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Abstract. Many social scientists are interested in inferring causal re-
lations between “latent” variables that they cannot directly measure.
One strategy commonly used to make such inferences is to use the val-
ues of variables that can be measured directly that are thought to be
“indicators” of the latent variables of interest, together with a hypoth-
esized causal graph relating the latent variables to their indicators. To
use the data on the indicators to draw inferences about the causal re-
lations between the latent variables (known as the structural model), it
is necessary to hypothesize causal relations between the indicators and
the latents that they are intended to indirectly measure, (known as the
measurement model). The problem addressed in this paper is how to
reliably infer the measurement model given measurements of the indi-
cators, without knowing anything about the structural model, which is
ultimately the question of interest. In this paper, we develop the Find-
TwoFactorClusters (FTFC') algorithm, a search algorithm that, when
compared to existing algorithms based on vanishing tetrad constraints,
also works for a more complex class of measurement models, and does
not assume that the model describing the causal relations between the
latent variables is linear or acyclic.

1 Introduction

Social scientists are interested in inferring causal relations between “latent” vari-
ables that they cannot directly measure. For example, Bongjae Lee conducted
a study in which the question of interest was the causal relationships between
Stress, Depression, and (religious) Coping. One strategy commonly used to make
such inferences is to use the values of variables that can be measured directly
(e.g. answers to questions in surveys) that are thought to be “indicators” of the
latent variables of interest, together with a hypothesized causal graph relating
the latent variables to their indicators. A model in which each latent variable of
interest is measured by multiple indicators (which may also be caused by other
latents of interest as well as by an error variable) is called a multiple indicator
model [1]. Lee administered a questionnaire to 127 students containing questions
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whose answers were intended to be indicators of Stress, Depression, and Coping.
There were 21 questions relating to Stress (such as meeting with faculty, etc.)
which students were asked to rate on a seven point scale, and similar questions
for the other latents [2].

To use the data on the indicators to draw inferences about the causal re-
lations between the latents (known as the structural model), it is necessary to
hypothesize causal relations between the indicators and the latents that they are
intended to indirectly measure (i.e. the subgraph containing all of the vertices,
and all of the edges except for the edges between the latent variables, known as
the measurement model). Given the measurement model, there are well known
algorithms for making inferences about the structural model [2]. The problem
addressed in this paper is how to reliably infer the measurement model given
sample values of the indicators, without knowing anything about the structural
model. In [2], Silva et al. developed an algorithm that reliably finds certain kinds
of measurement models without knowing anything about the structural model
other than its linearity and acyclicity. Their method first employs a clustering
method to identify “pure” measurement sub-models (discussed below). (Note
that in this context, variables rather than individuals are being clustered.) In
this paper, we develop the FindTwoFactorClusters (FTFC') algorithm, an al-
gorithm for reliably generating pure measurement submodels on a much wider
class of measurement models, and does not assume that the model describing
the causal relations between the latent variables is linear or acyclic.

1.1 Structural Equation Models (SEMs)

We represent causal structures as structural equation models (SEMs). In what
follows, random variables are in italics, and sets of random variables are in
boldface. Linear structural equation models are described in detail in [3]. In
a structural equation model (SEM) the random variables are divided into two
disjoint sets, the substantive variables (typically the variables of interest) and
the error variables (summarizing all other variables that have a causal influence
on the substantive variables) [3]. Corresponding to each substantive random
variable V' is a unique error term ey. A fixed parameter SEM S has two parts
(¢, 0), where ¢ is a set of equations in which each substantive random variable V'
is written as a function of other substantive random variables and a unique error
variable, together with 6, the joint distributions over the error variables. Together
¢ and 0 determine a joint distribution over the substantive variables in S, which
will be referred to as the distribution entailed by S. A free parameter linear SEM
model replaces some of the real numbers in the equations in ¢ with real-valued
variables and a set of possible values for those variables, e.g. X = ax L + €x,
where ax,; can take on any real value. In addition, a free parameter SEM can
replace the particular distribution over ex and e; with a parametric family of
distributions, e.g. the bi-variate Gaussian distributions with zero covariance.
The free parameter SEM also has two parts (®,©), where @ contains the set
of equations with free parameters and the set of values the free parameters are
allowed to take, and © is a family of distributions over the error variables. In
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general, we will assume that there is a finite set of free parameters, and all
allowed values of the free parameters lead to fixed parameter SEMs that have
a reduced form (i.e. each substantive variable X can be expressed as a function
of the error variables of X and the error variables of its ancestors), all variances
and partial variances among the substantive variables are finite and positive,
and there are no deterministic relations among the measured variables.

