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Abstract. Mean shift is a nonparametric clustering technique that does
not require the number of clusters in input and can find clusters of ar-
bitrary shapes. While appealing, the performance of the mean shift al-
gorithm is sensitive to the selection of the bandwidth, and can fail to
capture the correct clustering structure when multiple modes exist in
one cluster. DBSCAN is an efficient density based clustering algorithm,
but it is also sensitive to its parameters and typically merges overlap-
ping clusters. In this paper we propose Boosted Mean Shift Clustering
(BMSC) to address these issues. BMSC partitions the data across a grid
and applies mean shift locally on the cells of the grid, each providing
a number of intermediate modes (iModes). A mode-boosting technique
is proposed to select points in denser regions iteratively, and DBSCAN
is utilized to partition the obtained iModes iteratively. Our proposed
BMSC can overcome the limitations of mean shift and DBSCAN, while
preserving their desirable properties. Complexity analysis shows its po-
tential to deal with large-scale data and extensive experimental results
on both synthetic and real benchmark data demonstrate its effectiveness
and robustness to parameter settings.

Keywords: Mean shift clustering, density-based clustering, boosting.

1 Introduction

Clustering aims to partition data into groups, so that points that are similar to
one another are placed in the same cluster, and points that are dissimilar from
each other are placed in different clusters. Clustering is a key step for many
exploratory tasks. In the past decades, many clustering algorithms have been
proposed, such as centroid-based clustering (e.g., k-means [21] and k-medoids
[18]), distribution-based clustering (e.g., Expectation-Maximization with Gaus-
sian mixture [8]), and density-based clustering (e.g., mean shift [4], DBSCAN
[10] and OPTICS [1]).

Most of the existing clustering methods need the number of clusters in input,
which is typically unknown in practice. The mean shift algorithm is an appealing
and nonparametric clustering technique that estimates the number of clusters

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 646-661, 2014.
(© Springer-Verlag Berlin Heidelberg 2014



Boosted Mean Shift Clustering 647

(a) Toyl (b) Toy2 (c) Toy3

Fig. 1. Toy examples

directly from the data, and is able to find clusters with irregular shapes. It
performs kernel density estimation, and iteratively locates the local maxima
of the kernel mixture. Points that converge to the same mode are considered
members of the same cluster [4]. The key parameter of mean shift is the kernel
bandwidth. Its value can affect the performance of mean shift and is hard to set.
Furthermore, mean shift may fail to find the proper cluster structure in the data
when multiple modes exist in a cluster. As Fig. 1(b) shows, continuous dense
regions exist in each cluster, possibly resulting in multiple modes detected by
mean shift.

DBSCAN [10] is another popular density-based clustering method that does
not require the number of clusters as input parameter. DBSCAN has the draw-
back of being sensitive to the choice of the neighborhood’s radius (called Eps)
[10]. DBSCAN tends to merge two clusters when an unsuitable Eps value is
used, especially when the two clusters overlap, since the overlap may result in
a contiguous high-density region, as shown in Fig. 1(a) and (c). (Experimental
results on the three toy examples are presented in Section 5.)

Recently, a meta-algorithm known as Parallel Spatial Boosting Machine
Learner (PSBML) has been introduced as a boosting algorithm for classification
[17]. PSBML runs many classifiers in parallel on sampled data. The classifiers
are organized in a two dimensional grid with a neighborhood structure. Data
which are hard to classify are shared among the neighbor classifiers. PSBML
is a robust algorithm that outperforms the underlying classifier in terms of ac-
curacy and is less sensitive to parameter choice or noise [16]. The question we
investigate in this research is whether the PSBML algorithm can be adapted
to a clustering scenario to overcome the robustness issues related to parameter
sensitivity as discussed above. The idea is to have a spatial grid framework as
in PSBML, where a clustering algorithm such as mean shift runs at each node
of the grid using local sampled data. A boosting process is applied to the local
modes, which in turn are shared across the neighbors in the grid.

Specifically, we propose Boosted Mean Shift Clustering (BMSC) to address
the aforementioned limitations of mean shift and DBSCAN. BMSC is an iterative
and distributed version of mean shift clustering. Specifically, BMSC partitions
the data across a grid, and applies mean shift locally on the cells of the grid.
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Each cell outputs a set of intermediate modes (iModes in short), which represent
the denser regions in the data. A mode-boosting technique is used to assign larger
confidence values to those data points which are closer to the iModes. Points
are then sampled with a probability that is proportional to the corresponding
confidence. In successive iterations, BMSC progressively chooses data points in
denser areas. Furthermore, at each iteration, DBSCAN is applied to partition all
the iModes obtained so far. When DBSCAN results become stable in successive
iterations, the algorithm stops. The accumulated iModes provide the “skeleton”
of the data clusters and can be leveraged to group the entire data. The main
contributions of this paper are summarized as follows:

— We introduce Boosted Mean Shift Clustering (BMSC) to overcome the disad-
vantages of mean shift and DBSCAN, while preserving their nonparametric
nature. Our technique has the ability to identifying the essential structure
(skeleton) of the clusters through the boosting of points around the modes.

