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Abstract. Inmanymachine learningproblems,high-dimensionaldatasets
often lie on or near manifolds of locally low-rank. This knowledge can be
exploited to avoid the “curse of dimensionality” when learning a classifier.
Explicit manifold learning formulations such as lle are rarely used for this
purpose, and instead classifiers may make use of methods such as local co-
ordinate coding or auto-encoders to implicitly characterise the manifold.

We propose novel manifold-based kernels for semi-supervised and su-
pervised learning. We show how smooth classifiers can be learnt from
existing descriptions of manifolds that characterise the manifold as a set
of piecewise affine charts, or an atlas. We experimentally validate the
importance of this smoothness vs. the more natural piecewise smooth
classifiers, and we show a significant improvement over competing meth-
ods on standard datasets. In the semi-supervised learning setting our
experiments show how using unlabelled data to learn the detailed shape
of the underlying manifold substantially improves the accuracy of a clas-
sifier trained on limited labelled data.

1 Introduction

A fundamental challenge of machine learning lies in finding embeddings in high
dimensional spaces that capture meaningful measures of distance. Bellman [3]
coined the term curse of dimensionality to describe the problems that arise as the
volume of the space grows exponentially with the number of dimensions and this
in turn necessitates an exponentially larger number of observations to cover the
space. However, in most applications, data is not uniformly distributed over the
whole space, but instead lies on a locally low-dimensional topological structure.
This key geometric intuition drives the use of manifolds in machine learning.
By finding a compact representation which preserves the relevant topological
structure of the data, manifold learning techniques avoid many of the statistical
and computational difficulties that arise from high-dimensionality and provide
meaningful low-dimensional representations.

In this work, we primarily target semi-supervised learning. We show how
unsupervised knowledge of the data manifold can be exploited to learn Support
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Fig. 1. Desirable properties of a learning algorithm, with respect to a manifold. (A)
Knowledge of the underlying manifold structure of data can improve classification
accuracy. Here unlabelled data can be used to discover the underlying shape of the
manifold improving classification accuracy. (B) Given a manifold (black) an ideal
classifier should generalise strongly in directions tangent to the manifold (blue) and
generalise poorly with respect to directions orthogonal to the manifold (pink, top).

Vector Machine (svm) kernels [24] that work in a set of low-dimensional charts
associated with the manifold, avoiding the curse of dimensionality and exhibiting
good generalisation to unseen data. Our formulation of manifold kernels is based
on the mathematical definition of a manifold as an atlas [14]. Although our
implementation makes use of the recent manifold learning technique of [18], it
does not rely on the particular atlas using this method. In principle, given a
soft-cost function for associating points with charts, it can be applied to any
atlas either known a priori or discovered using a manifold learning technique
that characterises the manifold as a set of parameterised charts that can be used
to back-project points, such as [19].

Although manifold learning has shown much promise in finding embeddings
that capture the intrinsic local low dimensionality of data, in practice the major-
ity of such approaches have difficulty with the presence of noise and are unable
to characterise closed manifolds such as the surface of a ball. [18] showed how
any manifold, either closed or otherwise, could be approximated by an atlas of
piecewise affine charts, and experimentally demonstrated their method’s robust-
ness to noise. Unfortunately, a good approximation of a smooth manifold as a
piecewise affine manifold may require the use of a large number of charts (cf.
figure 2). In addition, as a path on the manifold discontinuously jumps from
the co-ordinate system of one chart to another, the use of many charts limits
the generality of classifiers that can be learned from raw chart co-ordinates and
encourages over-fitting.

In response to these difficulties, we present a new class of chart-based Mercer
kernels suitable for use with svms that smoothly vary in the transition from one
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Fig. 2. Approximations of a closed manifold of varying coarseness found using [18]
with different minimum description length priors. The underlying manifold is shown
in red, and local affine charts approximating the manifold are in green. The coloured
dots shown are points sampled with Gaussian noise from the manifold, and their colour
indicates which chart they belong to. As the approximation is refined the local affine
approximations come closer to tangent planes of the manifold. However, more charts
are required for these tighter approximations, and as such, classifiers trained directly
on the raw charts that approximate the manifold well (e.g. rightmost) will have poor
generalisation. To avoid this trade-off between generalisation, and a good local char-
acterisation of the manifold, section 4 proposes kernels which smoothly vary along a
path transitioning from one chart to another.

