In dynamic description logic terminology, starting 
with an exploit E, we can successively apply a set of transformations T ={r0, r1, …, 
rn} to create a complex mutant exploit E’. 

To formalize the notion of the semantics preserving transformation, we get: 

Trace(E) ≠ Trace(E') 

Post(E) = Post(E') 

The first condition requires that the transformation manifests itself as a change in 
the sequence of packets. The second condition requires that the transformation pre-
serves the attack post-conditions. While the E and the E' might look different from a 
NIDS perspective, from the attacker point of view the E' generated by evasion tech-
nique is still an “effective” attack (i.e., that executing the E' against the vulnerable 
application, we are going to obtain the same effect as executing the original exploit 
script E). Intuitively speaking, one can infer E' from E, and vice versa. 
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Table 1. Atomic evasions 

 Name Description 

NetBIOS NetBIOS chaff(r1) 
Send extra NetBIOS packets to break the 

packet flow 

 NetBIOS initial chaff(r2) 
Send chaff NetBIOS packets when estab-

lishing the NetBIOS connection 

SMB SMB filename obfuscation(r3) 
Obfuscate the tree name used in the SMB 

NT Create AndX method 

 SMB WriteAndX padding(r4) 
Insert extra padding between the Wri-

teAndX header and payload 

MSRPC MSRPC request segmentation(r5) 
Set the maximum number of bytes written 

in a single MSRPC fragment 

 MSRPC NDR modifications(r6) Set NDR types not related to endianness 

TCP 
TCP Chaff(r7) 

Send chaff TCP segments to baffle in-

spection 

 TCP timestamp option settings(r8) Set initial TCP timestamp option settings 

 TCP segment order(r9) Change the order of TCP segments 

IP IPv4 chaff(r10) 
Send chaff IPv4 packets interleaved with 

normal packets 

 IPv4 fragmentation(r11) Fragment IPv4 packets to given size 
 IPv4 fragment order(r12) Change the order of IPv4 fragments 

 
In our description frameworks for evasions, functional descriptions are essentially 

the state-based and use at least pre-state and post-state constraints to characterize 
intended executions of an evasion. Many evasion techniques can be combined. When 
evasion techniques are combined at different levels, NIDSs that detect each separate 
evasion technique often fail at detecting some permutations. First, we apply the trans-
formation rules in a Breadth-First order: we first apply application level rules because 
they are independent against TCP-level and IP-level rules, then we segment each 
instance into small pieces, change the order of TCP segments we get, and send chaff 
IPv4 packets interleaved with normal packets(Figure 1). Second, we prune away some 
of the derivation branches to decrease the number of instances. In some cases, only a 
subset of possible factors evades NIDS detection; adding additional evasion measures 
to an evasive attack may cause the NIDS to detect it. 

3 A Formal Model for Attack Mutation 

A DDL(X) model is a tuple M = (W, T, Δ, I), where, 

W is a set of states; 

T : NA→2W×W is a function mapping action names into binary relations on W; 

Δ is a non-empty domain; 
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Fig. 1. An Illustration of a Sample Multi-protocol Evasion 

I is a function which associates with each state w ∈ W a description logic inter-
pretation I(w) =< Δ, ·I(w) >, where the mapping •I(w)  assigns each concept to a sub-
set of Δ, each role to a subset of Δ×Δ, and each individual to an element of Δ. 

Definition 1 (Atomic evasions). An atomic evasion is a tuple t=<Pre, Effects>, where 
Pre is a finite set of formulas in DDL(ALCO) specifying the preconditions for the 
execution of t; and Effects is a finite set of assertions or their negation in ALCO, 
which is the facts holding in the newly-reached world by the evasion’s execution. 

Composite evasions are constructed from atomic evasions with the help of classic 
constructors in dynamic description logics[4].  

Below we formally define a mutation model for an exploit as well as some reason-
ing tasks and the planning problem.  

Definition 2 (Mutation Model of an Exploit). Let E be an instance of an exploit and 
T be a set of sound inference rules with respect to E. 