— We present a complexity analysis to show the potential of BMSC to solve
large-scale clustering tasks efficiently.

— Extensive experiments demonstrate the effectiveness and robustness of our
proposed approach.

The rest of this paper is organized as follows. We review related work in
Section 2 and introduce our methodology in Section 3. Section 4 presents the
empirical evaluation and Section 5 discusses the experimental results. A final
comment and conclusions are provided in Section 6 and 7, respectively.

2 Related Work

Mean shift [4,12] is a nonparametric feature space analysis technique that has
been widely used in many machine learning applications, such as clustering [3],
computer vision and image processing [4], and visual tracking [2]. It iteratively
estimates the density of each point and computes the mean shift vector, which
always points toward the direction of maximum increase in the density [4]. This
defines a path leading to a stationary point (mode). The set of original data
points that converge to the same mode defines a cluster. Mean shift uses a global
fixed bandwidth, while the adaptive mean shift [5] sets different bandwidths for
different data points. The convergence of mean shift procedure is guaranteed [4].

Density-based clustering methods [20] define a cluster as a set of points lo-
cated in a contiguous region of high density, while points located in low-density
areas are considered as noise or outliers. DBSCAN [10] is a popular clustering
algorithm that relies on a density-based notion of clusters. It has only one pa-
rameter Eps, provided that the minimum number of points (Minpts) required
to form a cluster is fixed. OPTICS [1] replaces the parameter Eps in DBSCAN
with a maximum search radius and can be considered as a generalization of
DBSCAN.

Adaboost [11] is the most popular boosting algorithm. It iteratively generates
a distribution over the data in such a way that misclassified points by previous
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classifiers are more likely to be selected to train the next weak classifier. Ad-
aboost is an ensemble algorithm that combines these weak classifiers to form
a strong classifier that has shown to be more robust than the single classifier.
Parallel spatial boosting machine learning (PSBML) [16] is a recent boosting al-
gorithm which combines concepts from spatially structured parallel algorithms
and machine learning boosting techniques. Both Adaboost and PSBML solve
classification problems. The technique we introduce in this work is inspired by
the PSBML framework. Unlike PSBML, though, our focus here is unsupervised
learning, and in particular density-based clustering.

3 Boosted Mean Shift Clustering

Let X = {x1,X2,...,X,} denote the data set, where n is the number of points
and d is the dimensionality of each point x; = (71, Zi2, ..., 2ia) i =1,2,...,n
A hard clustering C = {C,Cs,...,Cy~} partitions X into k* disjoint clusters,
e, CinCj=0 (Vi#j,i,j=1,2,...,k%), and UF_ O = X

3.1 Preliminary
In this section, we first give a brief review of the mean shift technique [4,5].

When using one global bandwidth ki, the multivariate kernel density estimator
with Kernel K (x)! is given by

o= 1, ;K (%) m

The profile of a kernel K is defined as a function & : [0,4+00) — R such that
K(x) = c¢- k(]|x||?), where the positive constant ¢ makes K (x) integrate to one.
Then, the sample point estimator (1) becomes

) )

/() nhdZ (HX B

By taking the gradient of f(x) we obtain

Flx) — ’ Limaxag(I5 %)
Vfx) = nhd+2 lZg( )] X\[ > i1 9P 1) NE)

~

X — X;

mean shift vector

where g(x) = —£/(z), provided that the derivative of k exists. The first part of
Eq. (3) is a constant, and the factor in bracket is the mean shift vector, which

! We use a Gaussian kernel in this paper.
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(a) Eps =0.1 (b) Eps =0.2 (c) Eps=10.3 (d) Eps=0.5

Fig. 3. Toy3: Clustering results of DBSCAN for different values of Eps

always points towards the direction of the greatest increase in density. Using the
mean shift vector, a sequence of estimation points {y;};=12,. .. is computed

Viut = o xag(17,7 %)
i g7, 12
The starting point y; is one of the points x;. The point that {y; };=1,2,.. converges

to is considered as the mode of y;. The points that converge to the same mode
are considered members of the same cluster. Please refer to [4] for more details.