chart to another1. We experimentally verify our formulation and show that it
outperforms a variety of existing methods including standard svms using: Linear
and rbf kernels; standard manifold unwrapping followed by nearest neighbour
(nn) and svm classification using techniques such as [9, 18, 21, 30]; various
forms of local co-ordinate coding (lcc) [13, 25, 32]; multi-class kernel-based
classifiers [4, 8, 23]; and rbf kernels on the raw chart co-ordinates. We also
present asymptotic speed-ups for our kernel computation, and show how a sparse
approximation of it can be typically calculated in O(n

√
n) rather than the more

usual O(n2) associated with Mercer kernels.
In using manifold learning as a preprocessing step before classification, we are

conforming to the three tenets of manifold learning set out in [19]. Namely:

1. The semi-supervised learning hypothesis: The distribution of unla-
belled data is informative and should be used to guide supervised classifiers.

2. The unsupervised manifold learning hypothesis: High-dimensional
datasets often lie near locally low-rank manifolds.

3. The manifold learning hypothesis for classification: Data from dif-
ferent classes typically lies in different regions of the manifold and are often
separated from one another by regions containing few samples.

Taken together these tenets give us an intuitive picture of supervised learning
shown in figure 1. Note that the strong generalisation of a classifier in a particular
direction, simply means that we expect the classifier response to vary slowly as
we move in that direction, while weak generalisation refers to the fact that the
classifier response may fluctuate quickly in that direction. As an svm trained
classifier is simply a weighted sum of kernel responses, such generalisation in
a classifier can be encouraged by making the kernel responses behave in this
manner.
1 See [16] for an extensive discussion of the relationship between smoothness and the
generalisation of classifiers.
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As a complete method ours is a two-step approach:

1. Unsupervised learning of the underlying manifold: We approximate
themanifold of data on the original space by fitting an atlas of low-dimensional
overlapping affine charts.

2. Supervised training of an svm: We propose a new family of Mercer
Kernels for svm-based supervised learning that make use of a soft assignment
of datapoints to the underlying low-dimensional affine charts to generating
the kernels.

Our contribution. As with earlier approaches that fuse manifold learning with
supervised classification [2, 22], our two-stage approach has a natural appli-
cation in semi-supervised learning. Unlabelled data can be used to generate a
more detailed description of the manifold, which can then improve the trained
classifier (see figure 1). In the experimental section, we provide an extensive eval-
uation that shows how these unsupervised manifolds can be used to substantially
improve the generalisation of classifiers trained from limited data, where we out-
perform three other competing approaches: Eigenfunction [10], PVM [28], and
AnchorGraphReg [15].

A further contribution of our work lies in the transition from learning on a
single chart, found with a standard method like lle, to learning on multiple
charts. Most manifolds, such as the surface of a ball, cannot be expressed as
a single chart without either folding or tearing the manifold. Learning kernels
on manifolds that cannot be expressed as a single chart is currently a topic of
interest. For instance [11] extended kernel-based algorithms to the Riemannian
manifold of Symmetric Positive Definite (SPD) matrices. However, while they
restricted both the type of manifold (SPD matrices), and the types of kernel
considered, our work shows how any kernel defined over a local Euclidean space
can be transformed into a kernel over any atlas.

2 Prior Work

While preprocessing a dataset with explicit manifold learning techniques such
as [21, 29, 30], that explicitly find a single global mapping of the data lying in a
high dimensional RD to a lower dimensional Rd, is an obvious way of avoiding
the curse of dimensionality, with the exception of [30], such approaches have
seen little use in practice. As argued by [18], this may well be because finding
a single global mapping by aligning patches that capture local information, is
an unnecessarily hard problem that should be avoided wherever possible. Such
mappings are unable to capture the intrinsic structure of closed manifolds such
as the surface of a ball, and as such methods typically try to preserve vari-
ous metric properties of the local neighbourhood, they are vulnerable to noise,
and a misestimation of the local neighbourhood can propagate throughout the
manifold leading to degenerate solutions.

As an alternative to unwrapping a manifold, there has been much interest in
local co-ordinate systems to characterise low dimensional subspaces. [19] made
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use of a variant of auto-encoders to characterise a manifold as a set of charts
that were then fine tuned to improve classification accuracy. Local co-ordinate
coding [27] and the quadratic variant local tangent based coding [26] approximate
non-linear functions by interpolating between anchor points assumed to lie on a
low-dimensional manifold.

