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Abstract. In rough set theory, not too much work pays attention to the 
acquisition of decision rules and to the uses of the obtained rule set as classifier 
to predict data. In fact, rough set theory also can be applied to train data and 
create classifiers and then complete data prediction. This paper systematically 
studies the problem of acquisition of decision rules in decision systems. The 
main outcomes of this research are as follows: (1) the specific definition of 
minimum rule set is given, and such a minimum rule set can be used as a 
classifier to predict new data; (2) a new approach to finding out all minimum 
rule sets for a decision system, Algorithm 1, is proposed based on 
discrimination function, but with relatively low execution efficiency; (3) By 
improving Algorithm 1, a heuristic approach to computing a special minimum 
rule set, Algorithm 3, is proposed, which works far more efficiently than 
Algorithm 1. The outcomes can form the foundation for applying rough set 
theory to data classification and offer a new resolution to data classification.  

Keywords: Heuristic approach, minimum decision rule set, rule acquisition, 
classifier, data classification. 

1 Introduction 

Rough set theory[1] is a powerful mathematical tool to deal with insufficient, 
incomplete or vague information. Nowadays the majority of work in rough set theory 
focuses on attribute reduction[2]. Attribute reduction is in fact feature selection and 
has been applied to address many practical problems[3-6]. After attribute reduction, 
data sets can be used for a variety of applications and data classification is an 
important application. However, not too much work pays attention to data 
classification with rough set theory. In rough set theory, most methods of data 
classification are to use rough set theory to select features and then use other tools to 
train data and create classifier[7]. In fact, rough set theory also can be used to extract 
decision rules from decision systems. Although some scholars have made contribution 
to this work[8-10], there is still a lack of systematic foundation for rule acquisition in 
rough set theory. This paper systematically studies the problem of acquisition of 
decision rules in decision systems. First, the specific definition of minimum rule sets 
is given, and then a new approach to finding out all minimum rule sets for a decision 
system is proposed based on discrimination function, and finally a heuristic approach 
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to computing a special minimum rule set is proposed. Each of the two proposed 
approaches has its own advantages and disadvantages. The work provides a relatively 
complete solution for extracting decision rules from decision systems and using rough 
set theory to classify data.  

The rest of the paper is organized as follows. Section 2 reviews some basic 
concepts linked to Information system and decision logic. Section 3 gives the 
definition of minimum rule set. Section 4 proposes a general approach to the 
acquisition of all minimum rule sets in a given decision system. Section 5 then 
proposes a heuristic approach to the acquisition of a minimum rule set. Section 6 
gives an example to show how to use the heuristic approach. Section 7 finally 
concludes the paper.  

2 Information System and Decision Logic 

An information system is usually expressed in the following form: IS = (U, A, {Va}, 
fa)a∈A, where U is a nonempty finite set of objects, standing for a given universe; A is 
a nonempty finite set of attributes; Va is a value set(domain) of attribute a; fa is called 
information function, i.e., fa:U→Va, which denotes the value of function f on attribute 
a; If Va and fa are obvious, then (U, A, {Va}, fa)a∈A can be denoted as (U, A) for short.  

For any B⊆A, subset B determines a binary relation, denoted as TR(B), which is 
defined as follows: TR(B) = {(x,y) | fa(x)= fa(y) for any a∈B and any x,y∈U}. 

It is easy to prove that TR(B) is reflexive, symmetric, transitive, and thereby is an 
equivalence relation on U. Thus, equivalence relation TR(B) can divide the universe U 
into several disjoint subsets, which are known as equivalence classes. Suppose that 
X1, X2, …, Xn are all equivalence classes induced by attribute set B, then {X1, X2, …, 
Xn} is a partition U/TR(B) of the universe U, denoted by U/TR(B) = {X1, X2, …, Xn}.  

Extraction of decision rules is in fact the problem of extracting description of 
granules (equivalence classes), which are expressed with decision logic. 

Let IS(B) = <U, B, {Va}, fa>a ∈B, B ⊆A. Then decision logic language DL(B) 
with respect to B is defined as following:  

(1) (a, v) is an atomic formula, where a ∈B, v ∈Va,  
(2) an atomic formula is a formula in DL(B); 

(3) if φ is a formula, then ~φ is also a formula in DL(B); 

(4) if both φ and ψ are formulae, then φ∨ψ, φ∧ψ, φ→ψ, φ≡ψ are all 

formulae; 
(5) only the formulae obtained according to the above Steps (1) to (4) are formulae 

in DL(B). 