(4)

3.2 The Algorithm

The performance of mean shift is sensitive to the choice of the bandwidth h.
To demonstrate this fact, Fig. 2 shows the clustering results of mean shift for
different values of h on a two-dimensional dataset containing clusters of different
shapes (called Toy3 in our experiments). The dark circles in Fig. 2 correspond
to the (global) modes generated by mean shift. For any given mode, the points
that converge to it are marked with the same color, and they define a cluster.
As shown in Fig. 2 (a), when the value h = 0.2 is used, mean shift finds several
modes and therefore detects a large number of clusters. Larger values of h lead
to fewer modes, and to the merging of separate clusters.

DBSCAN is another popular density-based clustering algorithm (refer to [10]
for more details) which is also sensitive to its input parameters and is likely
to merge overlapping clusters. Fig. 3 gives the results of DBSCAN on Toy3 for
different values of the parameter Eps. Here Minpts is set to 4. Points of the
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“ R

same color belong to the same cluster. In Fig. 3(a) the points marked as “x
are classified as noisy points by DBSCAN. More clusters and more noisy points
are found by DBSCAN when Eps= 0.1. The detected noisy points are actually
members of a cluster, and should not be considered as outliers. The larger Eps
becomes, the more clusters are merged by DBSCAN. Eventually, for Eps= 0.5,
DBSCAN detects only one cluster. The two rightmost clusters are also merged
in Fig. 3(a), when Eps= 0.1 is used.

To overcome these limitations of mean shift and DBSCAN, while retain-
ing their nonparametric nature, we propose the Boosted Mean Shift Clustering
(BMSC) algorithm. We seek to capture the underlying group structure of the
data by selecting the subset of data that provides the skeleton of the clusters.
To achieve this goal, we iteratively compute modes relative to sampled data in
a distributed fashion, and boost points proportionally to their distance from the
modes. To achieve this goal, BMSC partitions the original data across a grid,
and applies mean shift locally on the cells of the grid to search for the denser
regions iteratively. The details are described below.

(a) Linear 5 (b) Linear 9 (¢) Compact 9 (d) Compact 13
Fig. 4. Various neighborhood structures

Mode-boosting. BMSC first partitions the data uniformly across the cells of
a two dimensional grid structure?, as depicted in Fig. 4 [16,17,22] (Line 1 of
Algorithm 1). The cells of the grid interact with the neighbors, where the neigh-
borhood structure is user defined, as shown in Fig. 43. Each cell applies a mean
shift clustering algorithm on its local data. The mean shift algorithm outputs
intermediate modes (iModes), which are located within dense regions (Line 6).
Each cell uses its own iModes to assign confidence values to points assigned to
the cell itself and to its neighbors. Specifically, given a set of iModes generated at
cell;, i.e., iModes") = {z'Modegj), .. ,iMode(LJ)}, we assign each local point (in
cell; itself or in any neighboring cells) to the nearest iMode in iModes. For the
points assigned to the same iModel(])(l =1,...,L), we compute the confidence
value of point 7 w.r.t. cell; as

~ dis; —min dis

confi(J) =1- ! (5)

2 The dimensionality of the grid affects the size of the neighborhood, and therefore the
speed at which data is propagated through the grid. Note that the dimensionality d
of the data can be arbitrary.

3 In this paper, we use the ‘Linear 5’ structure.

max dis — min dis
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Algorithm 1. Boosted Mean Shift Clustering

Input: X, width, height, h, Eps.
Output: The final clustering result cl_final.

1: INITIALIZEGRID(X, width, height); //Distribute X over I = width x height cells.
iModes + 0; //Initialize the set of intermediate modes.
counter < 1;
repeat

for j+ 1to [l do
newiModes <— MEANSHIFT(cell Data;,h);
iModes.APPEND (newiM odes);
end for
CONFIDENCEASSIGNMENT(); // Assign confidence values to points in each cell
via Egs. (5) and (6).
10: for j < 1to I do

11: CollectedData < COLLECTNEIGHBORDATA(j) U cell Datay;;
12: cellData; < WEIGHTEDSAMPLING (CollectedData);  // Update cellData;.
13:  end for

14:  [cl_iModes, numberO fClustersDetected] <+ DBSCAN (iModes,Eps);
//cl_iModes is the clustering result of iModes.

15:  if (numberO fClustersDetected==lastnumberO fClustersDetected) then

16: counter++;

17:  else

18: counter + 1;

19:  end if

20: until counter == 3

21: cl_final + DATAASSIGNMENT(X, iModes,cl_iModes); //Assign points in X.