A mutation model of E is a DDL(X) model (W, T, Δ, I). 
Such a model enables derivation of new exploits by applying the inference rules 

(like evasion methods) on already known exploits. For an attack E, we envision the 
attack mutation model that, with respect to a set of rules, is sound: derives only se-
quences of packets that implement E; complete: can derive any sequence of packets 
that implements E; and decidable: given a sequence of packets, there is an algorithm 
that determines whether or not the sequence is derived from the already known  
exploit. 

Definition 3 (NIDS View). Let N be a NIDS. N’s view with respect to an exploit E, 
denoted SE

N, is the set of sequences of packets that N recognizes as E. 

Given a NIDS and an instance of an exploit E, the basic reasoning task for DDL(X) 
is to find an instance of E that evades the NIDS. 
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Definition 4 (Reasoning Task 1). Let (W, T, Δ, I) be an attack mutation model of E, 
and N be a NIDS. Let SE

N be the view of N with respect to E. The reasoning problem 
is to find a sequence of packets S that is derivable from E, but is not in SE

N. More 
formally, find S ∉ SE

N such that M ⊨ S and M ⊨ E. 

Given an instance of an exploit E and a sequence of packets S, another important 
reasoning task for DDL(X) is to determine whether S is an instance of E. 

Definition 5 (Reasoning Task 2). Let M = (W, T, Δ, I) be an attack mutation model 
of E and S be a sequence of packets. S is an instance of E if and only if there exists a 
model M = (W, T, Δ, I) and a state w ∈ W such that M ⊨E and (M, w)⊨S. 

The last inference problem we will investigate is the planning problem. Given a 
goal statement (i.e. a sequence of packets) and a set of actions(i.e. evasion methods), 
the planning problem is to find an action sequence that will lead from the initial 
state(i.e. an already known exploit) to states in which the goal will hold. With 
DDL(X), we define the plans as follows. 

Definition 6 (The Planning Problem). An action sequence r1, ..., rn is a plan for a 
goal S w.r.t. M = (W, T, Δ, I) if and only if (i) the sequence-action r1;...; rn is executa-
ble on states described by E and (ii) S is a consequence of applying r1;...; rn on states 
described by E. 

It is intuitive to model evasions by actions in DDL(ALCO). As demonstrated in 
this section, the functionalities of evasions can be semantically transformed into ac-
tions in DDL(ALCO) by a proper domain ontology (TBox). All kinds of reasoning 
tasks concerning the functionalities of evasions thus can be reduced to the reasoning 
about actions in DDL(ALCO), which are the topic of the next section. 

4 An Efficient Algorithm for Evasion Composition 

In this section we demonstrate that the problem of evasion composition can be re-
duced to satisfiability checking of formulas in DDL(ALCO) and then be solved by a 
decidable procedure after the transformation process that transforms evasions to ac-
tions in DDL(ALCO). Afterwards, we propose a heuristic planning algorithm for 
automated composition of evasions. The algorithm achieves good balance between 
computational performance and accuracy. 

When facing a problem of evasion composition, we firstly collect the relevant eva-
sions and transform these preexisting evasions to atomic actions by constructing the 
specification of the domain.  

Let us analyze the following two formulas: 

¬( [ (α1∪…∪αn)* ] Π ∧ Con j(E) ) ∨ < plan > true, where Conj(E) repre-
sents the conjunction of all the elements of the set E, Π the formula ∧ 1

n
i= (¬Con 

j(Pi) ∨ <αi> true) and Pi the precondition of action ri for each i: 1≤i≤n.  
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The whole formula above states that the action sequence plan is executable 
on states described by E. The above formula is valid if its negation (labeled as 
Eq. 1) is not satifiable:  

[ (α1∪…∪αn)* ] Π ∧ Con j(E) ∧ ¬< plan > true                    (1) 

¬Con j(E) ∨ [plan]S . 

