
 

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 84–95, 2014. 
© IFIP International Federation for Information Processing 2014 

APP-LRU: A New Page Replacement Method  
for PCM/DRAM-Based Hybrid Memory Systems 

Zhangling Wu1, Peiquan Jin1,2, Chengcheng Yang1, and Lihua Yue1,2 

1 School of Computer Science and Technology,  
University of Science and Technology of China, Hefei, China 

2 Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, China 
jpq@ustc.edu.cn  

Abstract. Phase change memory (PCM) has become one of the most promising 
storage media particularly for memory systems, due to its byte addressability, 
high access speed, and low energy consumption. In addition, hybrid memory 
systems involving both PCM and DRAM can utilize the merits of both media 
and overcome some typical drawbacks of PCM such as high write latency and 
limited lifecycle. In this paper, we present a novel page replacement algorithm 
called APP-LRU (Access-Pattern-prediction-based LRU) for PCM/DRAM-
based hybrid memory systems. APP-LRU aims to reduce writes to PCM while 
maintaining stable time performance. Particularly, we detect read/write intensi-
ty for each page in the memory, and put read-intensive pages into PCM while 
placing write-intensive pages in DRAM. We conduct trace-driven experiments 
on six synthetic traces and one real OLTP trace. The results show that our pro-
posal is able to reduce up to 5 times of migrations more than its competitors. 

Keywords: Phase change memory, Page replacement policy, Hybrid memory. 

1 Introduction 

Recently, the big data concept leads to a special focus on the use of main memory. 
Many researchers propose to use a large main memory to improve the performance of 
big data processing. However, the increasing capacity of main memory introduces 
many problems, such as increasing of total costs and energy consumption [1]. Both 
academia and industries are looking for new greener memory media, among which 
the Phase Change Memory (PCM) receives much attention [2]. PCM is one type of 
non-volatile memories, and provides better support for data durability than DRAM 
does. Further, it differs from other media such as flash memory in that it supports byte 
addressability. Because of the unique features of PCM, some people argue that PCM 
may replace DRAM in the future, as shown in Fig. 1(a). However, PCM has some 
limitations, e.g., high write latency, limited lifecycle, slower access speed than 
DRAM, etc. Therefore, it is not a feasible design to completely replace DRAM with 
PCM in current computer architectures. 

A more exciting idea is to use both PCM and DRAM to construct hybrid memory 
systems, so that we can utilize the advantages from both media [2, 3]. PCM has the 



A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 85 

 

advantages of low energy consumption and high density, and DRAM can afford near-
ly unlimited writes. Specially, PCM can be used to expand the capacity of main 
memory, and DRAM can be used as either a buffer for PCM, as shown in Fig. 1(b) or 
the secondary main memory like DRAM, as shown in figure 1(c). Presently, both the 
architectures illustrated in Fig. 1(b) and (c) are hot topics in academia and industries. 
Many issues need to be further explored, among which the most focused issue is the 
buffer management schemes for hybrid memory systems involving PCM and DRAM. 
The biggest challenge for PCM/DRAM hybrid memory systems is that we have to 
cope with heterogeneous media. Traditional management schemes yield some specific 
page replacement policies that are designed either for DRAM-only main memory or 
for the system shown in Fig. 1(b). However, in this paper we focus on the hybrid 
memory systems with the architecture shown in Fig. 1(c). 

