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Abstract. N-wise testing is a widely used technique for combinato-
rial interaction testing. Prioritizing testing reorders test cases by rele-
vance, testing important aspects more thoroughly. We propose a novel
technique for N-wise test case generation to satisfy the three distinct
prioritization criteria of interaction coverage, weight coverage, and KL
divergence. The proposed technique generates small N-wise test cases,
where high-priority test cases appear early and frequently. Our early
evaluation confirms that the proposed technique improves on existing
techniques based on the three prioritization criteria.
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1 Introduction

N-wise testing (N = 1,2,...), e.g., pairwise testing when N = 2, is a widely
used technique for combinatorial interaction testing. It is based on a coverage
criterion called interaction coverage, which stipulates to test all N-tuples of
parameter values at least once, given a system under test (SUT) model as sets of
parameters, parameter values, and constraints to express parameter interactions.

Recently, techniques for prioritized N-wise testing, which covers prioritized
test aspects earlier and more thoroughly, have been proposed. This is motivated
by practical demand, as resources for testing are often limited in real-world
software development. Previous work on prioritized N-wise testing mainly falls
into two categories: (1) reordering of test cases based on coverage criteria such as
code coverage [2,8], and (2) generating prioritized test cases given SUT models
with user-defined priorities assigned to parameters or values [1,3,5,6]. (We call
such models weighted SUT models.)

In this paper, we propose a novel approach to prioritizing N-wise testing,
along the line of category (2). Our technique for prioritized N-wise test case
generation, given weighted SUT models, satisfies the following criteria:

— CO: Higher-priority test cases should appear earlier.
— CF: Higher-priority parameter values should appear more frequently.
— CS: The number of test cases should be as small as possible.

Our proposed technique provides a strategy to achieve a good balance between
the three criteria. By considering CO, CF, and CS together, our strategy obtains
important test cases early and frequently in a small test suite.
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Table 1. An example SUT model with value pairs and weights

(a) An example SUT model. N=2. (b) All value pairs and weights.

Parameter: Value(Weight) cCoO W CBW CBW OB W OBW
AM Al 11 MI 4 4
oLy AMD(2), Intel(6) = AU 3 AP S IF 9 MPF 4 UO 4
OS: Mac(1), Ubuntu(1), Win(2) AW 4 AC 5 I1C 9 MC 4 WI 5
Browser: IE(3), Firefox(3), Chrome(3), IM 7 AS 5 IS 9 MS 4 WF 5
Safari(3), Opera(3) IU 7 A0 5 109 MO 4 WC 5
IW 8 UI 4 WS 5
UF 4 WO 5

UcC 4

The next section describes the state-of-the-art techniques for prioritized N-
wise test case generation. It shows that existing techniques only consider some of
the criteria. In Section 3, we explain the proposed technique in detail, together
with a comparison of our technique with the state-of-the-art techniques using
sample data. The last section concludes this paper and proposes future work.

2 Related Work

Our running example, the weighted SUT model shown in Tab. 1-(a), has three
parameters: (OS, CPU, Browser). Each parameter has two, three, and five val-
ues, respectively. Weights are assigned to values, as specified in parentheses, e. g.,
value Win has weight 2. (For brevity, we do not consider constraints; N-wise
constraints can be managed in the initial enumeration phase of our algorithm.)
The weight of a value pair is the sum of the weights of its values. Tab. 1-(b)
shows all the value pairs and their weights, W, in the model. A test case is a set
of value assignments for all parameters. A pairwise (N-wise) test suite is a set
of test cases that covers all pairs (N-tuples) of values in the model.

For prioritized N-wise test generation given a weighted SUT model, several
techniques have been proposed [1,3,5,6]. Some techniques use priority for order-
ing test cases [1,6], while others use it for balancing the occurrences (frequency)
of test cases [3,5,7]. Tab. 2(c)—(f) show the test suites generated by these tech-
niques. They all generate test cases one at a time, until all value pairs are covered.
We briefly introduce the difference among these methods here. Prioritization cri-
teria are considered when selecting a new test case as follows.

Order-focused prioritization: CTE-XL [6] aims to obtain test cases ordered by
weight. It focuses on the weight of values assigned to a new test case. On the
other hand, Bryce’s technique [1] aims to obtain test cases with better weight
coverage, as defined in Fig. 1. To this aim, it provides an approximate algorithm
to maximize the weight of newly-covered pairs in a new test case.