If φ is a simple conjunction, which consists only of atomic formulae and 

connectives ∧, then φ is called a basic formula.  
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The following definition gives the relationship between formulae in DL(B) and 
granules IS(B):  

For any s∈U, the relationship between s and formulae in DL(B) is defined as 
following: 

(1) s |= (a, v) iff fa(s) = v 

(2) s |= ~φ iff not s |= φ 

(3) s |= φ∧ψ iff s |= φ and s |= ψ 

(4) s |= φ∨ψ iff s |= φ or s |= ψ 

(5) s |= φ→ψ iff s |= ~φ∨ψ  

(6) s |= φ≡ψ iff s |= φ→ψ and s |=ψ→φ. 

For formula φ, if s |= φ, then we say that the object s satisfies formula φ. Let m(φ) 
= { s | s |= φ}, that is, m(φ) is the set of all those objects that satisfy formula φ; For 
subset g⊆U, if m(φ) = g, then g is said to be descriptive and φ is a description of g, 
denoted by DES(g). It is easy to find that for the same subset g⊆U, there are possibly 
many different descriptions: φ1, φ2, …, φm, such that m(φ1) = m(φ2) =…= m(φm) = g. 
This is one of the reasons why extracting all decision rules from a decision system is a 
NP-hard problem.  

3 Minimum Rule Set in Decision System 

We note that some principles of attribute reduction can also be applied to extracting 
decision rules from decision systems and then to acquiring minimum rule set, which 
can be used as a classifier.  

Decision system is a special case of information system, which can be regarded to 
be generated by partitioning attribute set A into two disjoint subsets, or by adding 
some attributes to A.  

A decision system is usually denoted by DS = (U, C∪D, {Va}, fa)a∈A=C∪D ,where 
U, Va and fa have the same meanings as that in the above section; C is a nonempty 
finite set of attributes, called condition attribute set; D is a nonempty finite set of 
attributes, called decision attribute set, and C∩D=∅; The 4-triple  (U, C∪D, {Va}, 
fa)a∈A=C∪D is usually denoted as (U, C∪D) for short, namely, DS=(U, C∪D).  

As mentioned above, we can consider that decision system (U, C∪D) consists of 
two information systems: (U, C) and (U, D).  

Suppose that φ ∈DL(C) and φ ∈DL(D). Implication form φ →ψ is said to be a 

decision rule in decision system (U, C∪D). If both φ  and ψ are basic formula, 

then φ →ψ is called basic decision rule.  

Decision rule has two important measuring indices, confidence and support, 
which are defined as following:  

conf(φ →ψ )= 
|)(|

|)()(|

φ
ψφ

m

mm 
 [11]                     (1) 
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sup(φ →ψ ) = 
||

|)()(|

U

mm ψφ 
                     [2] 

where conf(φ →ψ ) and sup(φ →ψ ) are confidence and support of decision rule 

φ →ψ , respectively.  

In general, we usually find those decision rules whose confidence is equal to 1. 
Obviously, if m(φ ) ⊆ m(ψ ), then conf(φ →ψ ) = 1. Of course, it is not enough to 

guarantee that confidence is equal to 1. In fact, the larger the confidence, the better it 
is, although it is small than 1 with certainty. That is, extracting decision rules is the 
procedure of finding those rules whose confidence is equal to 1 and whose support is 
as large as possible. In order to illustrate this procedure, we further introduce some 
related concepts.  

Definition 1. For decision system (U, C∪D), B ⊆C and x∈U, let [x]B = {y ∈U | 
(x, y) ∈TR(B)}, then [x]B is said to be an equivalence class with respect to attribute 
subset B.  
Property 1. For decision system (U, C∪D), B1⊆B2⊆C and any x∈U, [x]B2⊆[x]B1. 
Proof. It is straightforward.  
Property 1 shows that with the decrease of attribute subset, corresponding equivalence 
classes become larger and larger, thus increase corresponding rule’s support. That is, 
by deleting some attributes from C, we can increase rule’s support according to 
formula (2), which is the foundation of finding decision rules in this paper.  