 

Fig. 1. Architectures of PCM-based memory systems [4] 

The objective of this paper is to design an efficient page replacement scheme for 
PCM/DRAM-based hybrid memory systems as shown in Fig. 1(c). We propose a 
novel method called APP-LRU (Access-Pattern-Prediction-aware LRU). This method 
employs an algorithm to predict the access pattern changes and further uses the access 
patterns to reduce writes to PCM and keep stable time performance for PCM/DRAM-
based hybrid memory systems. The main contributions of the paper are summarized 
as follows: 

(1) We present a new page replacement method named APP-LRU for 
PCM/DRAM-based hybrid memory systems. APP-LRU records the access history of 
each page using a history table to identify the read and write intensity of pages. As a 
consequence, read-intensive pages are stored in PCM and write-intensive pages are 
saved in DRAM. Further, we propose an LRU-based on-demand migration algorithm 
to move pages between PCM and DRAM. (Section 3) 

(2) We conduct trace-driven experiments in a simulated PCM/DRAM-based hybrid 
main memory environment under six synthetic traces and one real OLTP trace, and 
compare our proposal with several existing methods including LRU, CLOCK-DWF 
and Hybrid-LRU. The results show that our proposal reduces up to 5 times of total 
migrations more than its competitors. Meanwhile, it maintains comparable run time in 
all experiments. (Section 4) 

2 Related Work 

PCM is a kind of alternative memory devices because of its merits such as high densi-
ty, low idle energy and so on. However, its limited life and long write latency is the 



86 Z. Wu et al. 

 

main obstacles when implement traditional main memory management policies on 
PCM-based memory system.  

There are many researches focus on reducing redundant writes to PCM, such as 
enhancing the fine-grained management approach [2, 3] with a Data Comparison 
Write (DCW) scheme that utilizes the bit alterability feature of PCM and only updates 
the changed bits [5-7]. However, these works are towards hardware design, while this 
paper employs a software-based research to reduce PCM writes. Moreover, Using 
DRAM to gather data writes are also a commonly used method for reducing the total 
number of writes to PCM [1, 8-11]. In this method, PCM is used as main memory, 
and thus we have to cope with heterogeneous memories in such hybrid memory sys-
tems. This hybrid architecture brings new challenges to buffer management schemes, 
because traditional page replacement policies mainly focus on improving hit ratios, 
while new policies for hybrid memory systems have to consider the unique features of 
different storage media in addition to keeping high hit ratios.  

Recently, several page replacement policies have been proposed for PCM/DRAM-
based hybrid memory systems. The page replacement policy denoted as the “Hybrid-
LRU” method proposed by Hyunchul Seok et al. [10] and CLOCK-DWF proposed by 
Soyoon Lee et al. [11] are based on hybrid PCM/DRAM main memory. Hybrid-LRU 
monitors the access information of each page, assigns different weights to read and 
write operations, and predicts page access patterns. After that, it moves write-
intensive data to DRAM and moves read-intensive data to PCM. However, inappro-
priate placement of a page when it is first read into memory will cause additional 
migrations between PCM and DRAM. The main idea of CLOCK-DWF is placing 
pages that are going to be updated to DRAM. If the data to be updated is currently 
stored in PCM, a migration is triggered to move the data from PCM to DRAM, and if 
DRAM is full at the same time, cold data stored in DRAM will be migrated to PCM. 
But CLOCK-DWF may cause a lot of unnecessary data migrations between PCM and 
DRAM since it often causes migrations if a page to be written is in PCM. As a conse-
quence, both Hybrid-LRU and CLOCK-DWF introduce lots of data migrations be-
tween PCM and DRAM. This situation will degrade the overall time performance of 
buffer management schemes, because many additional CPU and memory operations 
are introduced. 

The LRU approach has been widely used in the buffer management for flash mem-
ory based data management [14, 15]. Our work differs from these works in that we 
are mainly towards the architecture shown in Fig. 1(c). There are also some previous 
works focusing on hybrid storage systems involving flash memory and magnetic disks 
[16, 17]. These studies are orthogonal to our work, as we concentrate on the memory 
layer but they focus on the SSD/disk layer shown in Fig. 1. 

3 The APP-LRU Method 

In this section, we describe the details of APP-LRU. APP-LRU aims for reducing 
PCM writes but keeping stable time performance. For a tree-structured index, the leaf 
nodes receive more updates than the internal nodes do. Generally, file data accesses 
have certain access patterns. On the other side, the access patterns of data are usually 



A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 87 

 

stable during a certain time period [12]. This feature is used in our proposal to  
improve the performance of buffer management. 