The works [13] and [32] learnt a linear svm over a set of full rank linear
co-ordinates that smoothly vary from one cluster centre to another. While in-
spired by local coordinate coding, neither [13] nor [32] make the same manifold
assumptions. Instead, they explicitly make use of a weighted concatenation of
coordinate systems each of which spans the entire space, rather than focusing
on local low-dimensional subspaces as in manifold learning.

Our work differs from previous approaches that fuse manifold learning with
svms [2, 17, 22] both in the types of manifold that can be expressed –the pre-
vious approaches are based on Laplacian eigenmaps [1] that have difficulty with
closed manifolds– and in the form taken. These previous methods alter their reg-
ularisation to penalise changes in classification response on the manifold, while
we reshape kernels to generalise more in the direction of the manifold. As such
our different approaches can be seen as complimentary descriptions of manifold
constraints.

3 Learning a Manifold as an Atlas

The recent work of [18] formulated manifold learning as a problem of finding an
atlas A, defined as a set of overlapping charts A = {c1, c2, . . . cn}, over points
X , such that each chart corresponds to an affine subspace of the original space
R

D that accurately describe the local structure. This parametrization of the
local transforms as affine spaces allows the efficient use of PCA to find local
embeddings, without restricting the overall expressiveness of the atlas. Manifold
learning is then formulated as a hybrid continuous/discrete optimisation that
simultaneously estimates the affine mappings of charts and solving for a discrete
labelling problem, that governs the assignment of points to charts. This objective
takes the form of the minimisation of the cost:

C(z) =
∑

x∈X

(
∑

i∈zx

Ei(x)

)
+ λMDL(z), (1)

Where zx is the set of charts associated with point x, and Ei is defined as in (4).
Both subproblems, assigning points to charts and choosing the affine mappings,
minimise the same cost –the reconstruction error associated with mapping points
from their location in a chart back into the embedding space– subject to the
spatial constraint that every point must belong to the interior of one chart –
that is that each point and all its neighbours in a k-nngraph should belong to the
same chart2. Sparse solutions are encouraged by adding a minimum description
length (MDL) prior[12] term to the energy that penalises the total number of

2 Note that some points belong to more than one chart.



570 N. Pitelis, C .Russell, and L. Agapito

active charts used in an assignment. In practice, Atlas[18] is initialised by an
excess of chart proposals in the form of random affine subspaces and alternates
between assigning points to charts using the graph-cut [6] based optimisation
of [20] and refitting the chart subspaces with PCA. Figure 2 illustrates the
approximation of a closed manifold with an Atlas of locally affine subspaces
using different MDL priors.

This manifold learning technique offers a set of attractive properties that we
take advantage of in our chart-based approach to learning with svms. First, since
the set of charts that characterise the atlas overlap, points may belong to more
than one chart. Therefore, overlapping charts must explain some of the same
data in the areas of overlap that connect neighbouring subspaces which results in
implicit smoothness in the transition from one subspace to another. Furthermore,
this method allows us to learn closed manifolds since it finds charts corresponding
to affine subspaces on the original space R

D and does not require unwrapping
into a lower dimensional space. In addition, this method is intrinsically adaptive
in that the size of the region assigned to each chart is selected automatically in
response to the amount of noise, the curvature of the manifold, and the sparsity
of the data.

3.1 Formulation

More formally, each chart ci contains a subset of points Xi ⊆ X . We use Z =
{z1, . . . , zX} to describe the labelling, where zx refers to the assignment of charts
to point x (the set of charts that point x belongs to).

We define the d-dimensional affine subspace associated with each chart ci in
terms of its mean μi, and an orthonormal matrix Ci which describes its principal
directions of variance. Using x to refer to a datapoint in a feature space RD, we
use P⊥

i (x) : RD → R
d to refer to a projection from the original feature space

into a low rank subspace defined by chart ci of the form:

P⊥
i (x) = Ci(x− μi), (2)

where μi is an offset corresponding to the mean of a subset of points used to define
chart ci, and Ci is the orthonormal matrix composed of the top d eigenvectors
of the covariance matrix of the points Xi that belong to the chart, that projects
from the embedding space into chart ci.