In fact, by deleting some attributes from condition attribute set, every object in the 
universe U can induce at least one decision rule. Thus, all objects from U can induce a 
lot of decision rules and then form a very large decision rule set. Obviously, many 
rules are redundant and should be removed from rule set. Therefore, one basic 
problem is that what is the criterion of a minimum rule set?  

Definition 2. For decision system DS = (U, C∪D), if ruleφ→ψ is true in DL(C∪D), 

i.e., for any x∈U x|=φ→ψ, then ruleφ→ψ is said to be consistent in DS, denoted by  

|=DSφ→ψ; if there exists at least object x∈U such that  x |=φ∧ψ,then ruleφ→ψ is 

said to be satisfiable in DS.  

Consistency and satisfiability are the basic properties that must be satisfied by 
decision rules. In addition, an efficient and effective decision rule set should be as 
small as possible, that is, it should be minimized. 
 

Definition 3. For decision system (U, C∪D), object x∈U and decision rule r: φ→ψ, 
if x|=r, then it is said that rule r covers object x, or object x is covered by rule r; let 
coverage(r) denote the set of all objects that are covered by rule r and coverage-1(x) 
the set of all rules that cover object x, that is: 

coverage(r) = {x∈U | x|= r}, 
coverage-1(x) = {r′ | r′ cover x, i.e., x∈coverage(r′)}. 
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Definition 4. For decision system (U, C∪D), decision rules r1 and r2, if coverage(r1)
⊆coverage(r2), then it is said that r2 functionally cover r1, denoted by r1 ≤ r2.  

Obviously, those rules that are functionally covered by other rules should be 
removed out from rule set.  

 
Definition 5. For decision system (U, C∪D) and x∈U, [x]B is said to be maximized 
if [x]B ⊆ [x]C and for any B′⊂B [x]B ⊄ [x]D, where B ⊆ C; rule DES([s]B) → DES([s]D) 
is said to be reduced if [x]B is maximized.  

A decision rule set ℘ is said to be minimal if it satisfies the following properties: 

(1) any rule from ℘ should be consistent; 

(2) any rule from ℘ should be satisfiable; 

(3) any rule from ℘ should be reduced; 

(4) for any two rules r1, r2∈℘ , neither r1 ≤ r2 nor r2 ≤ r1. 

When a decision rule set satisfies all the four properties, each rule is effective 
and the whole rule set is minimal and then matching efficiency can be improved 
greatly.  

4 A General Approach to Acquisition of All Minimum Rule 
Sets 

Suppose thatφ be a formula and B = {a1, a2, …, am} be a condition attribute subset. 

Let set(φ) be the set of all attributes that appear in formula φ ,and ∧ B and ∨ B 

respectively be the simple conjunction and the simple disjunction that consists of all 
the attributes appear in B with ∧  as connective, i.e., ∧ B = a1 ∧ a2 ∧ … ∧ am. For 

example, letφ= a ∧ b ∧ c then set(φ)={a, b, c}; let B = {a, b, c} then ∨ B = a ∨ b ∨ c 

and ∧ B = a ∧ b ∧ c.  

Definition 6. For decision system (U, C∪D), let α([x]C, x′) = ∨ {a∈C | x′ ∉ [x]{a}}, 
where x, x′ ∈ U; suppose that U - [x]D = {x′1, x′2, …, x′m}, then the discrimination 
function of [x]C is defined as following: 

f([x]C) = α([x]C, x′1) ∧ α([x]C, x′2) ∧ … ∧  α([x]C, x′m).  

The discrimination function is a conjunctive normal form. By using absorption law 
and distribution law, it can be converted to be a disjunctive normal form, which 
consists of several simple conjunctions. Each simple conjunction corresponds to a 
decision rule. Without loss of generality, suppose that f([x]C) is converted to 
disjunctive normal form ρ1 ∨ ρ2 ∨ … ∨ ρm′, where ρi is a simple conjunction, i=1,2,…, 
m′. Then all the rules that induced by equivalence class [x]C are as follows:  

r1: DES( )( 1
][ ρsetx ) → DES([x]D), 

r2: DES( )( 2
][ ρsetx ) → DES([x]D), 

rm′: DES( )(][
msetx

′ρ ) → DES([x]D). 
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Let R([x]C) be the set of all rules that induced by [x]C, i.e., R([x]C) = {r1, r2, ..., rm′}. 
Suppose that decision class [x]D is an union of several equivalence classes: [x1]C, 
[x2]C, ..., [xp]C, i.e., [x]D = [x1]C∪[x2]C∪... ∪[xp]C. Let R([x]D) = 
R([x1]C)∪R([x2]C)∪...∪R([xp]C). Obviously, some induced rules in R([x]D) are 
redundant and should be removed from rule set. Or in other words, R([x]D) needs to 
be further reduced.  