The overall architecture of the hybrid memory system that APP-LRU is towards is 
shown in Fig. 2. APP-LRU maintains three lists including one LRU list and two sub-
lists (denote as “List-PCM” and “List-DRAM”). The LRU list is used to maintain the 
pages in both PCM and DRAM. A page is put in the MRU position of the LRU list 
when it is accessed. The structures of both List-PCM and List-DRAM are shown in 
Fig. 2. All the pages in List-PCM are divided into several groups, so are those pages 
in List-DRAM. The pages in the same group of List-PCM have the same local-write 
counts, and the pages in the same group of List-DRAM have the same local-read 
counts. The local-read (or local-write) count is the number of read (or write) opera-
tions aggregated since the page is stored in DRAM (or PCM). For example, if a new 
page is read from disk to PCM, its local-write count and total read/write count is 0, if 
a page is migrated from DRAM to PCM, its local-write count is reset to 0, but total 
read/write count does not change. Different groups are ordered by the local-read/write 
count of the pages in the groups. The pages in the head group among List-PCM (List-
DRAM) have the maximum write (or read) counts. Whenever a page is read from disk 
or moved from DRAM to PCM (or from PCM to DRAM), it is placed to the tail of 
List-PCM (or List-DRAM). When a DRAM page is read or updated, its group will be 
changed, either from List_PCM to List_DRAM or vice versa. Basically, APP-LRU 
employs two algorithms. One is to predict page access patterns and the other is to 
perform page replacement and migration. The details are described below. 

 

Fig. 2. Overall architecture of hybrid system 

3.1 Page Access Pattern Prediction 

Unlike DRAM-only memory systems, a hybrid memory system consists of both PCM 
and DRAM. First, storing data with frequent writes in PCM will introduce the prob-
lem of performance degradation, because the write operations to PCM spend much 
more time than DRAM does. This will also reduce the lifetime of PCM. Second, read 
and write amplification problems will occur because of data migrations between PCM 
and DRAM. In order to reduce the number of extra read and write operations caused 
by migrations, we propose a page access pattern prediction algorithm to predict the 
future assess patterns of pages. 



88 Z. Wu et al. 

 

The basic idea of access pattern prediction is to record the read and write counts 
for each logical page and then to distinguish read-intensive pages from write-intensive 
pages. For this purpose, we first maintain some metadata as shown in Fig. 3.  

 

Fig. 3. Metadata for recording page access information 

If a page is selected as a victim to be replaced, we process the recorded metadata 
using Equation (1). 

).,(

),/(/)(

5001

1

<≤−=

−×+=×+×−=

ααβ

βαα prepreprecur SWRSSWRS

        

(1) 

In Equation (1), R and W are the total counts of read and write operations to the re-
placed page during its staying in the memory. Spre is the ratio of page’s read count to 
its write count in the past. Therefore, if the Spre of a page exceeds a certain threshold, 
we regard this page as read-intensive. Otherwise, the page is marked as write-
intensive. Since the influence of access histories on the prediction of read and write 
intensity is becoming weak with time, we introduce a degrading factor α to adjust  
the influence of access histories to the prediction. On the other hand, the current reads 
and writes have a big impact on the future access pattern, thus, it is necessary to in-
troduce a factor to reflect the importance of R/W in the prediction, as denoted as β in 
(1). It is reasonable to set this factor larger than α  because of the recency feature in 
data accesses. In our method, we let β = 1−α , and α  is smaller than 0.5. 