We refer to the back-projection of point x into a low rank subspace of the
original space as Pi(x) : R

d → R
D

Pi(x) = CT
i P

⊥
i (x) + μi, (3)

and define the reconstruction error for point x belonging to chart ci as the
squared distance between a point and the back-projection of the closest vector
on the chart ci

Ei(x) = ||x− Pi(x)||22. (4)
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4 Chart-Based Kernels

4.1 Definition

We associate with each chart ci a unique Mercer kernel Ki defined over the
projected space Rd, and we define each element Kx,y of the square kernel matrix
K as:

Kx,y =
∑

ci∈A
exp

(
−Ei(x) + Ei(y)

γ2

)
Ki

x,y, (5)

where Ei(x) is defined as in (4). This kernel can be understood as a natural
softening of the obvious hard-assignment kernel H

Hx,y =
∑

ci∈A
Δ(x ∈ ci)Δ(y ∈ ci)K

i
x,y, (6)

where Δ(·) is the indicator function that takes value 1 if · is true and 0 otherwise.
This says that the inner product between two points is the same as a standard
kernel defined over chart ci if both points belong to ci, and 0 otherwise.

In practice we consider two forms of local kernels Ki. Local linear kernels of
the form

Ki
x,y = P⊥

i (x) · P⊥
i (y) (7)

and local Radial Basis Function (rbf) kernels of the form

Ki
x,y = exp

(
−||P⊥

i (x)− P⊥
i (y)||22

σ2

)
. (8)

In the experimental section we compare against the hard-assignment kernel
H and show the importance of our softening of the kernel response.

4.2 All such Kernels are Mercer

The proof follows directly by construction. We make use of two equivalent defini-
tions of Mercer kernels. Namely: a kernel matrix is Mercer if and only if (i) it can
be defined as a matrix of inner products over a Hilbert space; and equivalently
a kernel is Mercer if and only if (ii) it is a positive semi-definite matrix.

We initially consider one of the kernels Ki. It follows from (i) that there must
be some mapping φi(·) from R

d to a Hilbert space such that

Ki
x,y = 〈φi(x), φi(y)〉. (9)

We define

wi
x = exp

(
−||x− Pi(x)||22

γ2

)
(10)

and linearly rescale the elements of the Hilbert space φ(x), by their weights wi
x

to induce a new kernel matrix K̄i

K̄i
x,y = 〈wi

xφi(x), w
i
yφi(y)〉 = wi

xw
i
yK

i
x,y. (11)
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By (i) this kernel is Mercer. It follows that it is positive semi-definite, and
consequently, the sum of all weighted kernels

K =
∑

ci∈A
K̄i (12)

is also positive semi-definite and therefore Mercer.�
While the weights w were chosen by analogy with the definition of a radial

basis function, the proof holds for all choices of weight, and all choices of ker-
nel. In the experimental section, we evaluate manifold variants of linear, local
quadratic, and rbf kernels.

4.3 Efficient Approximation of the Kernel

In practice the majority of weights, wi
x are close to zero and both wi

y and Ki
x,y

are small3. As such, if wi
x is small then the entire row Ki

x, and column Ki
,x can

be safely set to 0, without altering the classification accuracy. To take advantage
of this, we only compute explicitly the inner products 〈φi(x), φi(y)〉 if ci is one
of the closest subspaces for both x and y. This is equivalent to setting wi

x = 0 if
ci is not one of the closest subspaces to x, and so the kernel remains Mercer.

We assume that the parameters of Atlas are chosen in such a way that for
n datapoints Atlas will find O(

√
n) charts, each containing less than O(

√
n)

points4. Then for each point, we must compute the distance to every subspace -
which takes time O(n

√
n), and then for each subspace compute the local inner-

products of all points assigned to it which again takes time O(
√
n(
√
n)2) =

O(n
√
n) in total. Should these assumptions be violated the algorithm degrades

naturally, with an overall run-time of O(nm +
∑

i n
2
i ), where m is the total

number of charts, and ni the number of points assigned to chart ci.
Even with these modifications the asymptotic complexity of training an svm

using a cutting plane algorithm is O(n3). However for the datasets we consider
the primary bottleneck lies in computation of the kernel matrix,and as such, a
reduction in the complexity of computing the kernel has significant impact on
run-time. See table 5 for a detailed breakdown of the run-time of the different
components of our method vs. global rbf kernel. In practice, for all reported
experiments we use the 10 closest subspaces in our approximation.

4.4 Integration with Efficient Primal Solvers

The restricted case in which Ki
x,y = P⊥

i (x) · P⊥
i (y) deserves special attention.

In this case, we can solve the problem efficiently in the primal by taking as a

3 wi
yK

i
x,y ≤ 1 in the case of an rbf kernel.