Both techniques share the advantage that important test cases appear at an
earlier stage of a test suite, satisfying criterion CO. The disadvantage is that they
do not consider the frequency aspect (CF) at all (see Tab. 2). Furthermore, CTE-
XL generates a test suite that is larger than necessary for interaction coverage;
this is because it focuses on ordering test cases, rather than improving interaction
coverage. Actually, the size of CTE-XL’s test suite (18 test cases) is larger than
Bryce’s (15 test cases), which suffices for satisfying pairwise coverage.



188 E. Choi et al.

Table 2. Generated test suites by the proposed and previous methods

(a) Al. (CS>CO>CF) (b) A2. (CO>CS>CF) (c) Bryce’s.
COB n w p-cov w-cov D COB n w p-cov w-cov D COB n w p-cov w-cov D
1 IWI 3 22 0.097 0.132 2.590 1 IWI 3 22 0.097 0.132 2.590 1 IWI 3 22 0.097 0.132 2.590
2 IMF 3 20 0.194 0.251 1.551 2 IMF 3 20 0.194 0.251 1.551 2 IMF 3 20 0.194 0.251 1.551
3 1UC 3 20 0.290 0.371 0.855 3 1UC 3 20 0.290 0.371 0.855 3 AWC 3 14 0.290 0.335 0.816
4 AWF 3 14 0.387 0.455 0.570 4 AWF 3 14 0.387 0.455 0.570 4 IWS 2 14 0.355 0.419 0.527
5 AUS 3 12 0.484 0.527 0.385 5 IWS 2 14 0.452 0.539 0.304 5 IWO 2 14 0.419 0.503 0.338
6 AMI 3 12 0.581 0.599 0.480 6 IWO 2 14 0.516 0.623 0.126 6 IUC 3 20 0.516 0.623 0.126
7 IWS 2 14 0.645 0.683 0.194 7 AMI 3 12 0.613 0.695 0.097 7 AWF 2 10 0.581 0.683 0.158
8 IWO 2 14 0.710 0.766 0.088 8 AUS 3 12 0.710 0.766 0.088 8 AMI 3 12 0.677 0.754 0.141
9 AWC 2 10 0.774 0.826 0.124 9 AWC 2 10 0.774 0.826 0.124 9 AUS 3 12 0.774 0.826 0.124
10 AMO 2 9 0.839 0.880 0.154 10 AMO 2 9 0.839 0.880 0.154 10 AMO 2 9 0.839 0.880 0.154
11 TUI 1 4 0.871 0.904 0.117 11 IUI 1 4 0.871 0.904 0.117 11 AUI 1 4 0.871 0.904 0.217
12 IMC 1 4 0.903 0.928 0.107 12 IMC 1 4 0.903 0.928 0.107 12 AUF 1 4 0.903 0.928 0.290
13 IUF 1 4 0.935 0.952 0.089 13 IUF 1 4 0.935 0.952 0.089 13 AMC 1 4 0.935 0.952 0.343
14 IMS 1 4 0.968 0.976 0.085 14 IMS 1 4 0.968 0.976 0.085 14 AMS 1 4 0.968 0.976 0.399
15 IUO 1 4 1 1 0074 15 1UO 1 4 1 1 0.074 15 AUO 1 4 1 1 0.440
(d) CTE XL. (e) PictMaster. (f) PICT+Fujimoto’s.
COB n w p-cov w-cov D COB n w p-cov w-cov D COB n w p-cov w-cov D
1 IWI 3 22 0.097 0.132 2.590 1 IWF 3 22 0.097 0.132 2.590 1 AWC 3 14 0.097 0.084 3.689
2 IMF 3 20 0.194 0.251 1.551 2 IWC 2 14 0.161 0.216 1.897 2 AMI 3 12 0.194 0.156 2.649
3 AWI 2 9 0.258 0.305 1.278 3 1UC 2 11 0.226 0.281 1.548 3 IMF 3 20 0.290 0.275 1.413
4 AMF 2 8 0.333 0.353 1.407 4 IWS 2 14 0.290 0.365 1.161 4 IWI 3 22 0.387 0.407 1.060
5 AUC 3 12 0.419 0.425 0.882 5 IMC 2 11 0.355 0.431 0.967 5 1UI 2 11 0.452 0.473 0.767
6 AMS 2 9 0.484 0.479 0.807 6 IMO 2 13 0.419 0.509 0.683 6 IMC 2 13 0.516 0.551 0.759
7 AMO 2 9 0.548 0.533 0.766 7 1US 1 4 0.452 0.533 0.630 7 AUC 2 7 0.581 0.593 0.790
8 IUC 2 16 0.613 0.629 0.536 8 IUF 1 4 0.484 0.557 0.620 8 AUO 2 9 0.645 0.647 0.629
9 IUS 2 13 0.677 0.707 0.411 9 AWC 2 9 0.548 0.611 0.415 9 IWO 2 14 0.710 0.731 0.444
10 IUO 2 13 0.742 0.784 0.337 10 AWS 1 5 0.581 0.641 0.347 10 IMO 1 4 0.742 0.754 0.439
11 AMI 1 4 0.774 0.808 0.437 11 IMI 2 13 0.645 0.719 0.159 11 AUF 2 9 0.806 0.808 0.442
12 AMC 1 4 0.806 0.832 0.529 12 IMS 1 4 0.677 0.743 0.204 12 AWF 1 5 0.839 0.838 0.424
13 AUI 1 4 0.839 0.856 0.609 13 AUF 2 8 0.742 0.790 0.179 13 AUS 2 9 0.903 0.892 0.328
14 AUF 1 4 0.871 0.880 0.661 14 IWO 1 5 0.774 0.820 0.111 14 IWS 2 14 0.968 0.976 0.200
15 AWF 1 5 0.903 0.910 0.622 15 IUO 1 4 0.806 0.844 0.111 15 AMS 1 4 1 1 0.239
16 AWC 1 5 0.935 0.940 0.603 16 IWI 1 5 0.839 0.874 0.051 16 IWI 0 0 1 1 0.183
17 AWS 1 5 0.968 0.970 0.575 17 AUI 2 9 0.903 0.928 0.038 17 IWF 0 0 1 1 0.139
18 AWO 1 5 1 1 0556 18 IMF 1 4 0.935 0.952 0.039 18 IWC 0 0 1 1 0.105
19 AMF 1 3 0.968 0.970 0.055 19 ITWS 0 0 1 1 0.077
20 AWI 0 0 0.968 0.970 0.039 20 ITWO 0 0 1 1 0.054
. : 21 AMC 0 0 0.968 0.970 0.064 21 IMI 0 0 1 1 0.049
Z)j mﬁ%‘?oﬁf&wv‘ﬁ}l‘f;ﬁiﬂf 22 TUI 0 0 0.968 0.970 0.067 22 IUF 0 0 1 1 0.042
: Lol 23 AMS 0 0 0.968 0.970 0.089 23 IWC 0 0 1 1 0.030
p-cov: Pairwise coverage 24 AWO 1 5 1 1 0.075 24 IWS 0 0 1 1 0.021
w-cov: Weight coverage 25 AUC 0 0 1 1 0.102 25 IMO 0 O 1 1 0.015
D: KL Divergence 26 AWF 0 0 1 1 0109 26 IUI 0 0 1 1 0.014
27 AMI 0 0 1 1 0136 27 IWF 0 0 1 1 0.010
28 AMO 0 0 1 1 0156 28 IWC 0 0 1 1 0.007