The path diagram (or causal graph) of a SEM with is a directed graph, written
with the conventions that it contains an edge B — A if and only if B is a non—
trivial argument of the equation for A. The error variables are not included in
the path diagram unless they are correlated, in which case they are included
and a double-headed arrow is placed between them. A fixed-parameter acyclic
structural equation model (without double-headed arrows) is an instance of a
Bayesian Network (G, P(V')), where the path diagram is G, and P(V) is the joint
distribution over the variables in G entailed by the set of equations and the joint
distribution over the error variables, which in this case is just the product of the
marginal distribution over the error variables [4]. A polynomial equation @ where
the variables represent covariances is entailed by a free parameter SEM when
all values of the free parameters entail covariance matrices that are solutions to
Q. For example, a vanishing tetrad difference holds among {X, W} and {Y, Z},
iff cov(X,Y)ecov(Z, W) — cov(X, Z)cov(Y,W) = 0, and is entailed by a free
parameter linear SEM S in which X,Y,Z, and W are all children of just one
latent variable L.

1.2 Pure 2-Factor Measurement Models

In I—factor measurement models and 2—factor measurement models each indica~
tor has the specified number of latent parents in addition to its “error” variable.
There is often no guarantee, however, that the indicators do not have unwanted
additional latent common causes, or that none of the indicators are causally in-
fluenced by any other indicators. However, pure measurement models (defined
below) have properties described below that make them easy to find, regardless
of the structural models, and for that reason the strategy we will adopt in this
paper is to search for a subset of variables that form a pure measurement model.
In what follows, we will assume that no measured variable (indicator) causes a
latent variable.

A set of variables V is minimally causally sufficient when every cause of
any two variables in V is also in V, and no proper subset of V is causally
sufficient. If O is a set of indicators, and V is a minimally causally sufficient set
of variables containing O, then an n-factor model for V is a model in which there
is a partition P of the indicators, and where each element of the partition is a
set of indicators, all of which have exactly n latent parents, and that share the
same n latent parents; if in addition there are no other edges (either directed,
or bidirected representing correlated errors) into or out of any of the indicators
the measurement model is said to be pure. We will refer to any n-factor model
whose measurement model is pure as a pure n-factor model. Figure 1 is not a
pure 2-factor measurement model. There are three reasons for this: X; causes
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Xy, X15 has three latent direct causes, Lo, L3, and L4, and there is a latent
cause Ly of Xg and L. However, note that the sub-model that does not contain
the vertices X1, Xg, X9 and X5 is a 2-pure measurement model, because when
those variables are not included, there are no edges out of any indicator, and the
only edges into each indicator are from their two latent parents.

Fig. 1. Impure 2-factor model

Given a measurement model, any subset S of O for which every member of
S is a child of the same n latent parents (and has no other parents), is adjacent
to no other member of O, and has a correlated error with no other member of
V, is an n—pure subset. In Figure 1, {Xq, X3, X4, X5, X¢, X7} is a 2-pure sextet,
but {Xlo, X117 X12, Xlg, X14, X15} and {X27 X3, X4, Xlo, )(117 Xlg} are not.

2 Trek Separation

This section describes the terminology used in this paper. A simple trek in
directed graph G from i to j is an ordered pair of directed paths (Py; Py) where
Py has sink i, P, has sink j, and both P, and P, have the same source k, and
the only common vertex among P; and P, is the common source k. One or both
of P, and P, may consist of a single vertex, i.e., a path with no edges. There is
a trek between a set of variables V1 and a set of variables Vo iff there is a trek
between any member of V1 and any member of V5. Let A, B, be two disjoint
subsets of vertices V in G, each with two vertices as members. Let S(A,B)
denote the sets of all simple treks from a member of A to a member of B.

Let A, B, Ca, and Cg be four (not necessarily disjoint) subsets of the set
V of vertices in G. The pair (Ca;Cg) t-separates A from B if for every trek
(Pr; Pp) from a vertex in A to a vertex in B, either P; contains a vertex in Ca
or P, contains a vertex in Cp; Ca and Cpg are choke sets for A and B [6]. Let
#C be the number of vertices in C. For a choke set (Ca;Cg), #Ca + #Cp is
the size of the choke set. We will say that a vertex X is in a choke set (Ca; Cp)
if X € Cp UCsg.

The exact definition of linear acyclicity (or LA for short) below a choke set
is somewhat complex and is described in detail in [6]; for the purposes of this
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paper it suffices to note that roughly speaking a directed graphical model is LA
below sets (Ca; Cp) for A and B respectively, if there are no directed cycles
between Cp and A or Cg and B, and A is a linear function with additive noise
of Ca, and similarly for B and Cg.

