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Abstract. We propose a general method to assess the reliability of two-class
probabilities in an instance-wise manner. This is relevant, for instance, for ob-
taining calibrated multi-class probabilities from two-class probability scores. The
LS-ECOC method approaches this by performing least-squares fitting over a suit-
able error-correcting output code matrix, where the optimisation resolves poten-
tial conflicts in the input probabilities. While this gives all input probabilities
equal weight, we would like to spend less effort fitting unreliable probability es-
timates. We introduce the concept of a reliability map to accompany the more
conventional notion of calibration map; and LS-ECOC-R which modifies LS-
ECOC to take reliability into account. We demonstrate on synthetic data that this
gets us closer to the Bayes-optimal classifier, even if the base classifiers are linear
and hence have high bias. Results on UCI data sets demonstrate that multi-class
accuracy also improves.

1 Introduction

Classification problems can be approached using a range of machine learning models.
Some of these models, including decision trees, naive Bayes and nearest neighbour,
deal naturally with more than two classes. Others – most notably linear models and their
kernelised variants – are essentially two-class or binary. In order to solve a multi-class
problem with binary models we need to decompose the multi-class problem into a set of
binary subproblems, train a classifier on each subproblem and aggregate the predicted
classes or scores obtained on each subproblem into an overall multi-class prediction or
score vector. In the most common scenarios these subproblems are either pairwise (one
class against another class) or one-vs-rest (one class against all other classes), which in
matrix form could be described as follows:

M =

⎛
⎝

+1 +1 0
−1 0 +1

0 −1 −1

⎞
⎠ N =

⎛
⎝

+1 −1 −1
−1 +1 −1
−1 −1 +1

⎞
⎠

These are known as code matrices, with binary subproblems in columns and classes in
rows. M encodes pairwise subproblems and N encodes one-vs-rest. A vector of outputs
from the binary classifiers can often be traced back to one of the classes: e.g., if we
receive (+1,+1,−1) in the pairwise case we can construe this as two votes for the first
class and one vote for the third class.
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The general approach of error-correcting output codes was pioneered by [4] and
later refined to take classifier scores into account [8,1]. Error-correcting capability is
achieved by building redundancy into the code matrix: for instance, we can use two
different binary classifiers for each subproblem, leading to two copies of each column
in the code matrix (in fact, ensemble methods can be represented by a code matrix
with repeated columns). More generally, ECOC can be described as an approach to
combining the opinions of many different experts. Each expert has its own group of
positive and negative classes (not necessarily covering all classes) and is trained to
decide whether an unlabelled example falls in the positive or negative group. Expert
opinions may disagree, in which case we need to figure out how to tweak the opinions to
agree, and possibly which experts to trust more than others. Therefore, it is important to
know how reliable or confident each expert is. For example, a properly Bayesian expert
would output a posterior probability distribution over all possible opinions, from which
we can infer a confidence level (e.g., expressed as a variance). However, while most
machine learning models can be made to output a (more or less calibrated) probability
score, they rarely give information about their confidence, and so a model-independent
method needs to learn the reliability of these scores. Note that a calibrated probability
score quantifies the expert’s uncertainty in the class value, but here we are after the
uncertainty in that probability estimate. That is, a weather forecaster can be very certain
that the chance of rain is 50%; or her best estimate at 20% might be very uncertain due
to lack of data.

This paper proposes a practical method to learn the reliability of probability scores
output by experts in the above scenario, in an instance-wise manner. Being able to
assess the reliability of a probability score for each instance is much more powerful
than assigning an aggregate reliability score to each expert, independent of the instance
to be classified. For example, we show later that an ECOC-based method that takes
instance-wise reliability into account allows us to learn non-linear decision boundaries
even when employing linear base models. As such the method can be seen as reducing
the bias of the base classifier. But the basic method has applicability beyond ECOC.
For example, in comparison with another bias-reducing technique, boosting [12], which
uses a single confidence factor per base classifier, our method offers the possibility to
generalise this to instance-wise confidence which should result in a better model. The
advantage of having calibrated probability estimates in a cost-based scenario is that we
can better minimise expected overall cost by predicting the class that minimises the cost
averaged over all possible true classes. Taking reliability of the probability scores into
account gives us the choice of choosing a non-minimising class if it has the benefit of
less uncertainty. This would be useful in the presence of hard constraints of the form
‘the probability that the cost exceeds budget B must be less than 5%’ which may be true
for a class even if it does not minimise expected cost.

The outline of the paper is as follows. Section 2 introduces reliability maps and their
relation to squared bias of probability estimates from the respective true posterior prob-
abilities. Section 3 develops an algorithm to learn reliability maps from class-labelled
data, without access to true posterior probabilities. Section 4 introduces LS-ECOC-R, a
reliability-weighted version of the LS-ECOC method to obtain multi-class probability
scores. In Section 5 we present two kinds of experiments: we investigate how far our
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estimates are from the truth on synthetic data, and we investigate the effect of using
reliabilities on the quality of multi-class predictions and probability scores. Section 6
discusses related work, and Section 7 concludes.

