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Abstract. In data mining and machine learning, the embedding methods have
commonly been used as a principled way to understand the high-dimensional
data. To solve the out-of-sample problem, local preserving projection (LPP) was
proposed and applied to many applications. However, LPP suffers two crucial
deficiencies: 1) the LPP has no shift-invariant property which is an important
property of embedding methods; 2) the rigid linear embedding is used as con-
straint, which often inhibits the optimal manifold structures finding. To overcome
these two important problems, we propose a novel flexible shift-invariant locality
and globality preserving projection method, which utilizes a newly defined graph
Laplacian and the relaxed embedding constraint. The proposed objective is very
challenging to solve, hence we derive a new optimization algorithm with rigor-
ously proved global convergence. More importantly, we prove our optimization
algorithm is a Newton method with fast quadratic convergence rate. Extensive
experiments have been performed on six benchmark data sets. In all empirical
results, our method shows promising results.

1 Introduction

In many data mining applications, it is highly desirable to map high-dimensional in-
put data to a lower dimensional space, with a constraint that the data from similar
classes will be projected to nearby locations in the new space. Thus, many data em-
bedding methods have been developed. Depending on whether the label information is
used, these methods can be classified into two categories, i.e., unsupervised and super-
vised. A representative of unsupervised embedding methods is PCA [11], which aims
at identifying a lower-dimensional space maximizing the variance among data. A rep-
resentative of supervised embedding methods is LDA [4], which aims at identifying
a lower dimensional space minimizing the inter-class similarity while maximizing the
intra-class similarity simultaneously.

To discover the intrinsic manifold structure of the data, multiple nonlinear embed-
ding algorithms have been recently proposed to use an eigen-decomposition for ob-
taining a lower-dimensional embedding of data lying on a non-linear manifold, such
as Isomap [22], LLE [19], Laplacian Eigenmap [2], Local Tangent Space Alignment
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(LTSA) [25] and Local Spline Embedding (LSE) [24]. However, many of them, such
as Isomap and Laplacian Eigenmap, suffer from the out-of-sample problem, i.e. how to
embed new points in relation to a previously specified configuration of fixed points.
To deal with this problem, He et al. [7] developed the Locality Preserving Projec-
tions (LPP) method, in which the linear embedding function is used for mapping new
data.Nie et al. [18] proposed a flexible linearization technique in which LPP and spec-
tral regression [3] are two extreme cases.

Although LPP solved the out-of-sample problem, two crucial deficiencies exist in
current LPP based methods. First, LPP has no shift-invariant property which is a basic
property of subspace learning methods. The learned subspace (or the projection matrix)
should be invariant when all training data points are shifted by the same constant vector.
Second, in LPP, the rigid linear embedding is used as constraint, which often limits the
search of optimal manifold structures.

To resolve these two important problems, we propose a novel flexible shift invariant
locality and globality preserving projection (FLGPP) method. We reformulate the LPP
objective using a correct Laplacian matrix which makes the new method shift invariant.
Meanwhile, we show that the graph embedding methods are indeed locality and glob-
ality preserving projection methods, which were only considered as keeping the local
geometrical structure. We relax the rigid linear embedding by allowing the error toler-
ance such that the data instances can be flexibly embedded. The proposed objective is
very difficult to solve. As one important contribution of this paper, we derive a new op-
timization algorithm with proved global convergence. More importantly, we rigorously
prove that our new optimization algorithm is a Newton method with fast quadratic con-
vergence rate. To evaluate our method, we compare the new method to the LDA and
LPP methods by performing them on six benchmark data sets. In all empirical results,
our new FLGPP method shows promising results.

2 Locality Preserving Projections Revisit

2.1 Review of Related Graph Based Methods

Given n training data points X = [x1, · · · , xn] ∈ R
d×n, where d is the data dimension-

ality and n is the number of data points, the graph based methods first construct a graph
based on the data to encode the pairwise data similarities. With the graph affinity matrix
A ∈ R

n×n, the Laplacian matrix is defined as L = D − A, where D is the diagonal
matrix with the i-th diagonal element Dii =

∑
i Aij . L is positive semi-definite, and

satisfies L1 = 0, where 1 is a vector having all elements as 1s, and 0 is a vector having
all elements as 0s.