22: return cl_final.

where dis; is the distance between point ¢ and M odel(] ), min dis and max dis
are the minimum and maximum distances between the corresponding points
and iM odel(] ), respectively. con fi(] ) € [0,1]. Intuitively, points near iM odel(] )
obtain larger confidence values, while those far away from i M odel(j ) are assigned
smaller confidence values. Since a point x; is a member of the neighborhood of
multiple cells, an ensemble of confidence’s assessments is obtained. We set the
final confidence to the maximum confidence value obtained from any cell:

conf; TOax con fi (6)

where N, is a set of indices of the neighbors of the cell to which point x; belongs
(Line 9).

The confidence values are used to select a sample of the data, locally at each cell,
via a weighted sampling mechanism. Specifically, for each cell;, all points in the
cell and in its neighbors are collected. The larger the confidence value credited to a
point x; is (i.e., the closer x; is to some iMode), the larger is the probability for x;
to be selected (Lines 11-12). As such, copies of points with larger confidence values
will have higher probability of being selected, while points with low confidence will
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have a smaller probability of being selected. The sample size at each cell is kept
constant at each epoch. Note that duplicate points may appear in a given cell, and
the same point may appear in different cells.

Stopping Criterion. At each epoch, BMSC applies mean shift locally at each
cell, thus generating a set of new iModes. We combine the new iModes with the
iModes generated during the previous iterations, and apply DBSCAN on such
updated set of iModes (Line 14). This process is repeated until the number of
detected clusters by DBSCAN does not change for three consecutive iterations.
At each iteration, the set of iModes produced so far gives a representation of the
original data. A stable partition (i.e., a consistent number of detected clusters
is obtained for three iterations) of iModes indicates a stable partition of the
original data. In practice we have observed that the number of distinct points at
each epoch quickly decreases, and BMSC always stops in less than 20 iterations
in our experiments. The convergence of BMSC is empirically shown.

When BMSC stops, DBSCAN gives a partition of all the iModes. We then
assign each original data point to the cluster to which its nearest iMode belongs.
This gives the final clustering of the original data (Line 21). The pseudo-code of
BMSC is given in Algorithm 1.

Computational Complexity. The computational complexity of estimating
the density and computing the mean shift vector for one data point is O(n),
where n is the total number of data. Let T; be the maximum number of iterations
it takes to compute the mode of any point in X'. Then the complexity of mean
shift on the whole data is O(Tin?). The running time of BMSC is driven by
the complexity of mean shift running on the cells of the grid and of DBSCAN
running on the obtained iModes. BMSC applies mean shift locally on every cell,
each with complexity O(Tym?), where m = 7 and I = width x height is the
number of cells in the spatial grid. The runtime complexity of DBSCAN on
X is O(n?) and it can be reduced to O(nlogn) if one uses R*-tree to process
a range query [20]. Let s be the number of obtained iModes and T be the
number of iterations when BMSC stops, then the total computation complexity
of BMSC is O(T2(ITym? + slogs)). Ty is empirically proved to be small, and
m <& n, s < n when n is large. Thus, the computational complexity of BMSC is
lower than mean shift and DBSCAN when dealing with large scale data. BMSC
can be further speeded up with a parallel implementation. The complexity can
be reduced to O(Ty max{Tym?, slogs}) with an I multi-thread process, which
makes BMSC available for large-scale clustering tasks.

4 Experimental Setup

Datasets. We conducted experiments on three toy examples and ten real-
world data sets to evaluate the performance of BMSC and comparing
methods. Table 1 provides the characteristics of all the datasets used in our
experiments. The toy examples are shown in Fig. 1. The two classes of toy
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Table 1. Datasets used in the experiments

Data  #points #features #classes

Toy1 10000 2 2
Toy2 14977 2 2
Toy3 788 2 7
2D2K 1000 2 2
8D5K 1000 8 5
Letter 1555 16 2
Satimage 4220 36 4
Symbols 1020 398 6