This formula indicates that the goal S is a consequence of applying the action se-
quence plan on world states described by E. Similarly, the above formula is valid if its 
negation (labeled as Eq. 2) is not satifiable:  

Con j(E) ∧ ¬ [plan]S                            (2) 

Given a goal statement S and a set of actions ∑ = {r1, r2,…, rm}, Algorithm 1 
shows how to produce a plan (i.e. an action sequence) that will lead from the initial 
state to states in which the goal S will hold. The heuristics algorithm ActionPlan() 
travels the possible world states in a Breadth-First manner and terminates at a suc-
cessful plan, or failure after the algorithm attempts nearly exhaustively. However, 
instead of travelling all possible world states, the heuristic selects world states more 
likely to produce an successful plan than other world states. It is selective at each 
decision point (Line.11), picking world states that are more likely to produce solu-
tions. 

 
Algorithm 1 ActionPlan(E, T, ∑, S, plan) 
Input: initial ABox E; TBox T; the set ∑= {r1, r2,…, rm} of available actions; and 

formula S, seen as a goal statement. 
Output: an successful plan or nil as failure; 
Begin 

1. initialize plan with an empty list; 
2. Initialize queue QueOfPlans with plan; 
3. while (QueOfPlans is unempty) do 
4.   remove head of QueOfPlans and set it to plan; 
5.   if (Eq. 2 is unsatifiable) then 
6.      return plan as a successful plan; 
7.   else  
8.      for each ri∈∑ do 
9.          newplan ← < plan, ri >;// appending ri to the rear of the list plan. 
10.         if([ (r1∪…∪rk)* ] Π∧Con j(E) ∧ ¬< newplan > true is unsatifiable) 

then 
11.              if(EvaluatePlan(E, T, S, plan, newplan) ≥ 0) then 
12.                  queue QueOfPlans with newplan; 

13.              end if 
14.         end if 
15.     end for 
16.  end if 
17. end while 
18. return nil. 
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End 
Algorithm 2 EvaluatePlan(E, T, goal, srcplan, dstplan) 
Input: initial ABox E; TBox T; formula goal, seen as a goal statement; srcplan,  

a plan for left-hand side of comparison; dstplan, a plan for right-hand side of  
comparison.  

Output: an integer greater than, equal to, or less than 0, if the number of primitive 
formula achieved through dstplan is greater than, equal to, or less than the number of 
primitive formula achieved through srcplan, respectively. 

Begin 
1.  srccount←0; 
2.  dstcount←0; 
3.  rewrite formula goal to a disjunctive normal form formula 

G=∨ 0
d
i= (∧ 0

m
j= ϕij); 

4.  for each primitive formula ϕij do 
5.     if Con j(E) ∧¬ [srcplan] ϕij is unsatifiable then 
6.               srccount←srccount+1; 
7.     end if 
8.     if Con j(E) ∧¬ [dstplan] ϕij is unsatifiable then 
9.               dstcount←dstcount+1; 
10.    end if 
11.  end for 
12.  return dstcount－srccount; 

End 

5 Summary 

In this article, we aim at providing an effective framework for the composition of 
evasion techniques to test the quality of intrusion detection signatures. Our approach 
supports multiple evasion techniques and allows the developer of the test to compose 
these techniques to achieve a wide range of attack mutations. We define an attack 
mutation model that describes all the possible transformations and how they can be 
applied to the original attack to generate a large number of attack variations. The at-
tack mutation model is based on DDL(X), extensions of description logics (DLs) with 
a dynamic dimension. In particular, we proposed a heuristic planning algorithm for 
automated composition of evasion methods by a reduction to the formula satisfiability 
checking in DDL(X) and a selection of world states more likely to produce a success-
ful plan. The functionalities of the evasion methods are abstracted by actions in 
DDL(X), while the domain constraints, exploits, and the objective sequence of pack-
ets are encoded in TBoxes, ABoxes and DL-formulas, respectively. Then the problem 
of evasion composition can be reduced to formula satisfiability checking in DDL(X) 
and solved by a decision procedure. Afterwards, instead of travelling all possible 
world states in a Breadth-First manner, a heuristic planning algorithm selects world 
states more likely to produce an successful plan than other world states. Our approach 
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has several important advantages: the attack mutation model permits the application 
of analytical methods for deriving sound evasion composition; executing each of mu-
tants generated by our approach against the vulnerable application, we are going to 
obtain the same effect as executing the original exploit script. 
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