For two sets of variables A and B, and a covariance matrix over a set of vari-
ables V containing A and B, let cov(A,B) be the sub-matrix of the covariance
matrix that contains the rows in A and columns in B. In the case where A and
B both have 3 members, if the rank of the cov(A,B) is less than or equal to
2, the determinant of cov(A, B) = 0. In that case the matrix is said to satisfy
a vanishing sextad constraint since there are six members of A U B if A and
B are disjoint. For any given set of six variables, there are 10 different ways of
partitioning them into two sets of three; hence for a given sextet of variables
there are 10 distinct possible vanishing sextad constraints. The following two
theorems [6] (extensions of the theorems in [5]) relate the structure of the causal
graph to the rank of the determinant of sub-matrices of the covariance matrix.

Theorem 1. (Extended Trek Separation Theorem): Suppose G is a directed
graph containing Ca, A, Cg, and B, and (Ca;Cg) t-separates A and B in
G. Then for all covariance matrices entailed by a fized parameter structural
equation model S with path diagram G that is LA below the sets Cy and Cp for
A and B, rank(cov(A,B)) < #Ca + #Cp.

Theorem 2. For all directed graphs G, if there does not exist a pair of sets Clp,
Cj, such that (C'y; Cg) t-separates A and B and #C'y + #Cg < r, then for
any Ca, Cg there is a fized parameter structural equation model S with path
diagram G that is LA below the choke sets (Ca; Cg) for A and B that entails
rank(cov(A,B)) > r.

Theorem 1 guarantees that trek separation entails the corresponding vanish-
ing sextad for all values of the free parameters, and Theorem 2 guarantees that
if the trek separation does not hold, it is not the case that the corresponding
vanishing sextad will hold for all values of the free parameters. It is still possible
that if the vanishing sextad does not hold for all values of the free parameters,
it will hold for some values of the free parameters. See [6].

3 Algorithm

Before stating the sample version of the algorithm (described below), we will
motivate the intuitions behind it by an example (Figure 1). Let a wvanishing
sextet be a set of 6 indicators in which all ten sextads among the six variables are
entailed to vanish by the Extended Trek Separation Theorem. In general, 2-pure
sets of b variables (henceforth referred to as pure pentads) can be distinguished
from non-2-pure sets of 5 variables (henceforth referred to as mized pentads)
by the following property: A pentad is 2-pure only if adding each of the other
variable in O to the pentad creates a vanishing sextet. For example, in Figure
1, S1 = {X3, Xy, X5, Xg, X7} is a 2-pure pentad. Adding any other variable to
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S1 creates a sextet of variables which, no matter how they are partitioned, will
have one side t-separated from the other side by a choke set ({L1, Lo} : (). In
contrast, S = {X1, X4, X5, Xg, X7} is not pure, and when Xy is added to Sa,
the resulting sextet is not a vanishing sextet, since when X; and Xg are on
different sides of a partition, at least 3 variables (including L1, Lo, and X7 or
Xg) are needed to t-separate the treks between the variables in the two sides of
the partition.

The first stage of the algorithm calls FindPureClusters, which tests each
pentad to see if it has the property that adding any other member of O creates
a vanishing sextet; if it does have the property it is added to the list PureList of
2-pure pentads. FindPureClusters tests whether a given sextet of variables is a
vanishing sextet by calling PassesTest, which takes as input a sextet of variables,
a sample covariance matrix, and the search parameter alpha that the user inputs
to FTFC. PassesTest is implemented with an asymptotically distribution-free
statistical test of sets of vanishing sextad constraints that is a modification of
a test devised by Bollen and Ting [7]. The list of 2-pure pentads at this point
of the algorithm is {Xj0, X11, X12, X13, X14} and every subset of X5 through
X7 of size 5. X7, Xg, and X715 do not appear in any 2-pure pentad. Xg is also
not in any pure sub-cluster, but FTFC is unable to detect that it is impure.
This is the only kind of impurity FTFC cannot detect. See the explanation in
Section 4 for why this is the case, and why this kind of mistake is not important.
GrowClusters then initializes the ClusterList to PureList.

If any of the 2-pure sets of variables overlap, their union is also 2-pure. So
FTFC calls GrowClusters to see if any of the 2-pure sextets in PureClusters can
be combined into a larger 2-pure set. Theoretically, GrowClusters could simply
check whether any two subsets on PureClusters overlap, in which case they
could be combined into a larger 2-pure set. In practice, however, in order to
determine whether a given variable o can be added to a cluster C in ClusterList,
GrowClusters checks whether a given fraction (determined by the parameter
GrowParameter) of the sub-clusters of size 5 containing 4 members of C and
o are on PureList. If they are not, then GrowClusters tries another possible
expansion of clusters on ClusterList; if they are, then GrowClusters adds o to
C in ClusterList, and deletes all subsets of the expanded cluster of size 5 from
PureList. GrowClusters continues until it runs out of possible expansions to
examine.

