

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 538–541, 2014.
© IFIP International Federation for Information Processing 2014

Tacked Link List - An Improved Linked List
for Advance Resource Reservation

Li-bing Wu1,2, Jing Fan1, Lei Nie1,2, and Bing-yi Liu1

1 School of Computer, Wuhan University, Wuhan 430072, China
2 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

wu@whu.edu.cn

Abstract. Since advance resource reservation is a widely used mechanism in
distributed systems and high-performance networks, the optimization of its per-
formance has been greatly concerned. And the performance of the data structure
plays an important role for the overall performance of the advance resource res-
ervation. In this paper, the authors figured out the disadvantages in the existing
data structures used in advance resource reservation and proposed an improved
data structure called 'tacked list', to overcome these disadvantages. To demon-
strate the performance of this improved data structure, the authors made ma-
thematical analysis to explore the tradeoff between performance and cost. At
last, the result of the simulation experiments show that the improved data struc-
ture can highly improve the performance of the whole reservation system at the
starting up phase and still have a relatively good performance at the stable
phase.

1 Model

Admittedly, the linked list could solve the problem that the query operation needs to
traverse the data too many times in advance resource reservation. Based on the linked
list, the indexed link list could improve the locating operation by introduce the index
array and it has better performance than other data structures in advance resource
reservation which has already been proved in previous article [3].

However, the index linked list still has some disadvantages. At the start phase, the
index linked list needs to traverse backwards on each index to find the position of a
certain value if the index has no value before. To solve this problem, we try to elimi-
nate traversing from previous index point by adding a dummy node in the tacked link.
The topology of these two structures is shown in figure 1.

2 Performance Analysis

The tacked list utilizes the index array to locate the target node, so the overall perfor-
mance of tacked list is closely related to the size of the index array. Although a large
index size can significantly promote the locating speed, it also increases the difficulty

 Tacked Link List - An Improved Linked List for Advance Resource Reservation 539

of maintenance at the same time. We can figure out that the cost of each query opera-
tion match with formula 1.

() TtCt WRdtTRDCCost releasemmmnode 222 21 +

+
+++= (1)

Rm1 means the average time cost on traversal operation of each index node for lo-
cating the start point. Rm2 and Wm mean the cost on traversing and modifying the value
node. The Costrelease means the time of the memory release operation. T means the
interval between two index and t means the interval between two requests. d means
the average duration of the requests.

We can minimum the cost of each query operation by set an optimal interval be-
tween two index nodes.

3 Simulation

The following experiments runs on the Intel(R) Pentium(R) CPU G2020 @ 2.90GHz
dual-core CPU with 4GB memory. And the Operation System is Windows 7 Service
Pack 1 64bit. The test programs is written by C++ and compiled with MinGW in ec-
lipse. Since the main point of this paper is concentrated on the performance of the
data structure, all of the reservation requests are pre-generate requests. And the reser-
vation system will read them from the memory immediately to ignore the network
influence. The other details will be described before each experiment.

The difference between tacked list and indexed list are analyzed in this section. the
experiment contain the start-up performance test and the stable performance test.
From the experiment, we notice that the mainly improvement of the tacked list is the
performance during the start-up phase.

In the start-up performance test, we will record the processing time of the first 20
requests for these two data structures with different index size. From the analysis in
the previous part, the processing time has no correlation with the time limited by res-
ervation system, so the maximum of the reservation time is set to a relatively large
value, 1048576 (220). In this way, we can make the parameter T to change precisely
with the size of the index array. Furthermore, in order to get an accurate processing
time, the system generated 20000 random requests at first and these requests were
divided into 1000 groups. And the system also initialized 1000 instances of each data
structure in advance. Then the system inserted the requests of each group into each
instance of the data structure. After all the 1000 groups have been processed, the sys-
tem will record the total processing time. The interval between two requests and the
duration of every request are 4 time units. The results are shown in figure 2.

Since there is no backward search operation for the index nodes in the tacked list,
the processing time is relatively stable along with index size growth. However in the
indexed list, the processing time in the start-up phase increases linearly with the size
growth of the index array.

In the stable performance test, the system generated 100 thousands requests at the
beginning. To eliminate the influence of the start-up phase, the data structure will be

540 L.-b. Wu et al.

fully filled before recording the processing time. To fill the data structure, the system
will read a part of these requests until the time of the reservation system pass the res-
ervation limit. After the data structure is fully filled, the system will process all of the
100 thousands requests again and record the processing time. The interval between
two requests and the duration of them are the same as in the start-up performance test.
The result is shown in figure 3.

Since the operations of these two data structures are highly similar in the stable
phase, their performance with different index size is also highly similar. These are
reflected in figure 3 and their average processing time are 297.3ms for tacked list and
297.0ms for indexed list.

After the comparison with the indexed list, the final test is the system capacity test.
In this test we try to find the system capacity of the tacked list. In order to make the
results more intuitive, there will be some comparison tests among indexed list, tacked
list, time slot array and RRB+ tree. There are else some other data structures using for
advance resource reservation, but they has already been researched comparatively [3].

In this test, the system will generate 1 million requests in advance. The duration
range of these requests is from 30 seconds to 1800 seconds. The reservation time limit
is 432000 seconds (5 days) after the received time. To make every request be ac-
cepted, the quantity of resource in every request is set to 1 unit and the max resource
quantity is set to UINT_MAX. And the size of the index array is set to a relatively
high value, 108000, to fit the high-traffic situation. During the test, the system will
run two threads at the same time, one for reservation and one for recording.

From figure 4, we can find that the performance of the time slot array was very
stable, because the only influential factor is the average duration of all requests. On
the other hand, the performances of the other three data structures gradually decreased
over time. This is because these data structures have very simple structures after the
initialization. But with the requests filled in, their structures will become complex and
the performances decrease. This will continue until it achieves the balance point that
the old nodes become failed at the same speed of new nodes inserted.

Fig. 1. Topology of indexed list and tacked list

 Tacked Link List - An Improved Linked List for Advance Resource Reservation 541

Fig. 2. Start-up performance

Fig. 3. Stable performance

Fig. 4. System capacity test

4 Conclusion

After all of these analyses and experiment, we find that the tacked list has a much
better performance at the start-up phase than indexed list. And in the stable phase the
performance of tacked list is similar to the indexed list.

Acknowledgments. This work is supported by National Science Foundation of China
(No. 61170017, 61272112), Science & Technology Plan of Wuhan city (No.
2013010501010146.) and the Fundamental Research Funds for the Central University
(No. 2014211020202.)

References

1. Burchard, L.-O.: Analysis of data structures for admission control of advance reservation
requests. IEEE Transactions on Knowledge and Data Engineering 17(3), 413–424 (2005)

2. Wu, L., Yu, T., He, Y., Li, F.: Index linked list suited for resource reservation. Journal of
Wut (Information & Management Engineering) 33(6), 904–908 (2011) (in Chinese)

3. Yu, T.: Research of Data Structures and Algorithms on the Reservation of Grid Resource.
M.Sc. Thesis. Wuhan University, China (2012)

	Tacked Link List - An Improved Linked List for Advance Resource Reservation
	1 Model
	2 Performance Analysis
	3 Simulation
	4 Conclusion
	References