2 Calibration and Reliability

Let X ,Y be the random variables representing the unknown true model of our binary
classification task. That is, X is a random variable over the instance space X and Y
is a binary random variable with 1 and 0 standing for positive and negative classes,
respectively. Ideally, we would like to know the true positive class posterior q(x) for
each possible x ∈ X :

q(x) = P(Y=1|X=x). (1)

In reality, we use training data to learn a model g : X → [0,1] such that g(x) is approxi-
mating q(x). If the output of the model is g(x) = s, what can we say about the true value
q(x)? Let μg(s) be the expected proportion of positives among all instances x with the
same value g(x) = s:

μg(s) = E[q(X)|g(X)=s] = P(Y=1|g(X)=s). (2)

The function μg is known as the (true) calibration map of the probability estimator
g. If the estimator g is perfectly calibrated, then μg is the identity function. If not,
then there are many methods of calibration which can be applied to learn an estimated
calibration map μ̂g such that μ̂g(g(x)) is approximately equal to μg(g(x)). However, for
individual instances x the expected proportion of positives q(x) can deviate from the
mean proportion μg(g(x)), i.e. the following variance is non-zero:

σ2
g (s) = var[q(X)|g(X)=s] = E[(q(X)− μg(s))

2|g(X)=s]. (3)

The magnitude of σ2
g (s) across the estimates s from the model g actually determines

how useful g is for estimating q. For instance, a constant probability estimator g(x) =
P(Y=1) is perfectly calibrated, but has high σ2

g (s) for its constant estimate s =P(Y=1).
The perfect estimator g(x) = q(x) has σ2

g (s) = 0 for all s. The variance σ2
g is bounded

from above by σ2
g (s)≤ μg(s) · (1−μg(s)), where the equality holds when q(x) is either

0 or 1 for each x with g(x) = s.1 This leads to our following definition of the reliability
map rg of the probability estimator g.

Definition 1. Let g : X → [0,1] be an estimator of probability q(x) = P(Y=1|X=x).
Then the reliability map rg of the probability estimator g is defined as follows:

rg(s) = 1− σ2
g (s)

μg(s) · (1− μg(s))
, (4)

where the calibration map μg(s) and variance σ2
g (s) are defined by (2) and (3). For an

estimate s from the model g, we refer to the value rg(s) as local reliability of g at s.

1 This can be seen as follows: σ2
g (s) = E[(q(X))2|g(X) = s]− (μg(s))2 ≤ E[q(X)|g(X) =

s]− (μg(s))2 = μg(s)− (μg(s))2 = μg(s) · (1− μg(s)). The equality holds when P[(q(X))2 =
q(X)|g(X) = s] = P[q(X) ∈ {0,1}|g(X) = s] = 1.
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Fig. 1. Synthetic 2-class data of Gaussians centered at (0,0) and (1,0). (A) Standard deviation
circles of the two Gaussians, 20 training instances and lines g(x) = 0.5 (blue) and g(x) = 0.9
(red) where g is the learned logistic regression model; (B) scatterplot of q(x) and g(x) for 2000
test points; (C) histogram of q(x) for the 1530 test points out of 200000 which have g(x) in
range [0.495,0.505]; (D) histogram of q(x) for the 1727 test points out of 200000 with g(x) in
[0.895,0.905].

Minimum and maximum values 0 and 1 for the local reliability mean respectively
that q(x) ∈ {0,1} and q(x) = g(x) for all x with g(x) = s. We call it local reliability so
that we can still talk about the (global) reliability of the probability estimator as a whole.
Figure 3 presents the calibration and reliability maps for a synthetic dataset described
in Section 5.

Example 1. To illustrate the above notions consider a synthetic two-class generative
model with uniform class distribution P(Y = 1) = P(Y = 0) = 1/2 and X distributed
as a standard 2-dimensional normal distribution centered at (1,0) for class Y = 1 and
at (0,0) for class Y = 0. We generated 20 training instances from this generative model
and learned a logistic regression model g : R2 → [0,1] to estimate posterior class prob-
abilities q(x) = P(Y = 1|X = x), see Fig. 1A. In this experiment our logistic regression
learner resulted in the model g(x) = 1/(1+ exp(1.37− 1.68x1+ 0.76x2)) whereas the
true model is q(x) = P(Y=1|X=x) = 1/(1+ exp(0.5− x1)). This implies that for any
instance x the learned estimate g(x) can deviate slightly from the true value q(x), see
Fig. 1B with 2000 test points drawn randomly from the same generative model with
two Gaussians.