Finally, when GrowClusters is done, SelectClusters goes through ClusterList,
outputting the largest cluster C still on ClusterList, and deleting any other
clusters on ClusterList that intersect C (including C itself).

Algorithm 1: FindTwoFactor Clusters (FTFC)

Data: Data,V, GrowParameter, o

Result: SelectedClusters

(Purelist, V) = FindPureClusters(Data, V, «)
Clusterlist = GrowClusters(Purelist, V)
SelectedClusters = SelectClusters(Clusterlist)
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Algorithm 2: FindPureClusters
Data: V,Data, «
Result: PureList
PurelList = @
for SCV,|S|=5do
Impure = FALSE
for v € V\ S do
if PassesTest(S U {v},Data,a) = FALSE then
Impure =TRUFE
L break

if Impure = FALSE then
L PureList = ¢(S, PureList)

V= UiEPu,reListi
return((PureList, V))

Algorithm 3: GrowClusters

Data: PureList,V

Result: Clusterlist

Clusterlist = PureList

for cluster € Clusterlist do

for sub C cluster, |sub| = 4 do

for o € V \ cluster do

testcluster = sub U {o}

if testcluster € PureList then
L accepted + +

else
| rejected + +

if accepted + (rejected + accepted) > GrowParameter then
Clusterlist = c(Clusterlist, cluster U {o}
for s C cluster U {0}, s € Clusterlist do

L Purelist = Purelist \ {s}

The complexity of the algorithm is dominated by FindPureClusters, which
in the worst case requires testing n choose 6 sets of variables, and for each sextet
requires testing five of the ten possible vanishing sextad constraints in order to
determine if they all vanish. In practice, we have found that it can be easily ap-
plied to about 30 measured variables at a time, but not 60 measured variables.
http://www.phil.cmu.edu/projects/tetrad_download /launchers/ contains an im-
plementation available by downloading tetrad-5.0.0-15-experimental.jnlp, creat-
ing a “Search” box, selecting “BPC” from the list of searches, and then setting
“Test” to “TETRAD-DELTA”, and “Algorithm” to “FIND_TWO_FACTORS_
CLUSTER”.
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Algorithm 4: SelectClusters

Data: Clusterlist

Result: Selectedlist

Selectedlist = @

while Clusterlist # @ do
Choose a largest C
Selectedlist = Selectedlist U {C}
for s € Clusterlist,s N C # & do

L Clusterlist = Clusterlist \ {s}

4 Correctness of Algorithm

In what follows, we will assume that if there is not a trek between some pair
of indicators, or if there are entailed vanishing partial correlations among the
observed indicators, or if there are rank constraints of size 1 on the relevant
sub-matrices that the relevant variables are removed in a pre-processing phase.
We will make the assumption that sextad constraints vanish only when they
are entailed to vanish for all values of the free parameters (i.e vanishing sextad
constraints that hold in the population are entailed to hold by the structure
of the graph, not the particular values of the free parameters). In the linear
case and other natural cases, the set of parameters that violates this assumption
is Lebesgue measure 0 [6]. This still leaves the question of whether there are
common “almost” violations of rank faithfulness that could only be discovered
with enormous sample sizes (i.e. the relevant determinants are very close to zero),
which we will address through simulation studies.

There is also a population version of the FTFC algorithm that differs from
the sample algorithm described above in two respects. First, in PassesTest it
takes as input a sextet of variables and a population covariance matrix, and tests
whether all ten possible vanishing sextad constraints among a sextet of variables
hold exactly. Second, in GrowClusters it sets GrowParameter to 1 (whereas in
the simulation tests GrowParameter was set to 0.5.)

In a 2-factor model, two variables belong to the same cluster if they share
the same two latent parents. A 5x 1 sextad contains a sextet of variables, 5 of
which belong to one cluster, and 1 of which belongs to a different cluster. For
a given variable X, L;(X) is one of the two latent parents of X, and La(X) is
a second latent parent of X not equal to L1(X). An indicator X is impure if
there is an edge into or out of X other than Li(X) or Ly(X). Define L as the
set of latent variables L such that L = L;(X) or Ly(X) for some indicator X.
(Latent variables not in L might be included in the graph if there are more than
two common causes of a pair of indicators, or common causes of an indicator or
a member of L, e.g. L5 in Figure 1.

Theorem 3 states that given a measurement model that has a large enough
pure sub-model, the output of the FTFC algorithm is correct in the sense that
the variables in the same output cluster share the same pair of latent parents,
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and that the only impure indicators X in the output are impure because there
is a latent variable not in L that is a parent of X and L;(X) or Ly(X) (e.g. Ls
in Figure 1 is a parent of Ly and Xg). This kind of impurity is not detectible by
the algorithm, but is also not important, because it does not affect the estimate
of the value of the latent parent from the indicators. In addition, in the output,
no single latent parent in L can be on two treks between latent variables not in
L and an impure indicator; e.g. there cannot be two latent common causes of
L1 and two distinct indicators.