Frequency-focused prioritization: PICT [3], PictMaster [7], and Fujimoto’s
method [5] obtain higher-priority values more frequently; in our example, for
parameter OS, value Win with weight 2 should appear twice as frequently as
values Mac and Ubuntu with weight 1. In PICT, given weights are considered
only if two value choices are identical, and thus the frequency is reflected only ap-
proximately. To improve this, PictMaster constructs a test suite to redundantly
cover pairs according to their weights, and thus the size is unnecessary large as
shown in Tab. 2-(e). On the other hand, Fujimoto developed a method to add
test cases to an existing test suite that more accurately reflect given weights for
value frequency. The test suite generated by Fujimoto’s method in Tab. 2 shows
that Win appears 14 times, twice as frequently as Mac (7 times), but the test
suites by PICT and PictMaster contains the same numbers of Win and Mac.

In the example, PictMaster generates 28 test cases, while Fujimoto’s method
uses 15 test cases by PICT plus 13 optional test cases (to more accurately reflect
given weights for value frequency); see Tab. 2-(e),(f). The strength of these
approaches is that more important values appear more frequently; however, the
order of important test cases is completely disregarded.
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Algorithm 1. Prioritized N-wise test generation.

Input: A weighted SUT model, Combinatorial strength N.
Output: A N-wise test suite.
1) For each parameter, order all parameter values by weight.
2) Enumerate all N-tuples of parameter values and their weights.
3) Set a set of uncovered combinations, UC, as the set of all the value N-tuples.
while UC # 0 do
4) List test case candidates to cover the max. number of combinations in UC. [CS]
4-1) If there is one candidate, choose it as t.
4-2) If there are several candidates, list candidates with the max. weight of new combinations. [CO]

4-2-1) If there is one candidate, choose it as t.
4-2-2) If there are several candidates, choose any candidate with min. KL divergence as ¢. [CF)]