 

Definition 7. For decision system (U, C∪D) and decision class [x]D, suppose ℘  is 

a subset of rule set R([x]D), i.e., ℘ ⊆ R([x]D), then ℘  is a reduct of R([x]D) if any 

rule in ℘ is consistent, satisfiable, reduced and for any two rules r1, r2∈℘ , neither 
r1 ≤ r2 nor r2 ≤ r1. 

Similar to attribute reduction, R([x]D) possibly has more than one reduct. We can 
also use discrimination function to find all reducts of R([x]D).  

Suppose [x]D = {x1, x2, ..., xh}. Let f([x]D) = [ ∨ coverage-1(x1)] ∧ [ ∨ coverage-1(x2)] 
∧ … ∧ [ ∨ coverage-1(xh)]. Obviously, f([x]D) is a conjunctive normal form. Similarly, 
it can be converted to a disjunctive normal form by using absorption law and 
distribution law, in which each simple conjunction corresponds to a reduct of R([x]D). 
Assume that f([x]D) is converted to disjunctive normal form β1 ∨ β2 ∨ … ∨ βh′. Then all 
reducts of R([x]D) are as follows: set(β1), set(β2), …, set(βh′).  

It is not difficult to prove that for any r ∈ set(βi), r is consistent, satisfiable, 
reduced and for any two rules r1, r2∈ set(βi), neither r1 ≤ r2 nor r2 ≤ r1, i ∈ {1, 2, …, 
h′}. Therefore, set(βi) is a reduct of R([x]D).  

Again, we know that that if [x1]D≠[x2]D then [x1]D∩[x2]D =∅ and then 
R([x1]D)∩R([x2]D) =∅. Hence for any two different decision classes [x1]D and [x2]D, 
we may concurrently calculate all reducts of [x1]D and [x2]D.  

According to analysis above, we can give a complete solution to acquisition of all 
minimum rule sets in decision system DS =  (U, C∪D), which is called Algorithm 1.  

Algorithm 1. For calculating all minimum rule sets. 

(1) compute all different equivalence classes: [x1]D, [x2]D, ..., [xn]D, and let 
DC(DS) = {[x1]D, [x2]D, ..., [xn]D};   

(2) for decision class [xi]D∈DC(DS), find out all equivalence classes whose 
union is equal to [xi]D, and suppose the set of all such equivalence classes is 
EC([xi]D); 

(3) for each [x′]C∈EC([xi]D), compute R([x′]C) using discrimination function and 
then obtain R([xi]D)=∪{R([x′]C) | [x′]C∈EC([xi]D)};  

(4) find all reducts of R([xi]D) using discrimination function, and suppose the set 
of all reducts of R([xi]D) is RED[R([xi]D)];   

(5) compute the set of all minimum rule sets: { 
n

i
i

1=
℘ | i℘ ∈ RED[R([xi]D)], 

where i∈{1,2,…,n}}.  

Steps (2)-(4) can be performed concurrently, with which we can improve the 
efficiency of the approach. The biggest advantage of this approach lies in that it can 
find out all minimum rule sets for a decision system. However, we know that in steps 
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(3) and (4) discrimination function is used, where a conjunctive normal form is 
converted to be a disjunctive normal form using absorption law and distribution law. 
This conversion involves problem of combination explosion and is a NP-hard 
problem. Therefore, the approach is suitable for large data set. Furthermore, it is 
unnecessary to find all minimum rule sets for a decision system in real applications. 
In fact, a special minimum rule set is more desired in most cases. Therefore, the time-
consuming steps, conversion of conjunctive normal form to disjunctive normal form, 
should be abandoned in real applications.  