Theorem 3 assumes that the relationships between the indicators and their
latent parents is linear. This assumption does not in general entail the model
is LA below the choke sets for any arbitrary sextad, since in some cases the
latent variables that are in a choke set are not the parents of the indicators
in the sextad, in which case it is possible that non-linear relationships between
the latent variables will lead to a non-linear relationship between the indicators
and the latent variables in the choke set. However, for the particular kind of
sextads that the FTFC algorithm relies on (i.e. 5x1 sextads) all of the choke
sets contain parents of the indicators in the sextad. Hence, linear relationships
between the indicators and their latent parents do entail the structure is LA
below the choke sets for the sextads that the FTFC algorithm relies on for
determining the structure of the output clustering,

Theorem 3. If a SEM S is a 2-factor model that has a 2-pure measurement
sub-model in which each indicator X is a linear function of L1(X) and Lo (X ),
S has at least siz indicators, and at least 5 indicators in each cluster, then the
population FTFC algorithm outputs a clustering in which any two variables in
the same output cluster have the same pair of latent parents. In addition, each
output cluster contains mo more than two impure indicators X1 and Xa, one of
which is on a trek whose source is a common cause of L1 (X1) and X1, and the
other of which is on a trek whose source is a common cause of Lo(X1) and Xs.

Proof. First we will show that pure clusters of variables in the true causal graph
appear clustered together in the output. Suppose C = {Xi, Xo, X3, X4, X5}
belong to a single pure cluster with latent variables L, and L;. For any sixth
variable Y, and any partition of {X;, Xo, X3, X4, X5,Y} into two sets of size 3,
{Xa, Xp, X} and { X4, X, Y}, { X4, Xp, X} is trek-separated from { X4, X, Y}
by a choke set containing just {L, and L;} since there are no other edges into
or out of {X,, Xy, X.} except for those from L, and L,. Hence C is correctly
added to PureList.

Next we show that variables from different pure clusters in the true causal
graph are not clustered together in the output. Suppose that two of the variables
in C belong to different clusters. There are two cases. Either every member of C
belongs to a different cluster or some pair of variables in C belong to the same
cluster. Suppose first two members of C, say X; and X, belong to a single
cluster with latents L, and L;, and X3 belongs to a different cluster with latent
L.. In that case, for any sixth variable Y from the same cluster as X3, the
partitions {X7, X3, X4} and {Xs, X5,Y} are not trek-separated by any choke
set S of size 2, since L,, and L; would both have to be in S in order for S to
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trek-separate X; and {Xs, X5,Y}, and L. would have to be in S in order for
S to trek-separate X3 and {Xs, X5,Y}. Hence C will correctly not be added
to PureList. If, on the other hand, every member of C belongs to a different
cluster, then choose a trek T between two variables in C such that there is no
shorter trek between any two members of C than 7. Suppose without loss of
generality that these two variables in C are X; and X5,. Because the clusters
are pure by assumption, every trek between X; and X, contains some pair of
latent parents L; (a parent of X;) and Ly (a parent of X5). The subtrek of
T between L; and Ly does not contain any latent parent of any member of
C\ {X1, X2} since otherwise there would be a trek between two members of C
shorter than 7. By the assumption that the model has a pure 2-factor model
measurement model, there is a third variable X3 in C that is not equal to X; or
Xo, and some other variable Y that belongs to the same cluster as X3. X3 and Y
have two latent parents, L, and Lg, that do not lie on T. Consider the sextad
cov({ X1, X3, X4},{X2, X5,Y}). Then in order to trek-separate X; from the 3
variables in the side of the partition containing X5, some latent not equal to L3,
or Lgp is required to be in the choke set. In order to trek-separate X3 from the
side of the partition containing Y, both L3, and Lg; are required to be in the
choke set. It follows that no choke set of size 2 trek-separates { X7, X5, X4} and
{Xs, X5,Y}, and C will not be added to PureList. Similarly, if two variables are
from different impure clusters, they will not both be added to C, since impurities
imply the existence of even more treks, and hence choke sets that are at least as
large as in the pure case.

Now we will show that only one kind of impure vertex can occur in an output
cluster. Suppose that X is in cluster C, but impure. By definition, there is either
an edge E into or out of X that is not from L1 (X) or Lo(X). If E is out of X,
then by the assumption that none of the measured indicators cause any of the
latent variables in G, F is into some indicator Y. If (S1 : Sa) t-separates X
from Y, and S = S; U Sj, then S contains either X or Y. Consider the sextad
cov({X, Xa, Xp}, {X¢, Xa,Y}), where X, X3, X., X4 all belong to C. In order
to trek-separate X from X, L1(X) and Lo(X) must be in choke set S. Hence in
order to separate both sets in the partition from each other, S must contain at
least 3 elements (L1 (X), L2(X), and X or Y), and there is a 5x 1 sextad that is
not entailed to vanish, so X is not clustered with the other variables by FTFC.