Consider now the group of all instances with g(x) = 0.5, located on the blue line
in Fig. 1AB. The histogram of q(x) for a sample of these points is given in Fig. 1C
with mean μg(0.5) = 0.5675 and estimated variance σ2

g (0.5) = 0.0101, leading to a
reliability value of rg(s) = 0.9589. What this demonstrates is that at predicted score
0.5 there is little variation in the true probabilities, even though the estimator is not
perfectly calibrated at that score. For the group g(x) = 0.9 shown in red in Fig. 1AB
and with a histogram of q(x) in Fig. 1D the mean and variance are μg(x) = 0.7979 and
σ2

g (x) = 0.0042, resulting again in a high reliability of rg(s) = 0.9740.

The estimated g(x) = s can differ from the true q(x) for one or both of the following
two reasons. First, if μg(s) �= s then there is a bias in g(x) from the average q(x) of the
group of instances with the same estimate s. Second, if σ2

g (s)> 0 then there is variance
in q(x) for the group of instances with the same estimate s. In fact, the instance-wise
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squared loss between g and q within the group of instances with the same estimate s
can be decomposed into these two losses:

E[(g(X)− q(X))2|g(X)=s] =

= E[(s− q(X))2|g(X)=s] = E[(s− μg(s)+ μg(s)− q(X))2|g(X)=s] =

= (s− μg(s))
2 + 2(s− μg(s))E[μg(s)−q(X)|g(X)=s]+E[(μg(s)−q(X))2|g(X)=s] =

= (s− μg(s))
2 +σ2

g (s),

where the last equality holds because E[μg(s)−q(X)|g(X)=s] = 0. This decomposition
can be averaged over the whole instance space, resulting in the following decomposi-
tion:

E[(g(X)− q(X))2] = E[(g(X)− μg(g(X)))2]+E[(μg(g(X))− q(X))2].

We will refer to these three quantities as instance-wise calibration loss, group-wise
calibration loss, and grouping loss.2 Any calibration procedure which transforms values
of g(x) with a calibration map can decrease the group-wise calibration loss but not the
grouping loss, which is inherent to the model. Grouping loss arises from the model’s
decision to group certain instances together with the same probability estimate whereas
the true probabilities are different. The quantity σ2

g (s) can be interpreted as the local
grouping loss for one group of instances with the same estimate g(x) = s and the total
grouping loss is the average σ2

g (s) across all groups s:

E[(μg(g(X))− q(X))2] = E[σ2
g (g(X))].

Example 1 (continued). In the example of Fig. 1, the group g(x) = 0.5 suffers instance-
wise calibration loss equal to 0.0147 decomposing into group-wise calibration loss of
(0.5675−0.5)2 = 0.0046 and grouping loss of σ2

g (s) = 0.0101. Calibration of g can de-
crease the group-wise calibration loss, but the grouping loss remains irreducible, unless
a new model is trained instead of g.

3 Learning Calibration and Reliability Maps

Learning calibration maps is a task that has been solved earlier with various methods.
One simple approach that we revisit below is to view the binary label Y as a dependent
variable and the probability estimate S = g(X) as the independent variable and apply
any standard regression learning algorithm. The training data for such approach is a list
of pairs (Si,Yi). Although each individual instance Si is far from the true calibration
map, the expected value of Y given a fixed estimate S lies at the calibration map (see
(6) below). In other words, Y is an unbiased estimator of the calibrated probability.
Assuming that the true calibration map is continuous, this allows to estimate it with
regression.

2 The instance-wise calibration loss bears similarity to the calibration loss which is obtained by
decomposing the Brier score [10], but the difference is that there the comparison is made with
the empirical probability rather than the true probability.
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For learning reliability maps it is also possible to use regression, but the challenge
is to come up with a suitable unbiased estimator. Since the Bernoulli distribution of
the binary label Y given an estimate S has only one parameter determining the cali-
brated probability, it does not contain information about the reliability map. For each
instance X we need more information about the true probability q(X) than just a single
binary label Y . Our solution is to gather a small group of similar instances X1, . . . ,Xm

with approximately the same estimate g(Xi)≈ S and approximately the same posterior
q(Xi) ≈ Q. We obtain such groups of instances by splitting the training instances into
clusters of equal size m according to some distance measure in the instance space. The
clustering method that we have used in the experiments to obtain clusters of size m = 10
is described in Section 3.1 below. The reason for building clusters is that the variance in
the number of positives ∑m

i=1 Yi in a cluster contains information about the variance in
the posterior, σ2

g (S). As an estimator of local reliability of g at S we use R(m), defined
as follows:

R(m) = 1+
1

m− 1
− (∑m

i=1 Yi −mμg(S))2

m(m− 1)μg(S)(1− μg(S))
. (5)

Theorem 1 proves by equality (7) that this estimator is unbiased if the instances within
the cluster have equal g and equal q.