Each page’s Spre is stored in the metadata table, which is used to decide where to 
place if the page is accessed again in the future. The metadata table is stored in PCM, 
and can be found even after power failure accidents. We limit the memory space used 
for metadata table since the memory capacity is still small compared to disk. Howev-
er, the concrete capacity of the metadata table is decided based on the actual environ-
ment. We also use LRU to manage the metadata table in order to remain relatively hot 
page access information in the metadata table. In order to alleviate wear out problem, 
we introduce a small SRAM to buffer metadata table, and the information stored in 
SRAM will be flush to PCM at set intervals. Since this method aims at logical pages, 
so we can get the access information from the OS level. 



A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 89 

 

3.2 Page Replacement and Migration 

In this section, we present the page replacement and migration procedure of APP-
LRU. We maintain a LRU list and two sub-lists. These lists are used to select victims 
for replacement, as well as to perform page migrations. 

When a page fault occurs, the space allocation for the faulted page is based on the 
access history information in the metadata table (if exists). The page allocation algo-
rithm is shown in Algorithm 1. The function get_free_page() in Algorithm 1 return a 
free memory page. If this function is called with a parameter dram (or pcm), the func-
tion will allocate a DRAM (or PCM) page (if exist), but if there is no free DRAM (or 
PCM) page, the function will allocate a PCM (or DRAM) page (if exist), or allocate 
the selected victim page from LRU position of LRU list (Before the victim is evicted, 
we calculate its read/write ratio based on Equation (1), and store the value in metadata 
table). If the faulted page does not have access histories after looking through the 
metadata table (Line 1), we call the function without parameter which means faulted 
page has no specific medium type requirement (Line 17). Otherwise, if the read/write 
ratio of the faulted page exceeds a certain threshold R_W_Threshold, it means that the 
faulted page probably tends to be read and should be placed in PCM, so we call 
get_free_page() function with parameter pcm (Line 4). If the selected victim page is 
in DRAM, we move the page that is in the head group of List-PCM to the location 
occupied by the page to be replaced in DRAM (Line 6 ~ 8). Similarly, if the ratio is 
less than the threshold, it means that the faulted page possibly is write-intensive and 
should be stored in DRAM (Line 10 ~ 16). As a consequence, we get a free page for 
accommodating the faulted page. 

 
Algorithm 1. Page_Allocation 
Input: faulted page addr p 
Output: an empty memory page q 
1:   history(p) = get access history of page p in metadata table; 
2:   if (history(p) ≠ null) then   /* the page p has been accessed before*/ 
3:      if (history(p).Scur > R_W_Threshold) then 
4:          q = get_free_page(pcm);  
5:          if (q belongs to PCM) then return q; 
6:          else    /*q belongs to DRAM*/ 
7:              select r from the head of List-PCM; 
8:              move r to q and insert q to the tail of List-DRAM;  
9:              return q=get_free_page(pcm); /*r is empty, r belongs to PCM*/ 
10:     else  
11:         q = get_free_page(dram); 
12:         if (q belongs to DRAM) then return q; 
13:         else    /*q belongs to PCM*/ 
14:             select r from the head of List-DRAM; 
15:             move r to q and insert q to the tail of List-PCM; 
16:             return q=get_free_page(dram); /*r is empty, r belongs to DRAM*/ 
17:    return q = get_free_page(); 

 
Next, we explain the page replacement algorithm of APP-LRU, as shown in  

Algorithm 2. If a requested page is not found in memory, we allocate a new space for 
it using Algorithm 1. We also put the page to the MRU position in the LRU list (Line 



90 Z. Wu et al. 

 

1 ~ 5). If the page request is a read request and belongs to DRAM, we increment the 
read count of the page and adjust the page’s position in List_DRAM. If the page re-
quest is a write request and belongs to PCM, we increment the write count of the 
page, set a dirty mark, and adjust the page’s position in List_PCM. (Line 6 ~ 13). 

The access pattern of normal data is not likely to change dramatically, so the 
page’s read/write ratio can accurately reflect the access tendency after a long time 
accumulation based on the theory of statistics. Why we don’t choose the read/write 
ratio as the assessment standard of the migration? It is because the read/write ratio of 
in memory pages is a short-term computed result, so have no statistical. Even more, 
the pages that have a similar read/write ratio value may reflect different access fre-
quency, but the warmer page’s ratio is much more accurate if the moment when they 
are read into main memory is close. 