Suppose F is into X. If the tail of F is a measured indicator Y, then by the
same argument as above, there is a 5x1 sextad that is not entailed to vanish, so
X is not clustered with the other variables by FTFC. If the tail of E is L1(Y)
or Ly(Y) for some Y that is a measured indicator but not in C, consider the
sextad cov({X, Xq, Xp}, {Xe, Xa, Y}), where X,, X3, X, X4 all belong to C.
In order to trek-separate X from X, L;(X) and Lo(X) must be in choke set S.
Hence in order to separate both sets in the partition from each other, S must
contain at least 3 elements (L1(X), La(X), and L1(Y) or Ly(Y)). So there is a
5x1 sextad that is not entailed to vanish, and X is not clustered with the other
variables by FTFC. If the tail of E is a latent variable L that is not equal to
L1(Y) or Lo(Y) for any Y that is a measured indicator but not in C, then there
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is a shortest trek 7" between L and some latent parent L;(Y") of a measured
indicator Y. If T' contains a measured indicator, then this reduces to one of the
previous cases. If Y is not in C then any trek-separating set of S must contain
at least 3 elements (L1(X), L2(X), and some vertex along T that is not equal
to L1(X) or Ly(X)). Hence there is a 5x 1 sextad that is not entailed to vanish,
and X is not clustered with the other variables by FTFC.

Finally, consider the case where there are two indicators X; and X5 in C
such that there is a latent common cause M; of X7 and L;(X;) and a latent
common cause My of X5 and L;(X7), or there is a latent common causes M
of X1 and Lo(X7) and a latent common cause My of X and Lo(X7). Suppose
without loss of generality that it is the former. If M; = M, then this reduces to
one of the previous cases. Otherwise, there are treks 77 and T between X; and
Xo whose sources are M; and My respectively. Because X; and Xs are in the
same cluster C, in order to trek-separate X; and X, with a choke set (S1:S2),
S1 or Sp must contain Ly(X7). In order to separate Ty and T, L1(X7) must be
in both S; and Sy since Lq(X;) occurs on the X side of T} and the X; side of
T5. It follows that S; U So contains at least 3 elements. Hence there is a 5x1
sextad that is not entailed to vanish, and X; and X5 are not both clustered with
the other variables by FTFC.

So after the first stage of the algorithm, PureList is correct, and hence Clus-
terList is correct (up to the kinds of impurities just described) before it is sub-
sequently modifed.

Now we will show that each stage of modifying ClusterList and PureList is
correct. For a given cluster C, if a variable o belongs to the same cluster, then
for every subset of C U{o} of size 5, a choke set that contains L,(C) and L(C)
t-separates any two members of C U{o}. Hence C U{o} will have passed the
purity test, and be found on PureList; hence GrowClusters will correctly add o
to C, and subsets of C U{o} will be correctly deleted from PureList. If on the
other hand o does not belong to the same cluster as C, then some subsets of C
U{o} of size 5 are not pure, and will not appear in PureList. Hence C U{o} will
not be added to ClusterList. Finally, the same argument showing the kinds of
impurities that could occur on PureList can be applied to ClusterList. [

This theorem entails that if there is a 2-factor model with a 2-pure measure-
ment model with sufficiently many variables and a large enough sample size,
then FTFC will detect it and output the correct clustering. Unfortunately the
converse is not true — there are models that do not contain 2-pure measurement
sub-models that entail exactly the same set vanishing sextad differences over the
measured variables (i.e. are sezxtad-equivalent)[5]; for those alternative models,
FTFC will output clusters anyway. However, for linear models, it is possible to
perform a chi-squared test of whether the measurement model is 2-pure, using
structural equation modeling programs such as FQS, or sem in R, or the tests
in TETRAD IV. In practice, a pure 2-factor model will be rejected by a chi-
squared test given data generated by all of the known models sextad-equivalent
to a 2-factor model (because of differences between the models in inequality con-
straints). For this reason, in ideal circumstances, the F'TFC algorithm would be
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one part of a larger generate (with FTFC) and test (with structural equation
modeling estimating and testing) algorithm. See [6] for details.