Traditional spectral clustering (or graph cut) [21,15] and Laplacian embedding (or
graph embedding, manifold learning) [2] is to solve the following problem:

min
FTQF=I

Tr(FTLF ), (1)

where Q would be D or the n by n identity matrix I . The optimal solution F ∈
R

n×m(m < n) to Eq. (1) is the eigenvectors of Q−1L corresponding to the small-
est eigenvalues.
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The methods solving problem Eq. (1) only use the given training data, with no
straightforward extension for out-of-sample examples. To handle the out-of-sample
problem, a seminal work called Locality Preserving Projections (LPP) was proposed
[7], which is to solve the following problem:

min
FTQF=I

XTW=F

Tr(FTLF ), (2)

where W ∈ R
d×m(m < d) is the projection matrix. This linearization method imposes

a rigid constraint XTW = F on the problem Eq. (1), such that the data outside the
training data can also be handled using the projection W . In LPP, only Q = D is
considered, thus the problem Eq. (2) can be written as:

min
WTXDXTW=I

Tr(WTXLXTW ). (3)

The optimal solution W to LPP is the eigenvectors of (XDXT )−1XLXT correspond-
ing to the smallest eigenvalues. Many algorithms following this linearization method
are also proposed for subspace learning and classifications in recent years.

2.2 Shift-Invariant Property

For subspace learning algorithms, shift invariance is a basic and important property.
That is to say, the learned subspace (or the projection matrix W ) should be invariant
when every training data point xi is shifted by the same constant vector ci, i.e., X is
shifted to X + c1T . For example, PCA, LDA and regularized least squares regression
are all shift-invariant algorithms. We are going to demonstrate this observation.

PCA solves:
min

WTW=I
Tr(WTXLtX

TW ), (4)

where Lt = I− 1
n11

T is the centering matrix, which is a Laplacian matrix and satisfies
Lt1 = 0. As a result, we have (X + c1T )Lt(X + c1T )T = XLtX

T , and thus the op-
timal solution W will not be changed when the training data are shifted by an arbitrary
vector c.

LDA is to solve:

max
W

Tr((WTXLwX
TW )−1WTXLbX

TW ), (5)

whereLw and Lb are another two Laplacian matrices satisfying Lw1 = 0 and Lb1 = 0.
Obviously we have (X + c1T )Lw(X + c1T )T = XLwX

T and (X + c1T )Lb(X +
c1T )T = XLbX

T , and thus the optimal solution W is also invariant to an arbitrary
shift vector c.

Ridge regression solves:

min
W,b

∥
∥XTW + 1bT − Y

∥
∥2
F
+ γ ‖W‖2F , (6)

which has a closed form solution W = (XLtX
T + γI)−1XLtY . Thus, the optimal

solution W of the ridge regression is also invariant to arbitrary shift vector c.
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One can immediately observe that the original LPP algorithm does not satisfy the
shift-invariant property. When the data points are shifted by a same constant vector,
although the distribution of the data points is not changed, the learned subspace by LPP
will be changed. This problem should be avoided for a subspace learning algorithm.

3 Shift-Invariant Locality Preserving Projections

The original LPP was derived from Eq. (1), in which the optimal solution is the eigen-
vectors of Q−1L corresponding to the smallest eigenvalues. However, the smallest
eigenvalue of Q−1L is 0 and the corresponding eigenvector is 1, which is usually dis-
carded in practice. Thus the actual solutions are the eigenvectors of Q−1L correspond-
ing the eigenvalues starting from the second smallest one, which is the solution to the
following problem:

min
FTQF=I

FTQ1=0

Tr(FTLF ). (7)

Note that there is an additional constraint FTQ1 = 0 in the problem. In the lineariza-
tion method, when we use the linear constraint XTW = F , the additional constraint
FTQ1 = 0 can not be satisfied since WTXQ1 �= 0. To fix this problem, we use the
linear constraint with bias XTW + 1bT = F , where b ∈ R

m×1 is the bias vector.
With the additional constraint FTQ1 = 0, we have (WTX + b1T )Q1 = 0 ⇒ b =
− 1