 
Algorithm 2. Page_Replacement 

Input : page p logical address, operation type op 

1:   if (miss) then /* page fault */  
2:       q= Page_Allocation(p); 
3:       insert p to q and adjust the position of q in LRU list; 
4:   else 
5:       adjust the position of q in LRU; 
6:   if ( op is read) then  
7:       read_count(p)++; 
8:       if (p is in DRAM) then 
9:           adjust the position of q in the List-DRAM; 
10:  else  
11:      dirty(p)=1; write_count(p)++; 
12:      if (p is in PCM) then 
13:          adjust the position of q in the List-PCM; 

4 Experimental Results 

In the experiments, we use the LRU policy [13] as the baseline method, and also 
compare two different state-of-the-art approaches including CLOCK-DWF [11] and 
Hybrid-LRU [10]. Both CLOCK-DWF and Hybrid-LRU are designed for 
DRAM/PCM-based hybrid memory systems.  

4.1 Experimental Setup 

We develop a hybrid memory system simulator to evaluate the performance of page 
replacement policies. The system adopts unified addressing mode, DRAM takes the 
low-end addresses and PCM takes the high-end addresses. The page size is set to 2 
KB. The total size of memory space is constant, and we vary the size of PCM used in 
the hybrid memory system ranging from 50% to 86%, which corresponds to the ratio 
of PCM to DRAM from 1:1 to 1:6 to evaluate the performance.  



A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 91 

 

We use both synthetic and real traces in the experiments, as shown in Table 1. 
Memory footprint in the table refers to the amount of different pages that the traces 
reference. There are six synthetic traces used with different localities and read/write 
ratios. For example, the trace T9182 means that the read/write ratio in this trace is 
90% / 10%, i.e., 90% reads plus 10% writes, and the reference locality is 80% / 20%, 
indicating that 80% requests are focused on 20% pages. The real trace is a one-hour 
OLTP trace in a bank system and contains 470,677 reads and 136,713 writes to a 
20GB CODASYL database (the page size is 2KB). 

Table 1. Synthetic and real traces used in the experiments 

Trace 
Memory  
Footprint 

Read/Write 
Ratio 

Locality 
Total  

Accesses 
T9182 10,000 90% / 10% 80% / 20% 300,000 

T9155 10,000 90% / 10% 50% / 50% 300,000 

T1982 10,000 10% / 90% 80% / 20% 300,000 

T1955 10,000 10% / 90% 50% / 50% 300,000 

T5582 10,000 50% / 50% 80% / 20% 300,000 

T5555 10,000 50% / 50% 50% / 50% 300,000 

OLTP 51,880 77% / 23% ~ 607,390 

4.2 Results on the Synthetic Traces 

We use Equation (1) to predict defaulted pages’ access patterns. Before we conduct 
the comparison experiments, we have to first determine the appropriate value of β to 
minimize the total PCM writes. Fig. 4 shows the total PCM write counts under the 
T5555 trace when we vary β from 0.5 to 1. It shows an obvious decrease and increase 
trend of PCM writes when the value of β increases, and the write count is minimized 
when β is 0.7. Therefore, we set the value of β as 0.7 in the following experiments. 