5 Tests

We tested the FTFC algorithm on simulated and real data sets. We did not
directly compare it to other algorithms for the non-linear cases, since to our
knowledge there are no other algorithms that can handle non-linearities and/or
cyclic relations among the latent variables, impurities in the measurement model,
and multiple factors for each cluster. Factor analysis has been used to cluster
variables, but has not proved successful even in cases where each cluster has a
single latent common cause but impurities [2]. The BuildPureClusters Algorithm
uses vanishing tetrad constraints, instead of vanishing sextad constraints to clus-
ter variables, but assumes that each cluster has at most one latent common cause
[2]. In the linear, acyclic case, we did compare FTFC to a semi-automated search
for a special case of two-factor linear acyclic models, as described in the section
on Linear Acyclic models.

5.1 Simulations

The first directed graph we used to generate data has 3 clusters of 10 measured
variables each, with each cluster having two latent variables as causes of each
measured variable in the cluster, and one of each pair of latent variables for the
second cluster causing one of each pair of latent variables in the first cluster,
and one of each pair of latent variables in the third cluster. The second directed
acyclic graph we used to generate data in addition contained 7 impurities: X3
is a parent of X5 and X3, X5 is a parent of X3, Ly is a parent of X1 and Xoq,
Xoo is a parent of Xo1, and Ly is a parent of Xjq.

For each graph, we generated data at three different sample sizes, n = 100,
500, and 1000. The FTFC algorithm was run with significance level (for the
vanishing sextad tests) of 0.1 for sample sizes 500 and 1000, and 0.4 for sample
size 100. Theoretically, non-linearity among the latent-latent connections should
not negatively affect the performance of the algorithm, as long as the sample
size is large enough that the asymptotic normality assumed by the sextad test
that we employed is a good approximation. Theoretically, non-linearity among
the latent-observed connections should negatively affect the performance of the
algorithm, since if there are non-linear latent-observed connections, the Extended
Trek Separation Theorem generally does not apply. For each graph and each
sample size we generated four kinds of models, with each possible combination
of linear or non-linear latent-latent connections and linear or non-linear latent-
observed connections. In all cases, the non-linearities replace linear relationships
with a convex combination of linear and cubic relationships. For example, in
the pure model with non-linear latent-latent connections + non-linear latent-
measured connections, each variable X was set to the sum over the parents of
0.5%cy * P+0.5%dy * (.5 P)3 plus an error, where P is one of the parents of X,



46 E. Kummerfeld et al.

¢1 and d; were chosen randomly from a Uniform(.35,1.35) distribution, and each
error variable was a Gaussian with mean zero, and a variance chosen randomly
from a Uniform(2,3) distribution. We tested a few of the simulated data sets
with a White test in R for non-linearity, and they rejected the null hypothesis
of linearity quite strongly.

In many applications of multiple indicator models, the indicators are delib-
erately chosen so that the correlations are fairly large (greater than 0.1 in most
cases), and all positive; in addition, there are relatively few correlations greater
than 0.9. In order to produce correlation matrices with these properties, we had
to adjust some of the parameters of the various models we considered according
to the type of model (i.e. whether the latent-latent connections were linear or
not, whether the latent-measured connections were linear or not, and whether
the model was pure of not). We did not however, adjust the model parameters
according to the results of the algorithm.

We calculated the precision for each cluster output, and the sensitivity for
each cluster output. We then evaluated the output of the algorithm by the
number of clusters found, and for each run, the average of the sensitivities and
the average of the precisions over the clusters.

GO 6 AT T

Fig. 2. Average Precision of The Output

The correct number of clusters in each case is 3, and the average number
of clusters output ranged between 2.7 and 3.1 for each kind of model and sam-
ple size, except for PNN. As expected, non-linearities for the latent-observed
connections degraded the performance, and the number of clusters for PNN at
sample sizes 100, 500, and 1000 werel.05, 1.38, and 1.54 respectively.

Figure 2 shows the mean (over 50 runs) of the average precision of the cluster-
ing output for each simulation case. The error bars shows the standard deviation
of the average precision. Figure 3 shows the mean (over 50 runs) average sensi-
tivity of the clustering output for each simulation case. The error bars shows the
standard deviation of the average sensitivity. The blue, red and green bars rep-
resent cases with 100, 500, and 1000 sample size respectively. In the three-letter
lable for every group of three bars, the first letter refers to the purity of the
generative model, with “P” being "Pure” and “I” being “Impure”. The second
letter refers to the linearity of the latent-latent connection, with “L” represent-
ing linear connections and “N” representing non-linear connections. The third
letter refers to the linearity of the latent-measured connection, the letter “L”
and “N” have the same meaning as the case of the second letter. For example,
“PNL” represent the case in which the generative model is pure, with non-linear
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latent-latent connections, and linear latent-observed connections. We generated
50 models of each kind, except that due to time limitations, the sample size 100
PNN case has 40 runs, and the sample size 500 PLN case has 10 runs. The run
times varied between 44 and 1328 seconds.