4 These are sensible assumptions, and not just chosen to make asymptotic improve-
ments possible. As the number of charts steadily increases Atlas will be able to
approximate better any underlying manifold, while the fact that the number of
charts grows sub-linearly means that Atlas should exhibit increasing robustness to
sampling error.
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feature vector for point x the concatenation of weighted projections wi
xP

⊥
i (x),

and this allows the use of efficient schemes such as averaging stochastic gradient
descent [5] that can exploit the sparsity of the training. As each feature vector is
sparse with O(

√
n) non-zero components, computation of the inner products and

sparse updates of the weight vector are O(
√
n) operations, making the overall

run-time associated with a fixed number of passes over the training set O(n
√
n).

As a point of effectiveness, the linear kernel performs significantly better if
we allow the svm to learn a bias for each chart separately. As such, we train a
standard linear svm over the sparse feature vector

fx =
⊕

ci∈A
wi

x[1, P
⊥
i (x)]. (13)

where
⊕

is the concatenation operator.
In the experimental section, we also explore the use of local quadratic kernels,

both those without cross terms, in which the sparse feature vector takes the form

fx =
⊕

ci∈A
wi

x[1, P
⊥
i (x), P⊥

i (x)2] (14)

with P⊥
i (x)2 being the elementwise square of P⊥

i (x), and those with cross-terms:

fx =
⊕

ci∈A
wi

x[1, P
⊥
i (x), l(P⊥

i (x) ⊗ P⊥
i (x))] (15)

where l(P⊥
i (x)⊗P⊥

i (x)) is the vectorization of the lower triangular (inclusive of
diagonals) component of the outer product matrix P⊥

i (x) ⊗ P⊥
i (x).

While in high-dimensional feature spaces, the use of quadratic features is
largely unnecessary and incurs a substantial additional computation cost5, in
the local low-dimensional spaces of the manifold, the use of quadratic features
incurs little overhead, and offers a noticeable improvement in discriminative
performance.

5 Experiments

Semi-Supervised Learning: To illustrate the effectiveness of our approach in a
semi-supervised situation, where the amount of labelled data is sparse relative
to the total amount of data, we evaluate on mnist by holding back the labels
of a proportion of the training data. We generate a single Atlas over all training
and test data, of local dimensionality 30, and calculate the classification error
averaged over 20 trials varying the amount of labelled training data used from
1

100

th
of the original training data (600 training samples) to 1

2 of the data (30,000
training samples). As can be seen in figure 1, with sparse training data, Atlasrbf

5 For example on mnist, the raw feature vectors lie in a 784 dimensional space, while
the quadratic features including cross terms lie in a 307,720 dimensional space.
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Table 1. Classification performance on MNIST varying the proportion of labelled data.
For all experiments, we use the same Atlas of local dimensionality 30, λ = 100, and
k = 2, containing 835 charts. Zoom electronically to see standard deviation.

Training set ratio 1/100 1/50 1/20 1/10 1/5 1/4 1/3 1/2 1/1

Linear svm 12.48 ± 0.33 10.65 ± 0.31 8.86 ± 0.13 7.85 ± 0.10 7.02 ± 0.12 6.83 ± 0.07 6.55 ± 0.10 6.20 ± 0.09 5.52

AtlasLin (eq. 13) 11.05 ± 0.60 7.15 ± 0.36 4.58 ± 0.16 3.41 ± 0.07 2.65 ± 0.08 2.44 ± 0.05 2.24 ± 0.06 1.94 ± 0.08 1.56

rbf svm 8.95 ± 0.33 6.75 ± 0.24 4.73 ± 0.11 3.59 ± 0.07 2.73 ± 0.06 2.47 ± 0.06 2.20 ± 0.06 1.86 ± 0.05 1.41

Atlasrbf (eq. 12) 4.13 ± 0.20 3.50 ± 0.13 2.87 ± 0.06 2.45 ± 0.06 2.12 ± 0.05 1.99 ± 0.05 1.87 ± 0.05 1.67 ± 0.04 1.31

drastically outperforms other methods –achieving significantly less than half the
error of an rbf kernel at maximum sparsity (4.13% vs. 8.95% error)– while the
performance of the efficient linear Atlas kernel approximately tracks that of the
standard rbf kernel. In the limit, with full training data effectively covering the
testing data, the performance of Atlasrbf and the rbf kernel almost converges,
with Atlasrbf retaining a small edge (see table 1).