Theorem 1. Let g : X → [0,1] be a fixed probability estimator and let (Xi,Yi) for i =
1, . . . ,m with m ≥ 2 be an i.i.d. random sample distributed identically to (X ,Y ) where
X is a random variable over X and Y is a binary random variable. Additionally, let C
stand for the condition where g(Xi) = g(X) and q(Xi) = q(X) for i = 1, . . . ,m, where q
is defined as in (1). Then the following two equalities hold:

μg(s) = E[Y |S=s] (6)

rg(s) = E[R(m)|S=s,C ] (7)

where S = g(X) and μg, rg, R(m) are defined above respectively in (2), (4) and (5).

Proof. Equation (6) can easily be proved by denoting Q = q(X) and applying the law
of total expectation:

E[Y |S=s] = E[E[Y |Q,S=s]|S=s] = E[Q|S=s] = μg(s).

Let us denote Z = ∑m
i=1 Yi. As Yi are independent given C then E[Z|S=s,C ] = mμg(s).

Therefore,

E[R(m)|S=s,C ] = 1+
1

m− 1
− var[Z|S=s,C ]

m(m− 1)μg(s)(1− μg(s))
.

Due to (4) it now remains to prove that

var[Z|S=s,C ]

m(m− 1)μg(s)(1− μg(s))
=

σ2
g (s)

μg(s)(1− μg(s))
+

1
m− 1

,
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or equivalently, that

var[Z|S=s,C ] = m(m− 1)σ2
g (s)+mμg(s)(1− μg(s)).

Let us denote Q = q(Xi). As Z is binomially distributed given Q, S=s and C , we have
E[Z|Q,S=s,C ] = mQ and var[Z|Q,S=s,C ] = mQ(1−Q). Also, E[Q|S=s,C ] = μg(s)
and var[Q|S=s,C ] = σ2

g (s) and E[Q2|S=s,C ] = var[Q|S=s,C ] + (E[Q|S=s,C ])2 =

σ2
g (s)+ μ2

g (s). Using this and the law of total variance (and algebraic manipulations)
we obtain the following:

var[Z|S=s,C ] = E[var[Z|Q,S=s,C ]]+ var[E[Z|Q,S=s,C ]] =

= E[mQ(1−Q)|S=s,C ]+ var[mQ|S=s,C ] =

= mE[Q|S=s,C ]−mE[Q2|S=s,C ]+m2var[Q|S=s,C ] =

= mμg(s)−mσ2
g (s)−mμ2

g (s)+m2σ2
g (s) =

= mμg(s)(1− μg(s))+m(m− 1)σ2
g (s),

which completes the proof. �	
In practice, the estimates g and true probabilities q are equal for a cluster only ap-

proximately, so the equality (7) also holds only approximately. Due to clustering the
number of training instances for regression is m times smaller than for the original
problem, so learning the reliability map is harder than learning the calibration map.
However, the experiments show that with a training set of 2000 instances the learned
reliability map can be already accurate enough to improve multi-class probability esti-
mation and classification. Next we describe what regression and clustering methods we
are using to achieve this.

3.1 Regression and Clustering Methods for Learning the Maps

First let us stress that there is a wide variety of regression and clustering methods and
many could be used for learning calibration and reliability maps. The choice has cer-
tainly implications on the performance of multi-class probability estimation and clas-
sification, but the comparison of different methods remains as future work. Here we
describe the methods we have chosen.

For regression we use local linear regression with the Epanechnikov kernel and fixed
bandwidth. For learning the calibration map we have the training pairs (Si,Yi) for i =
1, . . .n. The regression estimate μ̂g(s) for a target point s is calculated as follows:

μ̂g(s) = α(s)+β (s) · s,

α(s),β (s) = argmin
α ,β∈R

n

∑
i=1

Kλ (s,Si) · (Yi −α −β ·Si)
2

where λ > 0 is the fixed bandwidth of the Epanechnikov kernel Kλ defined as follows:

Kλ (s,Si) =

{
3
4 (1− (s− Si)

2) if |s− Si| ≤ 1;
0 otherwise.
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For learning the reliability map we use the same method, that is:

r̂g(s) = α ′(s)+β ′(s) · s,

α ′(s),β ′(s) = argmin
α ′,β ′∈R

n

∑
i=1

Kλ ′(s,Si) · (R(m)
i −α ′ −β ′ ·Si)

2.

Local linear regression can produce estimates outside of our range [0,1] and this
problem needs to be addressed. Actually, the extreme values 0 and 1 are also undesired,
because they present an over-confident statement about the probabilities. In the exper-
iments we used 0.001 and 0.999 as the lower and upper bound for regression and all
estimates outside of this range were changed to these values.

For the clustering method we set the following requirements:

(a) the resulting clusters must all be of fixed size m;
(b) within each cluster the estimate g should be approximately equal;
(c) within each cluster the true posterior q should be approximately equal.