KDD99 25192 38 22
Banknote 200 6 2
Chainlink 400 3 2
Image Seg 990 19 3

Wall 5456 2 4

example 1 (Toyl), which were generated according to multivariate Gaussian
distributions, consist of 8,000 and 2,000 points, respectively. The mean vec-
tor and the covariance matrix of the left class are (-10,0) and (10 0; 0 10),
while those of the right class are (2,0) and (1 0; 0 1), respectively. Toy example
2 (Toy2, two-moons data), Banknote, and ChainLink contain two classes and
are available at http://www.mathworks.com/matlabcentral/fileexchange/
34412-fast-and-efficient-spectral-clustering. 400 points (200 points
per class) of ChainLink were randomly chosen in the experiments. Toy3 (Ag-
gregation data) was downloaded from http://cs. joensuu.fi/sipu/datasets/
and was used in [13]. 2D2K and 8D5K were two datasets used in [23] and
were downloaded from http://strehl.com/. Symbols is a UCR time series
data [19]. NSL-KDD data set retains all the important statistical characteristics
of KDDCup-99. A subset which contains 25192 instances of 22 classes (1 nor-
mal class and 21 attack types) was downloaded from http://nsl.cs.unb.ca/
NSL-KDD/ and the 38 numerical features were used for the experiments. Letter,
Satimage, Image Seg (Image segmentation) and Wall (Wall-following robot nav-
igation data) are all available from the UCT repository (http://archive.ics.
uci.edu/ml/index.html). The letters ‘A’ and ‘B’ were selected from the Letter
database. The first 4 classes of Satimage and the first three classes of Image Seg
were used in our experiments. For each dataset, each feature was normalized to
have zero mean value and unit variance.

Evaluation Criteria. We chose Rand Index (RI) [14], Adjusted Rand Index
(ARI) [14], and Normalized Mutual Information (NMI) [23] as evaluation criteria
since the label information of data are known. The label information is only used
to measure the clustering results, and is not used during the clustering process.
Both RI and NMI range from 0 to 1, while ARI belongs to [-1,1]. A value 1 of
RI/ARI/NMI indicates a perfect clustering result.
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Ezxperimental Settings. As shown in Algorithm 1, BMSC requires four pa-
rameters in input: width, height, the bandwidth h for mean shift, and Eps for
DBSCAN. We used a 5 x 5 spatial grid for Toyl, Toy2, and KDD99, and a 3 x 3
grid for all the other data sets. We set h to the average distance between each
point and its k-th nearest neighbor, where k = an/n Data. Here n Data is the
size of the sample assigned to a cell of a grid for BMSC, or the size of the whole
dataset when we run mean shift on the entire collection. The value of « also
affects the bandwidth; a larger a0 value corresponds to a larger global bandwidth
h. «a is always set to 0.5 for both BMSC and mean shift in our experiments. We
set Eps = 0.5 for BMSC and DBSCAN on the three 2-dimensional toy datasets.
Sensitivity analysis of parameters o and Eps is discussed in Section 5.4. To set
the Eps parameter on real data, we consider the iModes generated after the first
epoch of BMSC, and compute the distance to the 4-th nearest iMode [10] for
each of the iModes. We then choose the median value of all such distances as the
value of Eps for DBSCAN in all the successive iterations. When DBSCAN is run
on the whole data, the 4-th nearest neighbor distances are computed with re-
spect to the entire collection of data, and Eps is again set to the median of those
values. The MinPts value of DBSCAN is always set to four in our experiments,
as done in [10].

Besides mean shift and DBSCAN [7,10], we also performed comparisons
against several other clustering algorithms: OPTICS [1,6], k-means [21], LAC
[9], Aver-1 (average-linkage clustering) [15], and EM (with a Gaussian mixture)
[8]. OPTICS is a density based clustering algorithm which creates an augmented
ordering of the data representing its clustering structure, and then retrieves DB-
SCAN clusters as the final clustering result. When OPTICS uses DBSCAN to
extract clusters, the parameters were set as in DBSCAN itself. Both DBSCAN
and OPTICS may output noisy clusters. k-means, LAC, Aver-1, and EM require
the number of clusters in input, which we set equal to the number of classes
in the data. LAC requires an additional parameter (weight of the regulariza-
tion term; see [9] for details), which we set to 0.2 throughout our experiments.
Mean shift, DBSCAN, OPTICS, and Aver-1 are deterministic for fixed param-
eter values. For the remaining methods, the reported values are the average of
20 independent runs. One-sample ¢-test and paired-samples ¢-test were used to
assess the statistical significance of the results at 95% significance level.

5 Results and Analysis

5.1 Results on Toy Examples

To illustrate the effectiveness of BMSC, we first conducted experiments on the
three toy datasets. Fig. 5 shows the data selected by BMSC at different epochs on
Toy1 in one independent run. For this run, BMSC stops at the fourth iteration.
‘(#5529)" in Fig. 5(a) means that at this epoch 5529 points are selected. The
number of (distinct) points in each iteration greatly decreases, and points around
the densest regions are more likely to survive. At successive iterations, the data
becomes better separated, even though the original two classes overlap. Fig. 6
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Fig. 5. Data selected by BMSC on Toy1 at different epochs
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Fig. 6. BMSC clustering results on the three toy examples

gives the final clustering results of BMSC on the three toy examples for a given
run. The red circles represent the iModes accumulated in successive iterations
when BMSC stops. Points with the same color belong to the same cluster. The

iModes successfully capture the structure of the different clusters. As a result,

BMSC achieves a close to perfect performance on these datasets. When two

clusters overlap (like in Toy1), the corresponding iModes are still well separated,
and therefore easy to partition. When performing DBSCAN on the set of iModes,

some iModes may be classified as noise. For example, three such iModes occur in

Fig. 6(a). iModes detected as anomalous are discarded and not used to partition

the whole data.