Table 2. Comparison with semi-supervised approaches. With 100 labelled points, the
extreme sparsity of the training data required a simpler Atlas with fewer charts. For
this, we set λ = 1000, resulting in an Atlas with 207 charts. The parameters γ, σ are
the same as the experiments in tables 1 and 4.

Method 100 labelled points 1000 labelled points

rbf svm 22.70 ± 1.35 7.58± 0.29
EigenFunction 21.35 ± 2.08 11.91 ± 0.62

PVM(hinge loss) 18.55 ± 1.59 7.21± 0.19
AnchorGraphReg 9.40 ± 1.07 6.17± 0.15

Atlasrbf 8.10± 0.95 3.68 ± 0.12

The majority of semi-supervised approaches can not be used on datasets as
large as MNIST (see discussion in [15]). As such, we also follow the protocol
of [15] and compare our generalisation performance trained with 100 and 1000
training samples against three other scalable approaches: Eigenfunction [10],
PVM [28], and AnchorGraphReg [15], alongside rbf svms.

Supervised Learning. To validate our approach we tested our algorithm on stan-
dard classification datasets mnist, usps, semeion, and letter. In all cases we
compare the results from our Atlas-based kernel svms with Linear svms and rbf-
kernel svms on the original data. In addition, formnist,usps and letterwe show
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comparisons with state-of-the-art approaches that use different variants of local
co-ordinate coding [13, 25, 32], as well as large margin multi-class kernel-based
classifiers [4, 8, 23] (see Table 3). We use semeion to compare against the most
recent manifold learning approaches followed by nearest neighbour classifier.

Datasets. The mnist, usps, and semeion datasets consist of grayscale images of
handwritten digits ’0’ – ’9’. Both usps and semeion contain images of resolution
16× 16 encoded as 256 dimensional binary feature vectors. usps contains 7291
training and 2007 testing images while on semeion, following [30], we create 100
random splits of the data with 796 training and 797 testing images in each set
and report average error. The mnist dataset is substantially larger, with 60, 000
training and 10, 000 test Grey-scale images.

Our choice of datasets was driven by the desire to compare the performance of
our approach against as many alternative methods as possible. The 4 datasets we
selected are popular datasets, used by many authors and allow us to give scores
from a wide variety of related methods and show that our approach provides
improved performance.

Implementation. We first perform manifold learning using the Atlas algorithm
[18] to approximate of the underlying manifold as an atlas of piecewise affine
overlapping charts before running our efficient svm learning approach using lin-
ear, quadratic, and rbf chart-based kernels.

[18] takes three parameters as an input: the local dimensionality d common
for all charts, a weight λ ∈ {100, 101, . . . , 105} governing the strength of the
MDL prior, the number of nearest neighbours k ∈ {2, 4, . . . , 10} and d the local
dimensionality of the manifold. For letter a 16-dimensional dataset we take
d ∈ [5, 10], and for all other datasets, we search d ∈ {5, 10, 15, 20, 30}. lle and
ltsa also need the local dimensionality and the number of neighbours as an
input, and we search over the same range of values as Atlas. For smce we finely
tune its parameter λ so that its local dimensionality varies over the same range as
other methods. For all svm kernel methods σ−1, γ−1 ∈ {2−12−2, . . . , 2−7}, except
on MNIST where a finer search of σ−1 ∈ {0.03, 0.031, . . .0.04} was required to
replicate the performance of an rbf kernel reported in http://yann.lecun.

com/exdb/mnist/.
The parameter σr of a raw rbf kernel can be understood as a compromise

between the two parameters γ and σ used in Atlasrbf in that it should be
chosen to be somewhere close to γ preventing generalisation off the manifold,
but also close to σ to allow generalisation on the manifold. Empirically, for the
parameters selected, this is always the case: On Atlasrbf γ > σ, and the raw
rbf σr ∈ [γ, σ]. For example on usps γ = 23, σ = 27, while σr = 25.

In our experiments we used two svm solvers: The primal linear solver SvmAsgd
[5] combined with a one-versus-all merging of binary svms; Libsvm [7] allows the
use of a precomputed custom kernel such as our chart-based rbf kernel merged
using the built-in implementation of the one-versus-one merging svms

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Table 3. Supervised classification with efficient primal svm solvers or 1-nn. Our chart-
based linear and quadratic kernel svms outperform all single-chart manifold learning
methods followed by svms as well as Atlas followed by 1-nn on all datasets. Variants of
local coordinate coding with svms also perform worse than our method on letter and
mnist, while [32] has slightly lower error on usps. Scores for Linear svms and manifold
learning methods are from our experiments and scores for other methods are as reported
elsewhere. smce failed to converge on letter. All manifold learning methods except
Atlas required more than 30GB of ram on mnist and failed to complete.