1TQ1W
TXQ1. Thus the linear constraint with bias in the linearization method is:

(I − 1

1TQ1
11TQ)XTW = F. (8)

By imposing the linear constraint Eq.(8) to problem (1) or (7), the shift-invariant LPP
is to solve the following problem [16]:

min
FTQF=I

(I− 1

1T Q1
11TQ)XTW=F

Tr(FTLF ) . (9)

Define

Lq = Q− 1

1TQ1
Q11TQ , (10)

then the problem (14) can be re-written as

min
WT XLqXTW=I

Tr(WTXLXTW ). (11)

Note that L and Lq are Laplacian matrix satisfying L1 = 0 and Lq1 = 0, so we have
(X + c1T )L(X + c1T )T = XLXT and (X + c1T )Lq(X + c1T )T = XLqX

T .
Therefore, the optimal solution W of the problem (11) is invariant to arbitrary shift
vector c.

From the above analysis we know that, the constraint WTXQXTW = I (Q is a di-
agonal matrix such as D or I) will make the learned subspace does not satisfy the basic
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shift invariance property. The correct constraint should be WTXLqX
TW = I . There

are many works following LPP used the constraint WTXDXTW = I , so this issue
should be pointed out. Although this issue could be alleviated if we centralize the data
such that the mean of the training data is zero, the users who are not aware of this issue
may not always perform this preprocessing when they apply this kind of algorithms.
Therefore, it is worth to emphasizing that the correct constraint WTXLqX

TW = I
instead of the WTXQXTW = I should be used in subspace learning algorithm
design.

4 Flexible Locality and Globality Preserving Embedding

4.1 Local and Global Viewpoints of The Graph Based Methods

It was known that the graph based data mining methods capture the local geometrical
structure in training data. We will show that the graph based methods Laplacian em-
bedding (solving Eq. (7)) and shift-invariant LPP (solving Eq. (11)) can capture both of
local and global geometrical structure in training data.

Under the constraints in the problem (7), and according to Eq. (10), we know
Tr(FTLqF ) is a constant. So problem (7) is equivalent to the following problem:

min
FTQF=I

FTQ1=0

Tr(FTLF )

Tr(FTLqF )
. (12)

Note that the following two equations hold:

Tr(FTLF ) =

n∑

i=1

n∑

j=1

Aij ‖fi − fj‖2,

T r(FTLqF ) =
n∑

i=1

Qii

∥
∥fi − f̄

∥
∥2, (13)

where f̄ =
n∑

i=1

Qiifi/
n∑

i=1

Qii is the weighted mean of fi|n1 . When Q = I , Tr(FTLqF )

is the variance of the n embedded data points fi|n1 . When Q = D, Tr(FTLqF ) is the
weighed variance of the n embedded data points fi|n1 with the weight Dii for the i-th
embedded data point fi.

Thus, from Eq. (13), we can conclude that solving the problem (12) is to minimize
the Euclidean distances between local data pairs in the embedded space and also to
maximize the (weighted) variance of the total data points in the embedded space at
the same time, which provides us a new understanding on the Laplacian embedding
methods.

Similarly, problem (11) is equivalent to the following problem

min
WTXLqXTW=I

Tr(WTXLXTW )

Tr(WTXLqXTW )
. (14)
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Thus, solving the problem (11) is to minimize the Euclidean distances between local
data pairs in the projected subspace and also to maximize the (weighted) variance of the
total data points in the projected subspace at the same time. That is to say, although the
algorithm LPP is called “locality preserving”, it can preserve both of the locality and
globality structure in the training data.