 

Fig. 4. PCM write counts when varying the parameter β 

 



92 Z. Wu et al. 

 

Figure 5 shows the number of total PCM writes induced by page faults, write oper-
ations of traces and migrations between PCM and DRAM. From the figures, we can 
see APP-LRU reduces maximum 11% total PCM writes with few migrate operations 
compared to LRU. This is because that APP-LRU can effectively distinguish write-
intensive pages and store them in DRAM, making these pages’ write operations take 
place on DRAM at the beginning. By doing so, it not only eliminates needless migra-
tions but also reduce PCM writes. As APP-LRU has no history information to predict 
pages’ read/write intensity when a page is first accessed, the improvement is limited, 
but we can get much more reduction as time goes by. The gap of PCM write counts 
between APP-LRU and LRU increases gradually as PCM/DRAM size ratio increases 
that means proposed policy perform much better when the PCM/DRAM ratio increas-
es. However, APP-LRU incurs more PCM writes than CLOCK-DWF in most cases, 
that is because the PCM writes in CLOCK-DWF are only incurred by migration and  
 

 

Fig. 5. Total PCM write counts on synthetic traces 



A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 93 

 

page fault, and every write operation from workloads only happens on DRAM no 
matter where the page located in, which will induce a large number of migrations 
when the write operation is hit in PCM and have a significant effect on memory 
access latency.  

Figure 6 shows the total migrations between PCM and DRAM of various replace-
ment algorithms. Figure 5 shows CLOCK-DWF incurs minimum PCM writes com-
pared to others, but Fig. 6 shows that it takes much more migrations in most cases 
which will introduce extra memory writes and reads. From this figure, both CLOCK-
DWF and Hybrid-LRU incur much more migrations in most cases, but APP-LRU 
reduces nearly up to five times total migrations more than CLOCK-DWF. The migra-
tions of our proposal on T9155 and T9182 are a bit larger than CLOCK-DWF. This is 
because that the migrations of CLOCK-DWF are only triggered by write operations, 
but in T9155 and T9182 there are only 10% write operations.  

 

 

Fig. 6. Total migrations on the synthetic traces 



94 Z. Wu et al. 

 

4.3 Results on the Real OLTP Trace 

Figure 7 shows the results on the real OLTP trace. The left part of Fig. 7 shows the 
total writes on PCM. The OLTP trace exhibits a read-incentive pattern and its read 
locality is much higher compared with write locality. These characteristics make 
APP-LRU cannot distinguish the write-intensive page since most pages are read-
intensive with only few write operations. From the figure, we still can identify that 
APP-LRU reduce PCM’s writes compared with LRU, which means APP-LRU policy 
is effective against reducing trace’s write operations located on PCM. In conclusion, 
the APP-LRU algorithm has poor effect on reducing PCM write counts, but is better 
than both CLOCK-DWF and LRU. Furthermore, APP-LRU still can reduce the total 
PCM write counts as the size of PCM is larger than DRAM. 

The right part of Fig. 7 shows total migrations for real OLTP trace. From the fig-
ure, we can see that the migrations of our proposal decrease as the PCM/DRAM ratio 
augments, and while the migrations of its competitors grow. Our method can reduce 
average 2 times total migrations against its competitors to reduce writes of PCM, 
while CLOCK-DWF incurs maximum migrations but cannot obtain any reduction of 
the total writes of PCM. The total performance of APP-LRU outperforms both Hybr-
id-LRU and CLOCK-DWF because the miss rate and the large number of migrations 
of both Hybrid-LRU and CLOCK-DWF are larger than others. 

 

 

Fig. 7. PCM write counts and total migrations on the real OLTP trace 

5 Conclusion 

This paper proposes an efficient page replacement policy called APP-LRU for 
PCM/DRAM-based hybrid memory systems. APP-LRU introduces a metadata table 
to record the access histories of pages and propose to predict the access patterns of the 
pages in the memory. Based on the predicted access patterns, either read-intensive or 
write-intensive, APP-LRU determines to put pages in PCM or DRAM. Through com-
prehensive experiments on six synthetic traces and one real trace, we demonstrate that 
our proposal can effectively reduce PCM writes with few migrations. 



A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 95 

 

Acknowledgement. This paper is supported by the National Science Foundation of 
China (No. 61073039, 61379037, and 61272317) and the OATF project funded by 
University of Science and Technology of China. 