Our first step is to order the instances by g and to cut the ordered list into super-clusters
of size k ·m, in the experiments we used k = 20 and m = 10. With n � k ·m every super-
cluster satisfies requirement (b) to some extent. We then cluster each super-cluster into
k clusters of size m according to some distance measure between the instances, in the
experiments we used the Euclidean distance. Depending on how smooth q is and how
tightly together the instances are, the resulting clusters can satisfy the requirement (c)
to some extent. A few instances can remain unclustered to satisfy the requirement (a).

To cluster k ·m instances of a super-cluster into k clusters of size m according to
some distance measure we modify the DIANA clustering algorithm for this purpose
[7]. DIANA is a divisive algorithm which splits at each step one of the existing clusters
into two. The splitting is initialised by creating an empty new cluster besides the existing
one. Then the algorithm iterates and in each iteration reassigns one instance from the old
cluster to the new one. For reassignment it chooses the instance with the largest value
for the sum of distances to the instances of the old cluster minus to the new cluster.
The original version of the algorithm stops reassignments when the respective value
becomes negative, we stop when the size of the new cluster is divisible by m and differs
from the size of the old cluster by at most m. The original DIANA has to decide which
cluster to split next, for us the order does not matter because of the required fixed size
m. Our algorithm ends when all clusters are of size m, except one can be smaller. The
smaller cluster is discarded from learning the reliability map.

4 LS-ECOC-R: Multi-class Probability Estimation with
Reliabilities

Next we show that the learned calibration and reliability maps μ̂g and r̂g can be used for
multi-class probability estimation with ECOC. The ECOC decomposition of a K-class
task into L binary tasks is represented as a code matrix M ∈ {−1,0,+1}K×L. The bi-
nary task represented by column l aims at discriminating between the positive group of
classes C +

l = {k|Mk,l = +1} and the negative group of classes C−
l = {k|Mk,l = −1}.
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The neutral group of classes C 0
l = {k|Mk,l = 0} is excluded from the training set for the

l-th binary model. Suppose that for a given coding matrix M we have trained L binary
probability estimators gl : X → [0,1] for tasks l = 1, . . . ,L, and learned their calibra-
tion maps μ̂gl and reliability maps r̂gl . LS-ECOC [8] estimates multi-class posterior
probabilities by combining the calibrated probability estimates μ̂gl (gl(x)) only.

First denote by ql(x) the true posterior of the positive group given that instance x is
not neutral:

ql(x) = P(Y ∈ C+
l |Y ∈ C ±

l ,X = x) =
∑k∈C+

l
pk

∑k∈C±
l

pk

where C±
l = C+

l ∪C −
l and pk = P(Y = k|X = x). Let εl be the error of μ̂gl (gl(x)) in

estimating the true ql(x):

εl = ql(x)− μ̂gl(gl(x))

The idea of LS-ECOC is to estimate the posterior probabilities pk such that the total
squared error ∑L

l=1 ε2
l is minimised:

p̂ = argmin
pk≥0

∑ pk=1

L

∑
l=1

ε2
l = argmin

pk≥0
∑ pk=1

L

∑
l=1

(
∑k∈C+

l
pk

∑k∈C±
l

pk
− μ̂gl(gl(x))

)2

If ∑k∈C±
l

pk = 1 for each l, that is if the coding matrix is actually binary, then this is a
straightforward least-squares optimisation with linear constraints which is convex and
can easily be solved to estimate p̂. The optimisation for ternary coding matrices can in
general be non-convex.

Effectively, LS-ECOC assumes that εl is normally distributed around 0 with the same
variance for all l. Therefore, LS-ECOC is equally confident in each value of μ̂gl (gl(x))
regardless of which binary model it is resulting from and what the value of the estimate
is. For example, the calibrated probability estimates 0.01 from model g1 and 0.5 from
model g2 are equally likely to be off by 0.1 according to LS-ECOC.

This is where we can benefit from the learned reliability map r̂gl . We propose a
variant of LS-ECOC which we denote LS-ECOC-R (for LS-ECOC with reliability es-
timates). LS-ECOC-R assumes that εl is normally distributed around 0 with variance
σ̂2

g (gl(x)) where σ̂2
g is calculated due to (4) as follows:

σ̂2
g (s) = (1− r̂g(s)) · μ̂g(s) · (1− μ̂g(s)). (8)

So there is potentially a different level of confidence in each probability estimate for
each instance. The multi-class probability estimates with LS-ECOC-R are obtained as
follows:

p̂ = argmin
pk≥0

∑ pk=1

L

∑
l=1

ε2
l

σ̂2
g (gl(x))

= argmin
pk≥0

∑ pk=1

L

∑
l=1

(
∑k∈C+

l
pk

σ̂gl (gl(x))∑k∈C±
l

pk
− μ̂gl (gl(x))

σ̂gl (gl(x))

)2

.
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Fig. 2. Generative model for the synthetic dataset with 5 Gaussians with black circles centered at
the means μc and radius equal to respective σc. Bayes-optimal decision regions are coloured by
classes.