If we use the orthogonal constraint instead of the constraint WTXLqX
TW = I ,

the problem (14) becomes the trace ratio LPP problem [16], which can be efficiently
solved by an iterative algorithm with quadratic convergence rate [23,10]:

min
WTW=I

Tr(WTXLXTW )

Tr(WTXLqXTW )
. (15)

4.2 Locality and Globality Preserving Projections with Flexible Constraint

Traditional linearization method imposes a constraint XTW = F to learn the projec-
tion matrix W . Because F in the original problems (e.g. Eq. (1)) usually is nonlinear,
imposing the constraint that F must be exactly equal to the linear model XTW is too
rigid in practice. In this paper, we propose to use a flexible constraint

∥
∥XTW − F

∥
∥2
F
≤

δ instead of the rigid constraint XTW = F in the linearization method. With this
flexible linearization constraint and motivations inspired by Eq. (12), we propose the
Flexible Locality and Globality Preserving Projections (FLGPP), which is to solve :

min
F,WTW=I

||XTW−F ||2F≤δ

Tr(FTLF )

Tr(FTLqF )
. (16)

The problem (16) is equivalent to

min
F,WTW=I

Tr(FTLF )

Tr(FTLqF )
+ λ

∥
∥XTW − F

∥
∥2
F
, (17)

where λ > 0 is the Lagrangian multiplier coefficient. We propose to solve a similar
problem to Eq. (17) for the FLGPP as follows:

min
F,WTW=I

Tr(FTLF ) + γ
∥
∥XTW − F

∥
∥2
F

Tr(FTLqF )
. (18)

This new objective is very difficult to optimize, because there are two variables W and
F to be solved. Moreover, the non-convex objective function is a ratio of two terms,
meanwhile there is a non-convex constraint in the problem, which makes the optimiza-
tion procedure more challenging. In next section, as one important contribution of this
paper, we will propose an effective algorithm to solve the proposed objective, and also
prove the algorithm converges to the global optimal solution with quadratic convergence
rate, even though the problem is not convex.
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5 New Optimization Algorithm

5.1 Proposed Algorithm

Denote N = (L− λLq + γI)−1 and define a function g(λ) as follows:

g(λ) = min
F,WTW=I

TrFT (L − λLq)F + γ
∥
∥XTW − F

∥
∥2
F

(19)

Eq. (19) can be written as:

g(λ) = min
F,WTW=I

Tr(FTN−1F )

+γT r(WTXXTW )− 2γT r(WTXF )
(20)

From Eq. (20) we know N should be positive definite to guarantee the objective func-
tion is convex w.r.t. F , otherwise the objective function in Eq. (19) is not bounded.
Suppose N is positive definite, by setting the derivative of Eq. (20) w.r.t. F to zero, we
have

F = γNXTW (21)

Substituting F into Eq. (20), we have

g(λ) = min
WTW=I

TrWTX(I − γN)XTW (22)

The optimal solutionW consists of the m eigenvectors ofX(I−γN)XT corresponding
to the smallest eigenvalues.

If we have an initial value λ0 satisfying the following two conditions: N0 = (L −
λ0Lq + γI)−1 is positive definite (i.e., the smallest eigenvalues of N0 is larger than 0)
and g(λ0) ≤ 0 (i.e., the sum of the m smallest eigenvalues of X(I − γN0)X

T is not
larger than 0), we will have the algorithm to solve the proposed objective. The detailed
algorithm to solve the problem (18) is described in Algorithm 1.

In the following subsections, we will prove our algorithm converges to the global op-
timal solution and provide the approach to find a λ0 to satisfy the above two conditions.

5.2 Convergence Analysis of Our Algorithm

Denote

J(F,W ) =
Tr(FTLF ) + γ

∥
∥XTW − F

∥
∥2
F

Tr(FTLqF )
(23)

Assume λ∗ = J(F ∗,W ∗) is the global optimal value of the objective function in
Eq. (18). Denote

h(F,W ;λ) = TrFT (L− λLq)F + γ
∥
∥XTW − F

∥
∥2
F

(24)

then g(λ) = min
F,WTW=I

h(F,W ;λ).

Similar to the standard trace ratio problem [17], we have the following results.
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Algorithm 1. Algorithm to solve the problem (18)
Input: X , Positive semi-definite matrices L and Lq , γ, m.
Initialize λ0 such that N0 = (L− λ0Lq + γI)−1 is positive definite and g(λ0) ≤ 0.
Let t = 1.
repeat

1. Calculate Nt−1 = (L− λt−1Lq + γI)−1.
2. Calculate Wt, in which the columns are the m eigenvectors of X(I − γNt−1)X

T corre-
sponding to the smallest eigenvalues.
3. Calculate Ft = γNt−1X

TWt.