Table 2. Results on toy examples

Data BMSC MS DBSCAN OPTICS k-means LAC Aver-l EM

RI  0.9955 0.3977

Toyl ARI 0.9897 0.0755
NMI 0.9709 0.3846

RI 0.9995 0.5380

Toy2 ARI 0.9990 0.0763
NMI 0.9970 0.4495

RI  0.9891 0.8697

Toy3 ARI 0.9686 0.5096
NMI 0.9711 0.7925

0.6792  0.6796
-0.0009 -0.0004
0.0027  0.0018
0.5001  0.5001
0.0000  0.0000
0.0000  0.0000
0.2165  0.2165
0.0000  0.0000
0.0000  0.0000

0.9294 0.9299 0.6798 0.9978
0.8432 0.8443 -0.0001 0.9949
0.7614 0.7626 0.0010 0.9833
0.8201 0.8185 0.8608 0.6584
0.6401 0.6370 0.7216 0.3168
0.5311 0.5280 0.6832 0.3675
0.9096 0.9006 0.9971 0.9063
0.7061 0.6781 0.9913 0.7121
0.8316 0.8115 0.9869 0.8379
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Table 3. Results on real data (RI)

Data BMSC MS DBSCAN OPTICS k-means LAC Aver-l EM
2D2K 0.9560 0.9522 0.6962  0.4995 0.9531 0.9538 0.9250 0.9078
8D5K  1.0000 1.0000 0.9094 0.8164 0.9359 0.9448 1.0000 0.9488
Letter 0.8928 0.8909 0.6479  0.5133 0.8762 0.8767 0.8875 0.7054
Satimage 0.8216 0.8044 0.7305  0.5271 0.8030 0.8051 0.5370 0.7975
Symbols 0.9081 0.9007 0.8102  0.3922 0.8842 0.8773 0.6275 0.8193
KDD99 0.7699 0.7416 0.6843  0.6029 0.6777 0.6755 0.3966 0.7106
Banknote 0.9694 0.9510 0.8009  0.5934 0.9228 0.9261 0.4975 0.8892
Chainlink 0.7475 0.5626 0.5378  0.5264 0.5431 0.5410 0.5550 0.7350
Image Seg 0.9073 0.8695 0.6978  0.7036 0.8091 0.8112 0.3461 0.7446
Wall  0.7244 0.7131 0.6609  0.5905 0.7055 0.7092 0.3656 0.6530

Table 4. Results on real data (ARI)

Data BMSC MS DBSCAN OPTICS k-means LAC Aver-l EM
2D2K 0.9119 0.9043 0.3922  0.0000 0.9062 0.9075 0.8499 0.8156
8D5K  1.0000 1.0000 0.6977 0.4010 0.8269 0.8446 1.0000 0.8558
LetterAB 0.7856 0.7817 0.2957  0.0265 0.7524 0.7533 0.7749 0.4109
Satimage 0.5631 0.5452 0.3508  0.0831 0.5234 0.5293 0.2242 0.5201
Symbols 0.7042 0.6645 0.4818  0.0071 0.6339 0.6186 0.2369 0.4566
KDD99 0.4684 0.3933 0.2979  0.0164 0.2229 0.2160 -0.0003 0.3154
Banknote 0.9387 0.9020 0.6011  0.1850 0.8456 0.8521 0.0000 0.7788
Chainlink 0.4944 0.1233 0.0737 0.0542 0.0865 0.0822 0.1110 0.4701
Image Seg 0.7843 0.6775 0.2271  0.2078 0.6273 0.6218 0.0012 0.4812
Wall 0.2893 0.2437 0.1434  0.0532 0.3697 0.3761 0.0240 0.2656

Table 2 shows the results of the different algorithms on the toy examples using
the three evaluation measures. In each row, the significantly best and comparable
results are highlighted in boldface. On these datasets, BMSC improves upon
mean shift, DBSCAN, and OPTICS by a large margin. As expected, EM gives
the best performance on Toy1, which is a mixture of two Gaussians. Aver-1 works
quite well on Toy3. But both EM and Aver-1 require the number of clusters in
input, and their performance degrades on the other data. BMSC significantly
outperforms all the comparing methods on Toy2, and it’s the only approach
that works well on all three toy datasets. The poor performance of k-means and
LAC is mainly caused by the unbalanced data in Toyl, and the irregular shapes
of clusters in Toy2 and Toy3.