5 A Heuristic Approach to Acquisition of a Minimum Rule Set 

Suppose that f(t1, t2, …, tr) is a conjunctive normal form, where t1, t2, …, tr are r 
different items that occur in  the formula. They can stand for attributes or rules. 
Further, suppose that after using absorption law: f(t1, t2, …, tr) = 1γ ∧ 2γ ∧ … ∧ kγ , 

where iγ  is a simple disjunction, and for any different simple disjunctions iγ  and 

jγ , neither set( iγ ) ⊆ set( jγ ) nor set( jγ ) ⊆ set( iγ ), i,j∈{1,2,…,k}. Now we 

introduce how to obtain a special simple conjunction of f(t1, t2, …, tr), which 
corresponds to a reduct of attribute set or rule set.  

Let us sort items t1, t2, …, tr in an ascending order by their occurring frequencies in 
formula f(t1, t2, …, tr) and suppose the ascending order is <t′1, t′2, …, t′r>, where t′r 
occurs most frequently in formula f(t1, t2, …, tr) and therefore it is viewed as the most 
important item. That is, the finally obtained simple conjunction should contain some 
important items like …, tr-1, tr and remove some unimportant items like t1, t2, … as 
possible. The approach to obtaining a special simple conjunction of f(t1, t2, …, tr) is 
called Algorithm 2, which is described as follows.  
 
Algorithm 2. For calculating a special simple conjunction (called a reduct of f(t1, 
t2, …, tr) for simplicity). 

(1) let f′ = f(t1, t2, …, tr) 
(2) for i = 1 to r do      

{ 
(3)     for each jγ in f′, if there is no such jγ  in f′ that set( jγ ) = {t′i} then  

    remove item ti from jγ  for each jγ , denoted by jγ = jγ -{ti}; 

(4)    apply absorption law to f′; 
} 

(5) set(f′) is reduct. 

Take f(a1, a2, a3, a4, a5) = (a2 ∨ a3) ∧ (a3 ∨ a4 ∨ a5) ∧ (a1 ∨ a3) ∧ ( a2 ∨ a4) ∧  
( a1 ∨ a4 ∨ a5) for example. It can be observed that the occurring frequencies of a1, a2, 
a5, a3, a4 are 2, 2, 2, 3, 3, respectively. According to Algorithm 2, the reduction steps 
are as follows: 

(1) let f′ = (a2 ∨ a3) ∧ (a3 ∨ a4 ∨ a5) ∧ (a1 ∨ a3) ∧ ( a2 ∨ a4) ∧  ( a1 ∨ a4 ∨ a5); 
(2) remove a1 from f′: f′ = (a2 ∨ a3) ∧ (a3 ∨ a4 ∨ a5) ∧ (a3) ∧ ( a2 ∨ a4) ∧ (a4 ∨ a5); 
(3) after applying absorption law: f′ = (a3) ∧ ( a2 ∨ a4) ∧ (a4 ∨ a5); 
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(4) remove a2 from f′: f′ = (a3) ∧ (a4) ∧ (a4 ∨ a5);  
(5) after applying absorption law: f′ = (a3) ∧ (a4); 
(6) as a result set(f′) = {a3, a4}. 

By using Algorithm 2, we can modify Algorithm 1 to a heuristic approach, which 
is used to acquire a special minimum rule set and is described as follows: 

Algorithm 3. For acquiring a special minimum rule set.  

(1) compute all different equivalence classes: [x1]D, [x2]D, ..., [xn]D, and let 
DC(DS) = {[x1]D, [x2]D, ..., [xn]D};  

(2) for decision class [xi]D∈DC(DS), find out all equivalence classes whose 
union is equal to [xi]D, and suppose the set of all such equivalence classes is 
EC([xi]D); 

(3) for each [x′]C∈EC([xi]D), sort attributes occurring f([x′]C) in an ascending 
order by their occurring frequencies, and then use Algorithm 2 to obtain a 
reduct of f([x′]C), with which we create a rule set, denoted as R′′([x′]C), and 
finally let R′′([xi]D)=∪{R′′([x′]C) | [x′]C∈EC([xi]D)}; 

(4) sort rules occurring in f([x]D) in an ascending order by their occurring 
frequencies, and then use Algorithm 2 to obtain a reduct of f([x]D), with 
which we obtain a rule set, denoted as RED′′[R′′([xi]D)]; 

(5) return a minimum rule set: ∪{RED′′[R′′([xi]D)] | [xi]D∈DC(DS)}. 

6 Example Analysis 

Consider decision system DS =  (U, C∪D), where U = {x1, x2, …, x6}, C = {a1, a2, 
a3 } and D = {d}, presented in Table 1.  