4. Calculate λt =
Tr(WT

t X(I−γNt−1)X
T Wt)

γTr(WT
t XNt−1LqNt−1X

TWt)
+ λt−1.

5. Let t = t+ 1.
until Converge
Output: F , W .

Lemma 1. The below three equations hold:

g(λ) = 0 ⇒ λ = λ∗ (25)

g(λ) > 0 ⇒ λ < λ∗ (26)

g(λ) < 0 ⇒ λ > λ∗ (27)

Proof: Since λ∗ = J(F ∗,W ∗) is the global optimal value, ∀F,WTW = I , we have
J(F,W ) ≥ λ∗. So h(F ∗,W ∗;λ∗) = 0 and h(F,W ;λ∗) ≤ 0. Thus min

F,WTW=I

h(F,W ;λ∗) = 0, that is, g(λ∗) = 0. Similarly we can get Eq. (25).
If λ ≥ λ∗, then

g(λ) = min
F,WTW=I

h(F,W ;λ) ≤ h(F ∗,W ∗;λ)

= g(λ∗) + (λ∗ − λ)Tr(F ∗TLpF
∗)

= (λ∗ − λ)Tr(F ∗TLpF
∗)

≤ 0, (28)

which concludes Eq. (26).
If λ ≤ λ∗, then

g(λ) (29)

= min
F,WTW=I

h(F,W ;λ)

= min
F,WTW=I

h(F,W ;λ∗) + (λ∗ − λ)Tr(FTLpF )

≥ min
F,WTW=I

h(F,W ;λ∗) + min
F

(λ∗ − λ)Tr(FTLpF )

= g(λ∗) + (λ∗ − λ)min
F

Tr(FTLpF )

= 0,

which concludes Eq. (27). �
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Theorem 1. In each iteration of Algorithm 1, the value of the objective function in
Eq. (18) will not increase.

Proof: According to Step 3 in Algorithm 1, Ft = γNt−1X
TWt, and notice Nt−1 =

(L− λt−1Lq + γI)−1 according to Step 1, hence we have

J(Ft,Wt) =
Tr(FT

t LFt) + γ
∥
∥XTWt − Ft

∥
∥2
F

Tr(FT
t LqFt)

=
TrWT

t X(I − γNt−1)X
TWt

γT rWT
t XNt−1LqNt−1XTWt

+ λt−1

= λt . (30)

Thus, λt = J(Ft,Wt) ≥ J(F ∗,W ∗) = λ∗. According to Eq. (26) in Lemma 1,
g(λt) ≤ 0. On the other hand, according to the condition of λ0, we have g(λ0) ≤ 0.
Therefore, for t ≥ 0, g(λt) ≤ 0.

According to Steps 2 and 3, {Ft+1,Wt+1} are the optimal solutions to g(λt), so
g(λt) = h(Ft+1,Wt+1;λt). Therefore, for t ≥ 0, we have

g(λt) ≤ 0 (31)

⇒ h(Ft+1,Wt+1;λt) ≤ 0

⇒ Tr(FT
t+1LFt+1) + γ

∥
∥XTWt+1 − Ft+1

∥
∥2
F

Tr(FT
t+1LqFt+1)

≤ λ

⇒ J(Ft+1,Wt+1) ≤ J(Ft,Wt) ,

which completes the proof.
�

Note that J(Ft,Wt) has lower bound, thus the Algorithm 1 will converge.

Theorem 2. The Algorithm 1 converges to the global optimal solution.

Proof: According to Step 4 in Algorithm 1,

λt+1 =
TrWT

t+1X(I − γNt)X
TWt+1

γT rWT
t+1XNtLqNtXTWt+1

+ λt . (32)

Note that λt+1 = λt in the convergence. Therefore

λt+1 =
TrWT

t+1X(I − γNt)X
TWt+1

γT rWT
t+1XNtLqNtXTWt+1

+ λt+1 (33)

⇒ TrWT
t+1X(I − γNt)X

TWt+1

γT rWT
t+1XNtLqNtXTWt+1

= 0

⇒ TrWT
t+1X(I − γNt)X

TWt+1 = 0

⇒ g(λt) = 0.