5.2 Results on Real Data

This section evaluates the performance of the comparing methods on several real
datasets. The RI and ARI values are shown in Tables 3 and 4, respectively. The
best and comparable results are shown in boldface. In general, a better result
on RI indicates a better result on ARI and NMI. But this is not always the
case. Lets consider the Wall data for example. BMSC gives the best RI value,
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while LAC gives the best ARI value. BMSC, mean shift, and Aver-1 do a perfect
job in clustering 8D5K. For the remaining datasets, BMSC significantly out-
performs all the other comparing methods. It’s worth observing that, in terms
of the ARI measure, BMSC outperforms mean shift by a considerable margin
on Symbols, KDD99, Banknote, Chainlink, Imag Seg, and Wall. Similar results
were obtained on NMI and are not reported due to the limited space.

5.3 Performance Analysis of BMSC

The average number of iterations of BMSC and the average number of detected
clusters by BMSC are shown in Table 5. The table shows that BMSC stops
after a small number of iterations. Comparing the number of detected clusters
(#clusters) and the actual number of classes (#classes), we can see that a larger
number of clusters is detected by BMSC on KDD99, Chainlink, and Wall*. For
this reason, lower values of RI and ARI are obtained on these three datasets, as
shown in Tables 3 and 4. The number of clusters detected by BMSC is similar
to the number of classes on Toy3, Satimage, Symbols, and Image Seg. BMSC
always detects a number of clusters that matches the number of classes on Toyl,
Toy2, 2D2K, 8D5K, Letter, and Banknote datasets. This indicates that BMSC
is capable of automatically finding a reasonable number of clusters.

Table 5. Performance Analysis of BMSC

Data  #iterations #clusters classes

Toy1 3.30 240.00 2
Toy2 3.00 240.00 2
Toy3 4.45 6.80+0.42 7
2D2K 3.75 240.00 2
8D5K 3.15 540.00 5
Letter 3.35 240.00 2
Satimage 4.60 4.10+0.79 4
Symbols 5.50 6+£1.49 6
KDD99 14.55 41.45+£5.15 22
Banknote 3.05 240.00 2
Chainlink 4.15 4.65+1.23 2
Image Seg 4.45 3.75£0.55 3
Wall 6.65 12.20+1.61 4

5.4 Sensitivity Analysis of the Parameters o and Eps

We tested the sensitivity of BMSC w.r.t. the parameters « and Eps on three
datasets, namely Toyl, Toy2, and Satimage. We first tested the sensitivity of
« which controls the kernel bandwidth in BMSC and mean shift. Eps = 0.5
was set for BMSC. The test range of « is [0.05,0.6] and Fig. 7 gives the results.

4 This is not surprising since in practice there may not be a one-to-one correspondence
between classes and clusters.
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Mean shift performs slightly better as « increases on Toyl and Toy2, and a
general reduction in performance is observed with a larger o on Satimage. BMSC
is stable and achieves good performance throughout. A larger o value leads to
fewer modes found by mean shift, while a smaller « value results in more modes,
thus generating more clusters in general. BMSC is more robust to the different
values of a because a only affects the number of iModes generated by each cell,
and such iModes are then linked together by DBSCAN.

We further compared BMSC against DBSCAN and OPTICS for different
values of Eps. In these experiments, a = 0.5 for BMSC. Tested ranges of Eps
are [0.1,0.7] for Toyl and Toy2, and [0.1, 3.6] for Satimage. The results are given
in Fig. 8. The performance of BMSC increases as the value of Eps increases, and
it is stable for a wide range of Eps values. The main reason for this behavior
is that BMSC applies DBSCAN on the iModes, rather than on the whole data.
iModes of different clusters are well separated, even though the original clusters
may overlap. DBSCAN works well for Eps = 0.1, and OPTICS always performs
poorly on Toyl and Toy2. On Satimage, the performance of both DBSCAN and
OPTICS increases for larger Eps values, and reaches its peak at Eps = 1.6 and
Eps = 3.2, respectively. After that, the performance drops. This shows that
DBSCAN and OPTICS are sensitive to the choice of values for Eps, while our
BMSC technique is robust to parameter settings. This provides insight to the
superior performance of BMSC against DBSCAN and OPTICS obtained in the
previous experiments.
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6 Discussion

To overcome some of the limitations of mean shift, one may run mean shift on the
whole data with a small bandwidth, thus generating a large number of modes.
The modes can then be merged to obtain the final clustering results. But this
approach has two major disadvantages: (1) Running mean shift on a large-scale
data is of high complexity; and (2) With a fixed bandwidth, only one mode (the
local maxima) will be found in dense areas. In contrast, our BMSC is able to
find contiguous intermediate modes in dense areas. It achieves this through the
partitioning of the data across a spatial grid and through the iterative process
of collecting the iModes.