Table 1. A decision system 

U a1 a2 a3 d 
x1 2 3 2 1 
x2 1 1 1 2 
x3 3 3 3 3 
x4 2 2 2 3 
x5 2 2 1 2 
x6 2 3 3 1 

 
According to Algorithm 3, steps to obtain a special minimum rule set are as 

follows: 

(1) by computing, DC(DS) = {{x1, x6},{x2, x5}, {x3, x4}} = {[x1]D, [x2]D, [x3]D}; 
(2) for decision class [x3]D∈DC(DS), EC([x3]D) = {{x3}, {x4}} = {[x3]C, [x4]C}; 

f([x3]C) =  (a1 ∨ a3) ∧ (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a2 ∨ a3) ∧ a1, and through the 
statistics the ascending order is <a2, a3, a1>, and then by using Algorithm 2, the 
obtained reduct of f([x3]C) is {a1}; so we have R′′([x3]C) = {(a1, 3)→(d, 3)}, and 
similarly, we have R′′([x4]C) = {(a2, 2) ∧ (a3, 2)→(d, 3)}; finally, R′′([x3]D) = 
R′′([x3]C)∪R′′([x4]C) = {(a1, 3)→(d, 3), (a1, 2) ∧ (a1, 2)→(d, 3)};  
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(3) by the similar way, we can compute R′′([x1]D) and R′′([x2]D). All the results are 
as follows: 

R′′([x1]D) = {r1: (a2, 3) ∧ (a3, 2)→(d, 1),  r2: (a1, 2) ∧ (a3, 3)→(d, 1)} 
R′′([x2]D) = {r3: (a3, 1)→(d, 2),  r4: (a3, 1)→(d, 2)} 
R′′([x3]D) = {r5: (a1, 3)→(d, 3),  r6: (a2, 2) ∧ (a3, 2)→(d, 3)} 

(4) by computing, we have: coverage-1(x1) = {r1}, coverage-1(x2) = {r3, r4}, 
coverage-1(x3) = {r5}, coverage-1(x4) = {r6}, coverage-1(x5) = {r3, r4}, coverage-

1(x6) = {r2}. Take RED′′[R′′([x2]D)] for example. Because f([x2]D) = 
(r3 ∨ r4) ∧ (r3 ∨ r4) and the ascending order is <r3, r4>, so it can be found that 
{r4} is a reduct of f([x2]D) and therefore RED′′[R′′([x2]D)] = {r4}; by the same 
way, RED′′[R′′([x1]D)] = {r1, r2}, RED′′[R′′([x3]D)] = {r5, r6}; 

(5) the finally obtained minimum rule set is RED′′[R′′([x1]D)]∪RED′′[R′′([x2]D)]∪
RED′′[R′′([x3]D)] = {r1, r2}∪{r4}∪{r5, r6} = {r1, r2, r4, r5, r6}. 

That is, {r1, r2, r4, r5, r6} is a special minimum rule set that obtained by Algorithm 3. 
We can prove that any rule in the rule set is consistent, satisfiable, reduced and for any 
two rules r1, r2 in the rule set, neither r1 ≤ r2 nor r2 ≤ r1. So it is a minimum rule set. 

7 Conclusion  

In rough set theory, many scholars pay more attention to attribute reduction, and not 
too much work pays attention to the acquisition of decision rules with rough set 
theory. Most methods use rough set theory to reduce data in the first place, and then 
use other algorithms, such as CART, SVM[7], to create classifier based on the reduced 
data and use it to classify or predict new data. In fact, rough set theory can also be 
used to extract decision rules from data sets. By creating minimum rule sets, which is 
used as classifiers, we can also achieve better data prediction. In this paper, we 
propose two important algorithms, Algorithm 1 and Algorithm 3. Algorithm 1 can 
find out all minimum rule sets for a given data set theoretically. But it applies 
discrimination function to complete its computing, which is a time-consuming 
operation, so its disadvantage is low efficiency, especially for large data sets. By 
improving Algorithm 1, a heuristic approach to computing a special minimum rule 
set, Algorithm 3, is proposed. Using occurring frequency of attributes or rules as 
heuristic information, Algorithm 3 can rapidly obtain a special minimum rule set. It 
works far more efficiently than Algorithm 1 and has high application value.  
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