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Abstract. An axiomatic system is presented in this paper, which has a
modal operator [J such that Oy = Oy A O2¢, where [J; and [Jz are the
modal operators of the language for the axiom system S5. The axiomatic
system for [J is proved to be sound and complete.
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1 Introduction

The modal logic has many axiomatic systems, such as K,T, D, B, 54 and S5
([1]). The axiom system S5 is characterized by all equivalence frames([1]). The
approximation spaces for Rough sets can be used as the possible-world semantics
for S5. Let an approximate space (U, R) be an equivalence frame (W, R) for S5,
i.e., U = W. Then for any formula ¢, if the interpretation of ¢ corresponds to
a subset X of U, then the lower and upper approximations of X correspond to
the interpretations of Oy and ¢y, respectively, and the equivalence relation R
corresponds to the accessibility relation for O([2]).

Given two approximation spaces (U, R1) and (U, Rz), R1 U Ry may not be an
equivalence relation. Given two modal operators [J; and (s, let Ry and Rs be
the accessibility relations for [1; and [, respectively. Let [ be a modal operator
such that R; U Ry is the accessibility relation for [, that is, M, w E Oy iff for
any w' € W if (w,w’) € Ry U Ry then M, w’ E ¢, which implies and is implied
by that for any w’ € W if (w,w') € Ry then M,w’ F ¢ and for any v’ € W if
(w,w’') € Re then M, w' E ¢, i.e., M,w F Oy and M, w E O if and only if
M, w E Oe.

Let [0 be a modal operator such that for any possible world w, M,w E Cy
ift M,wFE Oyp and M, w F Oayp, i.e., for any formula ¢, Op = Oip A Ogp. In
this paper, we consider the modal operator Cy = [y A L. We shall give the
language, the syntax and the semantics for the modal logic with modal operator
Op = O A Oagp. The axiomatic system for [0 will be given and proved to be
sound and complete.
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The main contribution of this paper is that a propositional modal logic with
a modal operator [y = [y A Osp. The axiomatic system for [J is sound,
and complete with respect to the class of all reflective and symmetric frames,
where the accessibility relation R for O is equivalent to Ry U Ry, where R; is the
equivalence relation for (J; and i = 1, 2.

If Ry = Ry, then the axiomatic system for [J turns out to be S5.

This paper is organized as follows: the propositional modal logic with modal
operator Oy = [y p A sy is described in section 2, including the language, the
syntax and the semantics for the logic. Then we shall give the axiomatic system
for [0 and prove the soundness theorem and the completeness theorem. Section
3 summaries results of the paper and discusses some possible extension of the
logic.

2 The Propositional Modal Logic with Modal Operator
Ue =Uip Al

In this section, we shall give the language, the syntax and the semantics for the
propositional modal logic with the modality Oy = O A Ozp. The axiomatic
system for [ is denoted by 1A% then we prove that 551 A%%2 is sound and
complete.

2.1 The Language, Syntax and Semantics for the Logic

The language for 1 A9%2 contains the following symbols:
e propositional variables: pg, p1, ...;
e logical connectives: -, —;
e modalities: (1, [y, [o;
e auxiliary symbols: (,).
Formulas:

@ = ple1r = @a| =1 |Oepr;
O := Oy Alaep1.

Other operators:

<>Oz) :def (—||:|—|Oz) .

Definition 2.1. A frame F is a triple (W, Ry, R3), where W is a non-empty set
of possible worlds, and R; € W2 and Ry C W?2 are the equivalence relations
defined over the members of W and the accessibility relations for [J; and s,
respectively.

Definition 2.2. A model M is a quadruple (W, Ry, Ro, I), where (W, R1, R2)
is a frame and [ is an interpretation such that for any propositional variable p
I(p) C W and for any w € I(p) p is true in w.
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A satisfaction relation F, between any formula ¢ and any possible world w,
is defined as follows:

Definition 2.3. Given any model M, any possible world w € W and any formula

®,

w € I(p) ifp=p

M, w¥ ¢ if o = =1
MwE @iff { MwE o1 = M,w = @) if o =1 = 2

for all w' € W if wRjw' then M, w’ E 1, and
for all w’ € W if wRow' then M, w' F ;1 if o = Opy

By the definition of the satisfaction relation, we can give the following defini-
tion:

Definition 2.4. A formula ¢ is valid in a model M, dented by M E ¢, iff for
any w € W M,w F ¢; a formula ¢ is valid in a frame F', denoted by F' E ¢, iff
for any model M based on F' M F ¢; let C be a class of frames. A formula ¢ is
valid in C iff for any F' € C F F ¢; X F¢ @ iff for any frame F € Cif FE X
then F E . If X = () then F¢ .
Now we give the following axiom schemas and inference rules for
e Axiom schemes:

L1 ¢ = (¥ = ¢)

L2 (¢ = (W = p) = (¢ =2 ¢) = (9= p)
L3 (¢ = —p) = (¢ = ¢)

L4 O(p —¢) = (Op — Oy)

L5 Op — ¢

L6 ¢ — O0p

L7 Oy — Uil

L75 Uap — Uallap

S5 /\552.

e Inference rules:

P =Y
(MP) o

@
™5

Definition 2.5. A formula ¢ is provable from I, denoted by I" - ¢, if there is a
sequence of formulas ¢1, ..., ¢, such that ¢ = ¢, and for each 1 < i < n, either
; is an axiom or a formula in I, or is deduced from the previous formulas via
one of the deduction rules.