Nearest Neighbour and Efficient Primal Formulations

usps letter semeion mnist
error (%) error (%) error (%) error (%)

Local coordinate based svms
ll-svm[13] 5.78 5.32 – 1.85
Linear svm + G-OCC [32] 4.14 6.85 – 1.72
Linear svm + C-OCC [32] 3.94 7.35 – 1.61
Linear svm + LLC (512 anchor points) [25] 5.78 9.02 – 3.69
Linear svm + LLC (4096 anchor points) [25] 4.38 4.12 – 2.28
Linear svm + Tangent LLC (4096 points) [26] – – – 1.64

Manifold Learning + Linear svms[5]
Linear svm on original space 8.42 35.75 7.40 5.55
smce[9] 6.88 – 9.04 –
lle[21] 12.61 74.50 12.47 –
ltsa[31] 9.37 69.10 46.06 –

Manifold Learning + 1-nn classifier
1-nn on original space 4.98 4.35 10.92 5.34
smce[9] 7.47 – 9.26 –
lle[21] 6.83 19.03 9.41 –
wLTSA [30] 8.77 40.65 10.12 –
Atlas [18] 5.38 17.28 8.27 5.13

Primal Atlas svms (SvmAsgd)
AtlasLinear - Hard Assignment (see eq. 6) 5.58 16.65 8.44 3.71
AtlasLinear (see eq. 13) 4.68 3.13 6.19 1.78
AtlasQuad (see eq. 14) 4.04 3.63 6.02 1.76
AtlasQuadCross (see eq. 15) 4.09 3.33 5.48 1.46

Comparison with standard Manifold learning. Looking at the results of tables
3 and 4, several themes can be seen. In general, the fusion of stock manifold
learning techniques [9, 21, 30] with either linear or kernel svms is of limited
value, and is perhaps more likely to hurt svm scores than to improve them. In
contrast, our Atlas kernels show substantial improvement over any baseline svm
approach (the only exception being the use of an rbf kernel on the already low
dimensional dataset letter). Every type of our Atlas based kernels out-performs
every use of stock manifold learning methods, both when used in conjuncture
with a linear or kernel svm, or as a nearest neighbour classifier.

Table 3 shows a comparison of the efficient methods on usps, letter, mnist,
and semeion. On three of the four datasets, our approach, and particularly At-
lasQuadCross, significantly outperforms all other methods. Note that, the local
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coordinate methods do not report scores on semeion. However, our efficient
primal approach obtains substantially better scores than a standard rbf kernel
(see table 4). In particular, on the letter dataset our approach to learning on
an atlas halves the classification error of [32] and substantially improves on the
classification error obtained with the coordinate coding approach of [13, 25].

Table 4. Classification performance on usps, letter, semeion, and mnist datasets.
Our chart-based rbf kernel outperforms all other multi-class kernel based svms as well
as all single-chart manifold learning methods followed by rbf svms. Libsvm with an
rbf kernel on the raw data achieved the best performance on letter, Atlasrbf is best
on all other datasets. The comparison between Atlasrbf with soft and hard assignment
shows the impact of our novel kernels. smce failed to converge on letter.

Kernel methods using cutting-plane type approaches

usps letter semeion mnist
Method error (%) error (%) error (%) error (%)

Global svms
mcvsvm[8] 4.24 2.42 – 1.44
svmstruct [23] 4.38 2.40 – 1.40
LaRank [4] 4.25 2.80 – 1.41
Libsvm on raw data[7] 4.53 2.05 6.41 1.41
Manifold Learning + rbf svms[7]
smce[9] 6.18 – 8.68 –
lle[21] 4.78 5.38 6.93 –
ltsa[31] 7.03 44.63 9.17 –

Atlas-Kernel svms (Libsvm)
Atlasrbf - Hard Assignment (see eq. 6) 4.63 4.95 7.15 3.13
Atlasrbf (see eq. 12) 3.68 2.33 5.14 1.31