5 Experimental Evaluation

In the experiments we have three objectives. First, we demonstrate that the proposed
learning methods can indeed provide good estimates of the calibration and reliability
maps. For this we use a synthetic dataset where we know exactly the true calibration
and reliability maps and can therefore compare our estimates to ground truth. Second,
we show on the same dataset that LS-ECOC-R using the estimated reliability map out-
performs LS-ECOC on probability estimation and classification. Finally, we show that
LS-ECOC-R outperforms LS-ECOC also on 6 real datasets.

5.1 Experiments on Synthetic Data

As we need to know the true posterior distribution for an in-depth evaluation, we gen-
erate synthetic data with a probabilistic generative model. We use the same model that
has earlier been used in several papers relating to multi-class probability estimation
[16,15,18]. This generative model has 5 equiprobable classes and the instances of each
class are distributed as a 2-dimensional normal distribution with the following parame-
ters:

class 1 class 2 class 3 class 4 class 5
μc (0,0) (3,0) (0,5) (7,0) (0,9)
σ2

c 1 4 9 25 64

where μc is the mean and the covariance matrix is the unit matrix multiplied by σ2
c .

Figure 2 shows in colours the Bayes-optimal decision regions of this probabilistic model
and the black circles are centered at the means of the Gaussians and have radius equal
to the respective σc.

In order to evaluate our calibration and reliability learning algorithms we consider
binary base estimators for which we can calculate the true calibration and reliability
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Fig. 3. Solid lines are the true (A) calibration map μgl and (B) reliability map rgl for the logistic
regression model gl comparing classes 3 and 5 against others for the synthetic dataset. The dashed
lines in (A) mark μgl −σgl and μgl +σgl .

maps. This is possible whenever the contours of equal probability estimate are straight
lines. Along any straight line the instances of each class have univariate Gaussian dis-
tribution, and we can analytically derive the class proportions and the parameters of
the respective Gaussians. The true calibration maps can be determined using the class
proportions and the reliability maps by numerical integration of the product of a den-
sity ratio and mixture density across the line. We choose logistic regression as our base
model for the synthetic task, as it is used often for probability estimation and has linear
contours.

For a 5-class problem there are 15 different ways to split the classes into two groups,
which correspond to 5 one-vs-four (one-vs-rest) and 10 two-vs-three (pair-vs-rest) tasks.
We first generate n = 400 (and repeat the same with 2000 and 10000) training instances
and train a logistic regression model gl for each of these tasks, l = 1,2, . . . ,15. Now
we can calculate the true calibration maps μgl and reliability maps rgl . For the model
comparing classes 3 and 5 against others these are plotted in Fig. 3. We next learn the
calibration maps μ̂gl and reliability maps r̂gl using our method described in previous
sections. For the clustering method we use super-cluster size 200 and cluster size 10. For
the regression task in learning calibration maps we test bandwidth values 0.005, 0.01,
0.02 and 0.05 and find 0.01 as the best performer. For reliability we use then bandwidth
0.1 as there are m = 10 times less instances for training the regression model.

Ultimately we are going to use the estimated calibration and reliability maps for
multi-class probability estimation. Therefore, we need the estimated and true distribu-
tion of q(X) given g(X) to be maximally alike. As LS-ECOC and LS-ECOC-R both
assume Gaussian distribution, we assess how close to each other are N (μ̂gl , σ̂

2
gl
) and

N (μgl ,σ
2
gl
), averaged over all instances, where σ2

gl
and σ̂2

gl
can be calculated as in (8)

from the true and estimated calibration and reliability maps, respectively. As a distance
measure we use Cramér distance, which is half of the energy distance [14]. Intuitively,
it measures how much work has to be done carrying pixels from one density plot to
another. The advantage over Kullback-Leibler divergence is that for equal variance it
measures the distance of means. Therefore its value is easier to interpret and perhaps
ultimately more relevant for multi-class probability estimation and classification.

With few training instances the regression learner for the reliability map can have a
large variance. Therefore, we consider in addition to our local linear regression method
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an averaging regression method which produces constant reliability across all values of
s. The method calculates the average of R(m) over all training instances. Table 1 shows
the results of the comparison between the estimated and true calibration and probability
maps for various training set sizes and the two regression methods. Cramér distance is
averaged over results on 10 independently generated training and test sets, the test set
size is 10000. For bandwidths we use 0.01 for calibration and 0.1 for reliability, as these
are the best according to the results shown later. The results indicate that we are able to
learn reliability maps that are better than the average line for already a training set of
size 400.