2.2 The Soundness Theorem

This section is to prove the soundness theorem by induction on the length of
proofs. Before giving the proof, we give the following lemmas:
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Lemma2.1. Each axiom schema is valid.

Proof. As for the axiom schema L1, L2, L3, we do not check their validity
and two references are [1] and [3].

(L5) By the definition 2.3, it is easy to prove it.

(L6) By the definition 2.3, it is easy to prove it.

(L71) Since the accessibility relation Ry for [0y is an equivalence relation, it
follows that [y — 01005 ¢ is valid.

(L73) Since the accessibility relation Rg for [y is an equivalence relation, it
follows that (o — el is valid. O

Lemma2.2. The deduction rules preserve validity.

Proof. We prove that (IV) preserves the validity. Since for any model (W, Ry, Ro, I)
based on any frame (W, Ry, Ro) and any w € W, M, w |= ¢.

Let wy be any possible world. Since Ry and Ry are the equivalence relations
on W, we can obtain that for any wj € W if wy Rjw] then M, w] E ¢, and for
any w] € W if wy RowY then M, w{ E ¢. It follows that M, w; F Oy. Since for
any wy € W M, wy E Oy, it follows that F Q. O

Theorem 2.1(The Soundness Theorem). For any set of formulas I" and
formula ¢, if I' F ¢, then I' E ¢.

Proof. For any set of formulas I' and formula ¢, since I' F ¢, ¢ is the last
member of a sequence which is a deduction from I'. So we can use induction on
the number of the sequence to prove this theorem as follows:

For the base step, the sequence has only one formula, namely ¢. Then ¢ must
be an axiom of %1 AS%2 or a member of I, and then I' = ¢.

Now suppose that the sequence contains n formulas,where n>1,and suppose
as induction hypothesis that I' = « follows from I - a ,which sequence is fewer
than n members. There are the following cases:

Case a. ¢ is an axiom of “®*A®52 or a member of I, then we have I' |= ¢

Case b. ¢ is obtained by modus ponens rule from a formula v and a formula
1) — ¢ in the sequence. So by induction hypothesis, it obtains that I = ¢ and
I' = ¢ — ¢, then it follows that I' = .

Case c. ¢ = [ is obtained by the inference rule N from . So by induc-
tion hypothesis, it follows that I' = 4. Since if for any model (W, Ry, Ry, 1)
based on any frame (W, Ry, Re) and any w € W M, w F 1 then for any model
(W, Ry, R, I) based on any frame (W, Ry, Ro) and any w € W M,w E Oy, it
follows that I" |= 0. O

2.3 The Completeness Theorem

The completeness theorem is to be proved in this section. The proof method of
the complete theorem is similar to the classical canonical model method ([1]).
We shall construct two relations on W and prove whether the two relations are
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equivalence relations or not. And one relation corresponds to the accessibility
relation for [Jy, while the other corresponds to the accessibility relation for [s.

Definition 2.6. I' is consistent iff there is no finite set {¢1,...,on} C I" such
that:

F (i A e App).

By definition 2.6, we can prove that I" is inconsistent iff there is some formula
o such that I' - ¢ and I' F —.

Lemma 2.3. Suppose that X' is a consistent set of formulas. Then there is a
maximal consistent set of formulas X* such that X C X*.

In constructing a model in which the possible worlds are maximal consistent
sets of formulas we will have to specify when one world is accessible from an-
other(that model, in this paper, is also called canonical model). Thereby, the
accessibility relation R; and Rs, in the canonical model, is defined as follows:

Definition 2.7. For any two distinct maximal consistent sets 27,25, we define
two binary relations R; and Rz on W as follows:

(1) We shall say that X Ry X3 iff X7 and X3 satisfy the following condition:

For any formula ¢ if Op € X} then ¢ € X35 (written:S—(X}) = {¢ : Op € Xf
b,

(2) We shall say that X Ry X5 iff X7 and X5 satisfy the following condition:

For any formula ¢ if Op € X7 then Oy € X5 (written: S(X7) = {dp : Op €
I}

Lemma 2.4. Let I'™* = { X5, X7, ...} be the set of all maximal consistent sets. If
for any i,j € N we define X7 R, X7 iff ST(Xr) C X%, and XY Ro XY iff S(XF) C
Z; , then both the relation R; and Rs are equivalence relations on W.