5) Set t as the next test case and add it to the test suite.
6) Remove the value N-tuples covered by t from UC.
end while

3 Proposed Approach to Prioritized Test Generation

We propose a novel approach to prioritized N-wise test generation, which inte-
grates the three prioritization criteria of order, CO, frequency, CF, and size, CS.
For CS, we select a new test case to cover as many uncovered value N-tuples as
possible. For CO, we select a new test case to cover value N-tuples with the high-
est weight. For CF, a new test case is selected according to the occurrence ratio
of values in a test suite. To rigorously consider CF, we employ the notion of KL
Divergence used in [5]. KL divergence, D (P||Q) defined in Fig. 1, expresses
the distance between the current value occurrence distribution, P, and an ideal
distribution, @), according to given weights. In the ideal distribution, for each
value, the number of occurrences is proportional to its weight. By integrating
the three criteria CO, CF, and CS, our approach obtains small test suites where
high-priority test cases appear early and frequently.

Algorithm 1 shows the pseudo code of the algorithm with priority order
CS>CO>CF. Given a weighted SUT model, the algorithm generates test cases
one by one until all N-tuples of parameter values are covered. For a new test
case, we choose the best one w.r.t. CS; i.e., the test case that covers the most
new N-tuples of parameter values (step 4). If there are several candidates, choose
the best one for CO, i. e., the test case that covers the new N-tuples of parameter
values with the highest weight (step 4-2). If there are still several candidates,
choose the best one for CF; i.e., the test case with min. KL divergence (step
4-2-2) to ensure that the value frequency distribution is closest to the ideal state.

Tab. 2-(a) shows the pairwise test suite generated from the example model
in Tab. 1-(a), by Algorithm 1 (Al). For the first test case, all the test cases
in which the number of newly-covered value pairs (n) is 3 become candidates,
since this is the max. number at this stage. Among them, (Intel, Win, —1) is
selected as it has the max. value of w, 22. For the 11th test case, test cases 11-15
have the same n and w. In the first ten test cases, AMD and Intel are assigned
equally often to parameter CPU, even though the weight of Intel is twice of that

! The symbol — can take any value for Browser as all values have the same weight.
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Fig. 1. Comparison of the evaluation metrics

of AMD. Furthermore, Ubuntu occurs less often than Mac despite their weights
being the same. Thus, Intel and Ubuntu are assigned to the 11th test case to
achieve a better KL divergence.

We can construct variants of the algorithm with different orders of prioritiza-
tion criteria CO, CF, and CS, by swapping the conditions in steps 4, 4-2, and
4-2-2 in Algorithm 1. For example, we can construct another algorithm A2 with
CO>CS>CF. Tab. 2-(b) shows the pairwise test suite generated by A2. Note
that test cases by A1 (resp., A2) are ordered by n (w), since CO (CW) is the first
priority criterion. Test cases with the same value of n (resp., w) are ordered by
w (n) for Al (A2), since CW (CO) is the second priority criterion. Furthermore,
the test suites generated by Al and A2 require only 15 test cases, which is fewer
than those computed by most previous methods.

We compared our method with the previous methods from the three metrics
of interaction coverage, weight coverage, and KL divergence, using several ex-
amples of weighted SUT models. As a result, we confirmed that our proposed
method can improve on all the metrics.? Fig. 1 shows the evaluation result on
our example in Tab. 1-(a).? The proposed algorithms are superior to the previous
methods according to the three metrics. A1 and A2, respectively, provide the

2 To search locally optimal test cases, our algorithm can incur a high computing cost
with a high quality for large models. The cost will be evaluated in our next paper.

3 See http://staff.aist.go.jp/e.choi/evaluationGraphs.html for larger sized
graphs.
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best results for pairwise coverage and weight coverage, and thus we can obtain
a high coverage of higher-priority test cases even when only a small number of
test cases is selected. When considering KL divergence, A2 (resp., Al) provides
the best result when the number of test cases is higher than 4 (7). Our method
provides a good balance of value occurrences, even in a small test suite.

4 Conclusion and Future Work

We have proposed a novel technique for prioritized N-wise test generation, which
integrates the three prioritization criteria of order, CO, frequency, CF, and size,
CS. Our technique is designed to generate small N-wise test suites, where high-
priority test cases appear early and frequently. Our early evaluation has shown
that the technique can outperform the state-of-the-art techniques on all the
three metrics. The technique is currently under implementation, and will be
evaluated including computing cost on practical-sized SUT models. We are also
considering to develop approximate algorithms with a lower computing cost, in
case our technique is not scalable for practical sized SUT models. Future work
also includes handling weights attached to both of parameters and values, and
to structured SUT models [4].
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