Next we proceed to evaluation of multi-class probabilities that can be obtained using
LS-ECOC-R from the learned calibration and reliability maps. For evaluating the prob-
ability estimates we use the following measures: root mean square error (RMSE), mean
absolute error (MAE), Pearson correlation (Pearson) and Brier score (Brier). For eval-
uating classification performance we use Error rate (Error) and Error compared to the
Bayes-optimal class (ErrVsOpt). Zhou et al. have recently compared 9 ECOC decod-
ing algorithms with regards to classification performance and LS-ECOC out-performed
other methods for 7 out of 8 datasets [18]. We use the same datasets (leaving out the
two smallest), therefore we compare LS-ECOC-R only against LS-ECOC.

On the synthetic dataset we consider three coding matrices — ‘one-vs-rest’
(5 columns), ‘pair-vs-rest’ (10 columns) and ‘all’ (15 columns). First we study which
bandwidth is best for calibration, in order to ensure that we use LS-ECOC at its best.
The RMSE between the true and LS-ECOC estimates of multi-class probabilities is
presented in Table 2 for three matrices and training set sizes 400, 2000, 10000. The re-
sults are averaged over 10 runs over independently generated datasets. Relying on these
results we have decided to use bandwidth 0.01 for calibration throughout the paper. As
reliability maps are learned on 10 times fewer values because of the clustering, we have
chosen 0.1 as the bandwidth for learning reliability.

Table 1. Comparison of the standard (REL) and averaging (R-AVE) regression method for learn-
ing reliabilities, assessed by Cramér distance and averaged over 10 runs. Bandwidths for calibra-
tion and regression are 0.01 and 0.1, respectively.

n method 1vsR 2vsR 3vsR 4vsR 5vsR 12vsR 13vsR 14vsR 15vsR 23vsR 24vsR 25vsR 34vsR 35vsR 45vsR
400 R-AVE .0208 .0253 .0271 .0589 .0567 .0321 .0336 .0577 .0483 .0386 .0678 .0453 .0430 .0684 .0358
400 REL .0175 .0233 .0258 .0588 .0564 .0303 .0327 .0564 .0481 .0382 .0672 .0451 .0431 .0683 .0354
2000 R-AVE .0081 .0080 .0093 .0209 .0162 .0101 .0102 .0165 .0137 .0143 .0242 .0127 .0096 .0228 .0096
2000 REL .0046 .0063 .0079 .0203 .0160 .0087 .0097 .0159 .0136 .0139 .0235 .0128 .0095 .0227 .0095

10000 R-AVE .0049 .0038 .0046 .0076 .0043 .0036 .0029 .0054 .0034 .0108 .0072 .0039 .0031 .0073 .0025
10000 REL .0018 .0023 .0035 .0071 .0041 .0025 .0025 .0048 .0032 .0103 .0067 .0037 .0027 .0072 .0024

Table 2. RMSE of multi-class probability estimates obtained with LS-ECOC on three different
ECOC matrices and training set sizes 400, 2000, 10000. Results are averaged over 10 runs.

matrix 1vsR 2vsR all
λcal n 400 2000 10000 400 2000 10000 400 2000 10000
.005 .1933 .1621 .1563 .1643 .1478 .1449 .1567 .1421 .1392
.01 .1729 .1594 .1562 .1563 .1480 .1464 .1494 .1425 .1406
.02 .1656 .1597 .1578 .1566 .1515 .1507 .1503 .1461 .1450
.05 .1708 .1673 .1667 .1664 .1635 .1632 .1616 .1588 .1584
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Table 3 compares the performance of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R
across three matrices and training set sizes 400, 2000, 10000. Both RMSE and error
rate are averaged over 10 runs. We also provide the standard deviation estimates for
these values, calculated as the sample standard deviation over square root of 10 (the
number of runs). The results indicate that both LS-ECOC-R methods outperform LS-
ECOC on all cases with n ≥ 2000 and in some cases with n = 400. The full version of
LS-ECOC-R performs better than the averaged, with some exceptions for n = 400.

It is in principle possible to improve LS-ECOC by improving the calibration map
learning method. The following results show that LS-ECOC-R remains superior, with
sufficient data given. For this we apply LS-ECOC on the true calibration map (not
the estimated one) and consider this as the performance-bound for LS-ECOC. Table 4
compares the results of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R with the results
obtained on the true calibration and reliability maps, averaged over 10 runs. The results
indicate that each following method is better than the upper bound for the previous
method. Therefore, on this dataset LS-ECOC-R remains superior to LS-ECOC even if
calibration is perfect.

5.2 Experiments on Real Data

Finally we show that LS-ECOC-R outperforms LS-ECOC on some real datasets. For
this purpose we use 6 UCI datasets shown in Table 5. As the binary base model we
use logistic regression and support vector machines with polynomial kernel. Zhou et
al. used also the polynomial kernel and published the best degree for it according to
cross-validation results [18]. We use the same degree, for easier comparison with their
work.