Proof. (1) In order to prove that R; is an equivalence relation, we shall prove
the following three conditions:

1) For any i € N, if X € I'* then YR, X7.

2) For any X7, E]’f‘ e, if 2;312; then E;Rlzgk.

3) For any X7, X5, X3 € I' if X¥R1 X5 and X5 Ry X5 then X§ Ry X3,

1). For any ¢ € N, we shall prove S~ (X7F) C X¥. For any formula ¢, if Op € X¥
then ¢ € S™(X}). Since Op — ¢(L5) and Op € XF, ¢ € XF. It follows that
§7(55) € 5

2). We shall prove that if S7(X}) C X% then S~ (X7) C X7, that is to say, we
shall prove that for any formula g if 13 € X% then 8 € X7. Suppose ¢ X,
-f € XF. By L6 and - € X} it follows that (003 € XF.

Since S7(X7) C X7, it follows that O—3 € X7, that is, -0J8 € X7. Since
—0p € X% and LB € X7, X7 is not consistent, which is a contradiction to the
hypothesis of this lemma.

3). We need to prove that if S™(X7) C X3 and S—(X3) C X% then S~ (X7) C
X3, that is to say, for any formula §, if (05 € X then 8 € X3. We can prove it
by L5 and L7;.
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What we need to explain is that R is the accessibility relation for [J; and in
this case for any formula ¢ Uy = ;. Thereby, we can use the axiom schema
L7,.

(2) Now, we prove that the relation Ry is an equivalence relation. the following
three conditions shall be proved:

1) For any i € N, if X} € I'* then X} R, X7,

2) For any Xf, X% € I', if X} Ro X% then X% Ro XY,

3) For any X7, X5, X5 € I' if X¥Ro X5 and X5 Ry X5 then X7 Ry X5,

It is easy to prove the item 1)-3). We omit the proof procedures. ]

Lemma 2.5. Let I" be any consistent set of formulas containing =i, then
ST(IU{—} is consistent and S(I") U {—} is consistent, where S™(I") = {¢:
Operl }and S(I') ={0¢:Op eI }.
Proof. (1) We shall prove that S~(I") U {—¢} is consistent as follows:
Suppose that S~ (I") U {—%} is not consistent. Then there exists some finite
subset {¢1, ..., ont U {9} of ST(I") U {4} such that - =(v1 A ... A A ).
Then

Flpi A Apn) = = ifE0O(p1 Ao App) = 9
- D01 A oo A on) — O
iff = (Op1 A ... ADwy) — Oy
iff - =(0py A ... ADgp A -0)

Thereby, {Oe1, ..., Opp }U{-0%} is not consistent. By the definition of S~ (I")
it follows that {Opq,...,0p,} U {-0O¢} is a subset of I'. Thereby, I" is not
consistent, which is a contradiction to the hypothesis of this lemma.

(2) We shall prove that S(I")U{—)} is consistent as follows. Suppose that S(I")U
{—} is not consistent. Then there exists some finite subset {1, ..., Opp, FU{-9}
of S(I') U {—%} such that F =(O¢1 A ... ADp, A —9). Then

F(Opr Ao ADgy) = 0 iff FO0¢p; A ... ADgy,) = 9
iff FOp1 Ao AQp,) = Ov
ifft F(Opi A...AOpy,) — 0Oy
iff F—=(00¢1 A ... AOOp, A -Oy)

Thereby, {001, ...,00¢,} U {-0¢} is not consistent. For any Cy;, by
L72(0¢ = o) it follows that OO € I', where i=1,...,n. Thereby, {00y, ...,
O0p, } U {-0O} is a subset of I'. Then I is not consistent, which is a contra-
diction to the hypothesis of this lemma.

What we need to explain is that Rs is the accessibility relation for (s and in
this case for any formula ¢ Ul = Oyp. Thereby, we can use the axiom schema
L7s. |

The canonical model for 1 A%%2 M is like any other model, a quadruple
(W, Ry, R, I). W is the set of all sets of maximal consistent sets of formulas.
Te. w € W iff w is a maximal consistent set of formulas. If w and w’ are both
in W, then wRyw' iff S~ (w) C w’. And if w and w’ are both in W, then wRyw’
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iff S(w) C w'. For any propositional variable p I(p) C W, and for any w € I(p)
p is true in w iff p € w. For any other formula this has to be proved as follows:

Lemma 2.6. Let M = (W, Ry, R2, I) be the canonical model for 5> AS%2. Then
for any formula ¢ and any world w, M,w F ¢ iff p € w.
Proof. We prove the lemma by induction on the structure of formulas.
Case a. ¢ := p: By definition, this lemma holds.
Case b. ¢ := —-a:
M,wE —-aiff MwkF «
iff o ¢ w
iff o € w

Casec. p:=a— f:

a—pfewiff =(a— B) ew
iff @ € wand -5 € w
iff M,wE o and M,w¥ 3
iff MwEa— 0

Case d. ¢ :=UOa:

(<) Subcase d.1. Oa € w: By the definition of Ry, R2, we have the following
two cases:

(1) For any w’ € W, if wRyw’ then a € w'. o € w’ iff M, w’ E o by induction
hypothesis. Then M, w F Oa because for any w’ if wRjw’ and M, w' F «.

(2) For any w' € W, if wRyw' then Oa € w'. Since Da € w' and Do — «,
a€cew'. ae€w iff M,w' E «a by induction hypothesis. Then M, w F Oa because
for any w’ if wRew’ and M,w’ E «.

Subcase d.2. -Oa € w: By the lemma 2.5 , both S~ (w) U{-a} and S(w)U
{—a} are consistent. By the lemma 2.3, we can enlarge S~ (w)U{—-a} and S(w)U
{—a} into maximal consistent sets of formulas w; and w2, respectively. Thereby,
there exist wq,ws such that S~ (w) C wy and S(w) C ws.

Since S™(w) C w;y and S(w) C we, by the definition of R; and Rs, it follows
that wRw; and wRows. For —a € wy and —« € we, it follows that M, w; = —«
and M, wy = —a by induction hypothesis. So there exist wq, ws such that wRyw;
and wRowe and M, w; E —a and M, ws | —«a. Therefore, by the definition 2.3,
it follows that M, w ¥ Oa.

(=) Subcase d.3. M, w F Oa: By the definition 2.3, we have:

(1) For any w’ € W, if wRyw' then M,w' E a; and

(2) For any w’ € W, if wRew' then M, w' F a.

From (1), we have:

(3) For any w’ € W, if wRyw’ then o € w’ by induction hypothesis.

From (2),we have:

(4) For any w’ € W, if wRew' then o € w' by induction hypothesis.

Assume —[Ja € w. Since w is a maximal consistent set of formulas, it fol-
lows that there exists wy,ws € W such that wRiw; and wRows and —a € wy
and—a € wsy by the lemma 2.5. So =« € w is a contradiction to (3), and -« € w;
and —a € wy is also a contradiction to (4). Thereby, Oa € w for w is a maximal
consistent set of formulas.
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Subcase d.4. M, w ¥ Oa: By the definition 2.3, we have:

(1) There exists w; € W such that wRyw; and M, wy ¥ «; or

(2) There exists wy € W such that wRewq and M, wy ¥ a.
From (1), by induction hypothesis, —a € wy; and from (2), ~« € wsy. Suppose
Oa € w, by the definition of R; and Rs, it follows that:

(3) For any w' € W if wRjw' then o € w'; and

(4) For any w’ € W if wRew’ then Do € w'.
From (4) and L5, we have:

(5) For any w’ € W if wRew’ then a € w'.
It follows that (3) is in contradiction with wRyw; and —a € wy. And (5) also
is in contradiction with wRows and « € wy. Thereby, =Oa € w for that w is a
maximal consistent set of formulas. |

Theorem 2.2 (The Completeness Theorem). For any set of formulas I
and formula ¢, if I F ¢, then I' - .

Proof. Suppose I' ¥ ¢, so I' U {—¢} is consistent. Then there is a maximal
consistent set of formulas w such that I" U {=¢} C w by the lemma 2.3.

Let M = (W, Ry, R, I) be a canonical model, where W is the set of all sets
of maximal consistent sets of formulas. L.e. w € W iff w is a maximal consistent
set of formulas. If w and w’ are both in W, then wRyw’ iff S~ (w) C w’. And if
w and w’ are both in W, then wRyw’ iff S(w) C w'. By the lemma 2.4 it follows
that R; and R, are the equivalence relations on W.

For any formula o € I' U {—¢}, o € w. By the theorem 2.6, M,w F «a. So
M,wE X and v E =y, which is a contradiction to X F .

So for any set of formulas I" and formula ¢, if I' F ¢, then I" - ¢. O

3 Conclusion

In this paper, we present an axiomatic system for a modality Oy = Uy A Oap,
and prove that the axiomatic system for [J is sound and complete. The axiomatic
system for O is different from S5. What we need to point out is that L7, and L7,
are not the axiom schemas for [, which is needed when proving the completeness
theorem. An interesting problem is to give a sound and complete axiomatic
system for the modality corresponding to the accessibility relation R = R N R,
where the equivalence relation R; is the accessibility relation for [J;,7 = 1, 2.
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