According to Eq. (25) in Lemma 1, λt = λ∗. Therefore, the converged solution of
Algorithm 1 is the global optimal solution. �

To study the convergence rate of our algorithm, we prove the following theorem.
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Theorem 3. The Algorithm 1 is a Newton’s method to find the root of g(λ) = 0.

Proof: Denote the i-th smallest eigenvalue of X(I − γNt)X
T by βi(λt) and the corre-

sponding eigenvector by wi(λt). According to the definition of eigenvalues and eigen-
vectors, we have:

(X(I − γNt)X
T − βi(λt)I)wi(λt) = 0 (34)

⇒ ∂(X(I − γNt)X
T − βi(λt)I)wi(λt)

∂λt
= 0

⇒ (−γXNtLqNtX
T − β′

i(λt)I)wi(λt) +

(X(I − γNt)X
T − βi(λt)I)w

′
i(λt) = 0

⇒ wT
i (λt)(−γXNtLqNtX

T − β′
i(λt)I)wi(λt) +

wT
i (λt)(X(I − γNt)X

T − βi(λt)I)w
′
i(λt) = 0

⇒ wT
i (λt)(−γXNtLqNtX

T − β′
i(λt)I)wi(λt) = 0

⇒ β′
i(λt) = −γwT

i (λt)XNtLqNtX
Twi(λt)

From Eq. (22) we know, g(λ) = min
WT W=I

trWTX(I − γN)XTW , so g(λt) =

m∑

i=1

βi(λt). Then we have:

g′(λt) =
m∑

i=1

β′
i(λt)

=

m∑

i=1

−γwT
i (λt)XNtLqNtX

Twi(λt)

= −γT r(WT
t+1XNtLqNtX

TWt+1) . (35)

According to Step 4 in Algorithm 1, we have:

λt+1 =
Tr(WT

t+1X(I − γNt)X
TWt+1)

γT r(WT
t+1XNtLqNtXTWt+1)

+ λt

= λt − g(λt)

g′(λt)
. (36)

Thus the iterative procedure of Algorithm 1 is essentially a Newton’s method to find the
root of g(λ) = 0.

�

It is well known the rate of convergence of Newton’s method is quadratic conver-
gence under mild conditions, which is very fast to converge in practice. In our experi-
ments, we find that the Algorithm 1 indeed converges very fast, and always converges
within 5-20 iterations.

5.3 Approach to Find An Initial λ0

Lemma 1 can be used to find a feasible λ0 that satisfies the following two conditions:
N0 = (L− λ0Lq + γI)−1 is positive definite and g(λ0) ≤ 0.
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Algorithm 2. Find a feasible value λ0

Initialize F and W such that W TW = I . Let:

λmin = 0 and λmax =
Tr(FTLF )+γ‖XTW−F‖2

F

Tr(FT LqF )
.

repeat
Let λ0 = λmin+λmax

2
, N0 = (L− λ0Lq + γI)−1.

if the smallest eigenvalue of N0 is not larger than 0 then
λmax ← λ0.

end if
if the sum of the m smallest eigenvalues of X(I − γN0)X

T is larger than 0 then
λmin ← λ0.

end if
until N0 is positive definite and the sum of the m smallest eigenvalues of X(I − γN0)X

T is
not larger than 0

We apply bisection method to find such a λ0. First, we evaluate the lower bound
λmin and upper bound λmax of such a λ0. According to Lemma 1, g(λ0) ≤ 0 indicates
λ0 ≥ λ∗. If L and Lq are positive semi-definite, λ∗ ≥ 0, so we can set the initial
lower bound λmin = 0. 1 Randomly initialize F and W such that WTW = I , we
have J(F,W ) ≥ λ∗, so we can set the initial upper bound λmax = J(F,W ). With the
initial lower and upper bounds λmin and λmax, we can use the bisection method to find
a feasible λ0 satisfying the two conditions. If N0 is not positive, then the current λ0

is too large, we update the upper bound λmax with the current λ0. If g(λ0) > 0, then
λ0 < λ∗, which indicates the current λ0 is too smaller, we update the lower bound λmin

with the current λ0. The detailed approach is described in Algorithm 2.
It is worth noting that similar method can also be used to find an initial λ0 for solving

a different problem in [9], such that the algorithm in [9] is applicable with any parameter
combination. We have updated the code for [9] in the author’s website.