References 

1. Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., Keller, T.W.: Energy  
management for commercial servers. IEEE Computer 36(12), 39–48 (2003) 

2. Qureshi, M.K., Vijayalakshmi, S., Rivers, J.A.: Scalable high performance main memory 
system using phase-change memory technology. In: Proc. of ISCA, pp. 24–33. ACM,  
New York (2009) 

3. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a scala-
ble DRAM alternative. In: Proc. of ISCA, pp. 2–13. ACM, New York (2009) 

4. Chen, S., Gibbons, P.B., Nath, S.: Rethinking database algorithms for phase change mem-
ory. In: Proc. of CIDR, pp. 21–31 (2011) 

5. Yang, B.-D., Lee, J.-E., Kim, J.-S., et al.: A Low Power Phase-Change Random Access 
Memory using a Data-Comparison Write Scheme. In: Proc. of ISCAS, New Orleans, USA, 
pp. 3014–3017 (2007) 

6. Zhou, P., Zhao, B., Yang, J., Zhang, Y.: A durable and energy efficient main memory us-
ing phase change memory technology. In: Proc. of ISCA, pp. 14–23. ACM, New York 
(2009) 

7. Cho, S., Lee, H.: Flip-N-Write: A simple Deterministic Technique to Improve PRAM 
Write Performance, Energy and Endurance. In: Proc. of MICRO, pp. 347–357. ACM, New 
York (2009) 

8. Park, H., Yoo, S., Lee, S.: Power management of hybrid dram/pram-based main memory. 
In: Proc. of DAC, pp. 59–64. ACM, New York (2011) 

9. Dong-Jae Shin, S.K., Park, S.M.: Kim and K. H. Park. Adaptive page grouping for energy 
efficiency in hybrid PRAM-DRAM main memory. In: Proc. of ACM RACS, pp. 395–402. 
ACM, New York (2012) 

10. Seok, H., Park, Y., Park, K., Park, K.H.: Efficient Page Caching Algorithm with Prediction 
and Migration for a Hybrid Main Memory. ACM SIGAPP Applied Computing Re-
view 11(4), 38–48 (2011) 

11. Lee, S., Seoul Bahn, H., Noh, S.C.-D.: a write-history-aware page replacement algorithm 
for hybrid PCM and DRAM memory architectures. IEEE Transactions on Computers 
PP(99), 1 (2013) 

12. Liu, S., Huang, X., et al.: Understanding Data Characteristics and Access Patterns in a 
Cloud Storage System. In: Proc. of CCGrid, pp. 327–334 (2013) 

13. Coffman, E.G., Denning, P.J.: Operating Systems Theory, ch. 6, pp. 241–283. Prentice-
Hall (1973) 

14. Jin, P., Ou, Y., Haerder, T., Li, Z.: ADLRU: An Efficient Buffer Replacement  
Algorithm for Flash-based Databases. In: Data and Knowledge Engineering (DKE), 
vol. 72, pp. 83–102. Elsevier (2012) 

15. Li, Z., Jin, P., Su, X., Cui, K., Yue, L.: CCF-LRU: A New Buffer Replacement Algorithm 
for Flash Memory. IEEE Trans. on Consumer Electronics 55(3), 1351–1359 (2009) 

16. Yang, P., Jin, P., Yue, L.: Hybrid Storage with Disk Based Write Cache. In: Proc. of 
DASFAA Workshops 2011, pp. 264–275 (2011) 

17. Yang, P., Jin, P., Wan, S., Yue, L.: HB-Storage: Optimizing SSDs with a HDD Write Buf-
fer. In: Proc. of WAIM Workshops 2013, pp. 28–39 (2013) 


	APP-LRU: A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems
	1 Introduction
	2 Related Work
	3 The APP-LRU Method
	3.1 Page Access Pattern Prediction
	3.2 Page Replacement and Migration

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Results on the Synthetic Traces
	4.3 Results on the Real OLTP Trace

	5 Conclusion
	References