7 Conclusion

In this work we have introduced Boosted Mean Shift Clustering (BMSC), a
nonparametric clustering method that overcomes the limitations of mean shift
and DBSCAN, namely the sensitivity to parameters’ values and the difficulty of
handling overlapping clusters. At the same time, BMSC preserves the ability of
automatically estimating the number of clusters from the data and of handling
clusters of irregular shapes. The effectiveness and stability of BMSC are demon-
strated through extensive experiments conducted on synthetic and real-world
datasets. We are interested in extending the framework introduced here to other
clustering methodologies, e.g. centroid-based, as well as to a semi-supervised
scenario. As mentioned earlier in our discussion on computational complexity,
BMSC can be easily parallelized via a multi-thread implementation (one thread
per cell). We will proceed with such implementation in our future work and test
the achieved speed-up for the big data clustering problems.

Acknowledgement. This paper is in part supported by the China Scholarship
Council (CSC).

References

1. Ankerst, M., Breunig, M.M., Peter Kriegel, H., Sander, J.: OPTICS: Ordering
points to identify the clustering structure. In: SIGMOD, pp. 49-60. ACM Press
(1999)

2. Avidan, S.: Ensemble tracking. TPAMI 29(2), 261-271 (2007)

3. Cheng, Y.: Mean shift, mode seeking, and clustering. TPAMI 17(8), 790-799 (1995)

4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. TPAMI 24(5), 603-619 (2002)

5. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and
data-driven scale selection. In: ICCV, pp. 438-445 (2001)

6. Daszykowski, M., Walczak, B., Massart, D.: Looking for natural patterns in an-
alytical data. Part 2: Tracing local density with OPTICS. Journal of Chemical
Information and Computer Sciences 42(3), 500-507 (2002)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Boosted Mean Shift Clustering 661

. Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in

data. Part 1: Density based approach. Chemometrics and Intelligent Laboratory
Systems 56(2), 83-92 (2001)

. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the EM algorithm. Journals of the Royal Statistical Society, Series B 39(1),
1-38 (1977)

. Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., Papadopoulos,

D.: Locally adaptive metrics for clustering high dimensional data. DMKD 14(1),
63-97 (2007)

Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, pp. 226-231 (1996)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55,
119-139 (1997)

Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density func-
tion, with applications in pattern recognition. IEEE Transactions on Information
Theory 21(1), 32-40 (1975)

Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. TKDD 1(1), 1-30
(2007)

Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193-218
(1985)

Jain, A K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing
Surveys 31(3), 264-323 (1999)

Kamath, U., Domeniconi, C., Jong, K.A.D.: An analysis of a spatial ea parallel
boosting algorithm. In: GECCO, pp. 1053-1060 (2013)

Kamath, U., Kaers, J., Shehu, A., De Jong, K.A.: A spatial EA framework for
parallelizing machine learning methods. In: Coello, C.A.C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491,
pp. 206-215. Springer, Heidelberg (2012)

Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. Faculty of Mathe-
matics and Informatics (1987)

Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.A.:
The UCR Time Series Classification/Clustering Homepage (2011), http://www.
cs.ucr.edu/~eamonn/time_series_data/

Kriegel, H.-P., Kroger, P., Sander, J., Zimek, A.: Density-based clustering.
DMKD 1(3), 231-240 (2011)

MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281-297. University of California Press (1967)

Sarma, J., Jong, K.: An analysis of the effects of neighborhood size and shape on
local selection algorithms. In: Ebeling, W., Rechenberg, 1., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 236-244. Springer, Heidelberg (1996)
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for com-
bining multiple partitions. JMLR 3, 583-617 (2002)


http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/

	Boosted Mean Shift Clustering
	1 Introduction
	2 Related Work
	3 Boosted Mean Shift Clustering
	3.1 Preliminary
	3.2 The Algorithm

	4 Experimental Setup
	5 Results and Analysis
	5.1 Results on Toy Examples
	5.2 Results on Real Data
	5.3 Performance Analysis of BMSC
	5.4 Sensitivity Analysis of the Parameters α and Eps


	6 Discussion
	7 Conclusion
	References