5.4 Shift Invariance of The Algorithm

It can be easily verified that (I − γN)1 = 0, so we have (X + c1T )(I − γN)(X +
c1T )T = X(I − γN)XT . Thus, according to the Algorithm 1, the optimal solution W
to the problem (18) is invariant to arbitrary shift vector c.

6 Experiment

We evaluate the performance of the proposed flexible shift-invariant locality and glob-
ality preserving projection (FLGPP) on six benchmark data sets with the comparison to

1 If the symmetric matrix L is not positive and Lq is positive, we can set λmin to the smallest
eigenvalue σ of L−1

q L since it can be verified λ∗ ≥ σ. We can also evaluate the smallest
eigenvalue of L and the largest eigenvalue of Lq using the Gershgorin circle theorem to avoid
computing the eigenvalue.
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four related supervised embedding approaches, including multi-class Linear discrimi-
nant analysis (LDA), locality preserving projection (LPP), shift-invariant locality pre-
serving projection (SILPP) in §3 as well as trace ratio locality preserving projection
(TLPP) in §4.1.

Table 1. The summary of six benchmark datasets used in the experiments

data name # classes(k) image size # data point(n) # training per class
AT&T [20] 40 28× 23 400 4

UMIST [6] 20 112× 92 575 6

BINALPHA [1] 36 20× 16 1404 6

COIL20 [14] 20 32× 32 1440 12

YALEB [5] 31 24× 21 1984 8

AR [12] 120 32× 24 840 3

6.1 Data Descriptions

We use six image benchmark data sets in our experiments, because these data typically
have high dimensionality.
AT&T [8] data set has 40 distinct subjects and each subject has 10 images. We down-
sampled each image (standard procedure to reduce the misalignment effect) to the size
of 28× 23. The training number per class is 4.
UMIST faces are for multiview face recognition. This data set contains 20 persons and
totally there are 575 images. All these images of UMIST database are cropped and re-
sized into 112× 92 images. The training number per class is 6.
Binary Alpha data set contains binary digits of 0 through 9 and capital A through Z
with size 20 × 16. There are 39 examples of each class. We randomly select 6 images
per class as the training data.
Columbia University Image Library (COIL-20) data set [13] consists of color images
of 20 objects where the images of the objects were taken at pose intervals of 5 degree,
form the front view with 0 degree. Thus, there are 72 poses per objects. The images are
converted to gray-scale image and they are normalized to the size of 32 × 32 pixels in
our experiment. We randomly pick up 12 images for each object to do the training.
Yale database B data set [5] contains single light source images of 38 subjects (10 sub-
jects in original database and 28 subjects in extended one) under 576 viewing conditions
(9 poses × 64 illumination conditions). We fixed the pose. Thus, for each subject, we
obtained 64 images under different lighting conditions. The facial areas were cropped
into the final images for matching [5]. The size of each cropped image in our experi-
ments is 24× 21 pixels, with 256 gray levels per pixel. Because there is a set of images
which are corrupted during the image acquisition [5], we have 31 subjects. We ran-
domly select 64 illumination conditions for all 31 subjects to create the experimental
dataset with 1984 images and randomly pick up 8 images per subject to do the training.
AR face database contains 120 people with different facial expressions, lighting condi-
tions and occlusions. Each person has 26 different images, and the image resolution is
50× 40. We random select 7 images per person and downsample the each image to the
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size of 32× 24 to obtain the experimental dataset with 840 images. Then, we randomly
select 3 per class as the training dataset.

We summarize the six data sets that used in our experiments in Table 1, and some
image samples of the data sets are shown in Figure 1.