Table 4 shows that in comparison with rbf svms and the multi-class kernel-
based svms of [4, 8, 23], we achieve substantial improvement in classification
performance on usps. Our Atlasrbf kernel outperforms all methods with the
exception of the global rbf kernel svm on the letter dataset. As letter is
16-dimensional, it does not allow for the advantages of the manifold learning
methods to be fully employed, it is perhaps unsurprising that manifold learning
is not only unnecessary, but also slightly detrimental, as we see higher errors for
the lcc-based methods. As [18] allows the learning of a manifold of arbitrary
dimension, we could learn the trivial 16-dimensional manifold, composed of a
single chart, and where the projection matrix P⊥(x) is the identity function. In
such cases our performance is identical to that of the rbf kernel. As such a result
is uninformative, we instead cap the local manifold dimensionality at 10, when
reporting our result. Our approach still achieves the second best performance
and outperforms all other multi-class kernel-based methods.

Tables 3 and 4 clearly show the importance of forcing the classifier to vary
smoothly, when generalising to the testing set. While the smooth Atlasrbf ker-
nel consistently outperforms related work, the hard assignment kernels (6) of
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section 4.1 show that training a single kernel in each chart without soft assign-
ment is noticeably worse than existing approaches. Table 5 shows the response
of our Atlas-based approaches vs. global linear and rbf kernels to increasing
levels of Gaussian noise. Our approach appears to behave better with respect to
noise with lower classification errors. The parameters used are the same as in
tables 3 and 4.

Chart Characterisation. Our results can also be used to validate the manifold
learning tenets of [19]. Particularly table 4, where the improved results come
from forcing an rbf kernel to conform to the manifold 6, clearly show unlabelled
data is important and that a learned manifold can improve the performance of
classifiers. Empirically, tenet 2 (that a manifold can be fitted to the data) also
holds and explains the success of our approach. Tenet 3 states that different
classes should lie on different areas of the manifold. This can be tested by seeing
if different classes belong to different charts of the Atlas.

Although [18] learns the set of overlapping affine charts in a totally unsu-
pervised manner, tenet 3 suggests that points which share similar statistical
properties and are more likely to lie on the same subspace or chart would also
share the same label information. In fact, on usps, most of the 18 charts learned
contain points from a single dominant class, where for the median chart 96% of
the points assigned to it come from the same class. However, some charts con-
tain two or three prevalent classes and around 10% of the data label differs from
that of its interior chart. On mnist 262 out of 835 charts contain data from the
same class and 180 contain more than 10% points whose label differs from the
dominant class. Similarly, for the median chart 98% come from the dominant
class. In total 6.9% of the data does not belong to the dominant class of the
interior of the chart it is assigned to. Along with providing empiric validation
of tenet 3, the fact that 5-10% of the data does not reflect the dominant label
of the chart provides some insight in the difference in performance between nn,
linear and rbf kernels, and implicitly bounds the maximal error of any classifier
trained on this Atlas.

Table 5. Extended analysis on usps

(a) Run-time of various components. The top
row shows the run-time of components, while
the bottom row shows the accumulated time.

Init. Atlas Kernel svm train svm test
AtlasLinear 44.44 +10.29 +0.78 +0.78 +0.16

44.44 54.73 55.51 56.29 56.45
Atlasrbf 44.44 +10.29 +28.99 +9.68 +2.53

44.44 54.73 83.72 93.40 95.93

Libsvm - - - 99.93 +95.47
- - - 99.93 195.40

(b) Classification on usps with in-
creasing Gaussian noise.

Noise 2% 5% 10% 15% 20% 30%
Linear svm 8.72 8.82 9.07 9.82 10.21 11.36
AtlasLinear 5.08 5.83 6.03 5.93 6.78 11.46
rbf svm 4.58 4.58 5.53 5.58 6.33 8.67
Atlasrbf 4.04 4.14 4.48 5.08 6.34 7.57

6 In contrast, table 3 shows that the charts found can be used to raise the data into
a high-dimensional space, where linear svms perform better.
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6 Conclusion

We have presented a novel approach to supervised and semi-supervised learning
via training a manifold on unlabelled data. We have shown superior performance
to both rbf kernels and local co-ordinate based methods on standard datasets,
and to manifold learning based nearest neighbour. As such it provides additional
empiric validation of the tenets of manifold learning first proposed in [19]. Our
method provides a principled way for Support Vector Machines to make use of
unlabelled data in learning a kernel, and we intend to further explore the benefits
of this.
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