In general, as expected, the result is better as the sample size increases, and is
worse when there are impurities adding to the graphical model. The non-linear
latent-latent connections does not have an obvious effect upon the clustering
output. However, as expected, when the non-linear latent-observed connections
are added to the generative model, the mean value of the purity is lower than
the corresponding linear cases, and the standard deviation of the two measures
starts to increase. Most notably, in the case of “PNN”, the interaction of the
two kinds of non-linearities renders most of the clustering result being very large
clusters (as indicated by the small number of clusters output). That is why the
average precision becomes very small while the average sensitivity is relatively
large.

B

5.2 Real Data

We applied FTFC to six data sets in R for which there are published bifactor
models (see the “Bechthold” help page in R). We ran FTFC at 5 significance
levels 0.05, 0.1, 0.2, 0.3, and 0.4 and chose the best model. In some cases where
there were multiple clusters which together did not pass a chi-squared test, we
chose the best individual cluster. In Table 1, p is the number of variables, n is the
sample size, indicators is the number of indicators in the output, clusters is the
number of clusters in the output, and p — value is the p-value of the best model.
Because we did not have access to the original raw data (just the correlation
matrices), we could not divide the data into a training set and a test set, leading
to somewhat higher p-values than we would expect if we calculated the p-value
on a separate test set.
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Table 1. Results of Application of FTFC to R data sets

Data Set p |n  |indicators|clusters|p — value
Thurstone |9 |213 |6 0.96
Thurstone.33|9 417 |5 1 0.52
Holzinger 14|355 |7 1 0.23
Holzinger.9 |9 |145 |6 1 0.82
Bechtholdt.1 [17(212 |8 1 0.59
Reise 16{1000|13 2 0.32

We also applied FTFC to the depression data. Lee’s model fails a chi-square
test: p = 0. Although the depression data set contained too many variables to
test how well FTFC performed overall, we did use it to test whether it could
remove impure variables from given clusters (formed from background knowl-
edge), leading to a model that would pass a chi-squared test. Using the output
of FTFC at several different significance levels, the best model that we found
contained a cluster of 9 coping variables, 8 stress variables, and 8 depression
variables (all latent variables directly connected) with a p-value of 0.28.

5.3 The Linear Acyclic Case

A bifactor model is a model in which there is a single general factor that is a cause
of all of the indicators, and a set of “specific” factors that are causes of some of
the indicators. It is a special case of a two-factor model. The schmid function
in R takes as input a correlation matrix and (at least 3 specific) factors, and
outputs a bifactor model; it first performs an ordinary factor analysis and then
transforms the output into a bifactor model (which is a proper supermodel of
one-factor models). We compare FTFC algorithm to a FTFC-schmid algorithm
hybrid on real and simulated data.

We turned the two-factor model described in the previous set of simulations
into a linear bifactor model by collapsing three of the latent variables from dif-
ferent clusters into a single variable. We did not find any functions for reliably
automatically estimating the number of factors in a bifactor model, so we com-
pared the FTFC algorithm to a FTFC-schmid hybrid, in which FTFC provided
the number of factors input to schmid. The hybrid FTFC-schmid algorithm re-
moved 1.6% of the intra-cluster impurities (e.g. X1, X2, X3), and 48% of the
inter-cluster impurities (e.g. X11, X290, X21, X30) while removing 8% of the pure
variables . In contrast, FTFC removed 61% of the intra-cluster impurities, and
58% of inter-cluster impurities, while also removing 30% of the pure variables.
While FTFC incorrectly removed many more pure variables than the hybrid
FTFC-schmid, for the purposes of finding submodels that pass chi-squared tests,
this is far less important than its superiority in removing far more of the impure
variables
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We then compared schmid to FTFC on the Reise data. The published bi-
factor model [8], the output of the schmid function in R with 5 specific factors
(as in the published model), and versions of both of these models that removed
the same variables that FTFC algorithm did, all failed chi-squared tests and
had p-values of 0. The output of FTFC removed 3 of the 16 variables, and com-
bined the five specific factors into two specific factors (with the exception of one
variable.) We turned the resulting two-factor graph into a bifactor graph, and It
passed a chi-squared test with a p-value of 0.32.

6 Future Research

Further research into making the output of FTFC more reliable and more sta-
ble is needed. It would also be useful to automate the use of chi-squared tests
of the output models and to combine the strengths of the schmid and FTFC
algorithms. The ultimate goal of the clustering is to find causal relations among
the latent variables; when clusters have multiple latent common causes, some
edges become unidentifiable (i.e. the parameters associated with the edge are
not a function of the covariance matrix among the measured variables.) Compu-
tationally feasible necessary and sufficient conditions for identifiability of linear
models are not known, and the possibility that the relations among the latents
are non-linear complicates these issues further.
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