Fig. 1. Examples of the six data sets used in our experiments. From the first row to the sixth row:
AT&T, UMIST, BINALPHA, COIL20, YALEB, AR.

6.2 Experiment Setup

In the training step, we firstly build the graph using the strategy described in next para-
graph. Based on the same graph structure, five different embedding methods are con-
ducted for a pre-defined reduced dimension. After we get the projection matrices for
different methods, in the testing step, we use the simple k-NN (k=1) classifier (a simple
classifier can avoid introducing any bias) to classify the testing data in the embedded
space. In each experiment, we randomly select several data point per class for train-
ing and the rest are used as for testing. The average classification accuracy rates and
standard deviations are reported over 50 random splits.

Regarding the graph construction, since we are discussing supervised embedding
methods, we utilize the label information of the training data to build the graph. To be
specific, wi,j = 1, if i-th training data point and j-th training data point belong to the
same class; wi,j = −1, otherwise. We also remove the self-loop, i.e. let wi,j = 0, if
i = j. The regularization parameter in FLGPP is set to 0.1 in all the experiments. We
record the average classification accuracy rate V.S. the different reduced dimensions
for all the methods. For multi-class LDA, we only record its performance up to C − 1,
where C is the number of classes.
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(b) UMIST
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(c) BINALPHA
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(d) COIL20
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(e) YALEB

0 20 40 60 80 100 120 140
10

20

30

40

50

60

70

80

90

100

the reduced dimension

th
e 

av
er

ga
e 

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
 r

at
e 

(%
)

 

 

LDA
LPP
SILPP
TLPP
FLGPP

(f) AR

Fig. 2. The average (50 trials with random data split) classification accuracy of k-NN method on
the embedded data by five different embedding approaches
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Table 2. The average classification accuracy rate± standard deviation on six benchmark datasets
among all the reduced dimension from 5 to C − 1

data name MLDA LPP SILPP TLPP FLGPP
AT&T 87.70 ± 2.06 87.24 ± 1.96 87.83 ± 2.49 93.48 ± 1.72 94.28± 1.91

UMIST 88.00 ± 2.63 86.24 ± 2.91 87.72 ± 2.70 94.07 ± 2.08 94.22± 2.07

BINALPHA 18.33 ± 1.52 17.63 ± 1.55 18.63 ± 1.44 30.89 ± 1.92 31.38± 3.24

COIL20 86.43 ± 1.53 85.16 ± 1.69 85.95 ± 1.49 91.03 ± 1.27 92.26± 1.07

YALEB 68.76 ± 5.25 66.74 ± 6.22 68.87 ± 5.67 73.75 ± 2.05 74.05± 2.56

AR 89.15 ± 1.18 88.68 ± 1.35 89.23 ± 1.31 92.28 ± 1.22 92.39± 1.14

6.3 Experiment Results

Fig. 2 shows the average classification accuracy rate evaluated by 1-NN v.s. the num-
ber of the reduced dimension on six datasets over 50 random data split. From Fig. 2
we clearly observe that the performance of our proposed FLGPP method consistently
outperforms that of the other embedding approaches, especially when the reduced di-
mension is low. When the reduced dimension becomes larger, the performance of
FLGPP and TLPP become similar. But they still beat the other three methods largely.
Table 2 demonstrates the mean ± standard deviation of the best classification accuracy
rate among all the reduced dimensions from 5 to C − 1 for different algorithms.

7 Conclusion

In this paper, we proposed a novel flexible shift-invariant locality and globality pre-
serving projection (FLGPP) method. A refined graph Laplacian was formulated and
used to preserve the shift-invariant property. Meanwhile, the relaxed linear embedding
was introduced to allow the error tolerance, such that the flexible embedding results
can reach the more optimal manifold structures. Because the proposed new objective is
very difficult to solve, we derived a new optimization algorithm with rigorously proved
global convergence. Moreover, we proved the new algorithm is a Newton method with
the quadratic convergence rate. We evaluated our FLGPP method on six benchmark
data sets. In all empirical results, our new method is consistently better than the related
methods.
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