Table 3. Comparison of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R across three matrices
and three training set sizes. RMSE and error rate are both averaged over 10 runs and standard
deviation is calculated as the sample standard deviation over square root of 10.

n method RMSE 1vsR RMSE 2vsR RMSE all Error 1vsR Error 2vsR Error all
400 LS-ECOC .1729 ± .0015 .1563 ± .0012 .1494 ± .0009 .3860 ± .0065 .3450 ± .0049 .3265 ± .0044
400 LS-ECOC-R-ave .1774 ± .0023 .1526 ± .0020 .1456 ± .0025 .3872 ± .0056 .3572 ± .0051 .3366 ± .0049
400 LS-ECOC-R .1788 ± .0025 .1527 ± .0021 .1475 ± .0025 .3852 ± .0058 .3464 ± .0055 .3325 ± .0059

2000 LS-ECOC .1594 ± .0006 .1480 ± .0004 .1425 ± .0004 .3588 ± .0032 .3392 ± .0027 .3184 ± .0031
2000 LS-ECOC-R-ave .1487 ± .0006 .1314 ± .0005 .1135 ± .0011 .3539 ± .0029 .3367 ± .0025 .3034 ± .0030
2000 LS-ECOC-R .1468 ± .0006 .1243 ± .0007 .1102 ± .0011 .3493 ± .0026 .3224 ± .0030 .3004 ± .0030
10000 LS-ECOC .1562 ± .0004 .1464 ± .0003 .1406 ± .0003 .3509 ± .0020 .3350 ± .0017 .3143 ± .0018
10000 LS-ECOC-R-ave .1448 ± .0005 .1290 ± .0003 .1111 ± .0004 .3490 ± .0018 .3344 ± .0016 .2996 ± .0019
10000 LS-ECOC-R .1429 ± .0005 .1227 ± .0002 .1079 ± .0003 .3449 ± .0018 .3214 ± .0016 .2987 ± .0017

Table 4. Comparison of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R with the respective meth-
ods which use true calibration and reliability maps (bound). The results were obtained on the full
ECOC matrix ‘all’, on 10000 training instances, and are averaged over 10 runs.

method RMSE MAE Pearson Brier Error ErrVsOpt
LS-ECOC .1406 .1046 .8801 .2499 .3143 .1327
LS-ECOC bound .1356 .0976 .8843 .2463 .3108 .1239
LS-ECOC-R-ave .1111 .0745 .9253 .2314 .2996 .0943
LS-ECOC-R-ave bound .1093 .0727 .9269 .2303 .2988 .0929
LS-ECOC-R .1079 .0712 .9316 .2297 .2987 .0914
LS-ECOC-R bound .1018 .0666 .9411 .2264 .2928 .0810
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There are many possible choices for the ECOC matrix, some even domain-specific,
in the sense that each column is chosen based on the performance of the models for
the previous columns. In the LS-ECOC experiments of Zhou et al. the equidistant code
matrices performed best among the domain-independent matrices for 5 of our 6 datasets
[18]. We therefore use equidistant code matrices, which we create using BCH codes.
We have built a 15x15 binary matrix which was obtained by creating a BCH code with
code-length 15 and aligning all 15 code-words with exactly seven 1’s as columns of the
matrix. The Hamming distance between each pair of columns and each pair of rows is
exactly 8, making it equidistant. Another nice property is that any top k rows with k ≥ 5
have all columns splitting the classes differently into two groups. For a k-class problem
we use this matrix for our experiments if k ≥ 5 and for k = 4 we use the matrix with all
7 different splits of classes into two.

We perform 10-fold cross-validation and use error-rate as the evaluation measure.
The sample mean and variance of the training set are used to normalize each input
feature individually. Before calibration, the scores of SVM are transformed using the
standard logistic map. The calibration and reliability maps are learned with bandwidths
0.01 and 0.1, respectively — the same which performed best on the synthetic data.

Table 5 lists the error rate for methods LS-ECOC, LS-ECOC-R-ave, LS-ECOC-R on
the 6 datasets with two different base learners. We first note that LS-ECOC results in
our experiments are superior to the LS-ECOC results by Zhou et al. [18], probably due
to differences in normalization and calibration. To assess the differences between LS-
ECOC and the two variants of LS-ECOC-R we have performed significance tests with t-
test on confidence level 95%. The stars in the table indicate which errors of LS-ECOC-R
are significantly lower than the respective error for LS-ECOC. To conclude, LS-ECOC-
R outperforms LS-ECOC on four larger datasets (n ≥ 2000), with significance in 3 out
of the 4.

6 Related Work

The reliability of model predictions has been studied before but mostly in the con-
text of regression, where it is known as conditional variance estimation [5]. Conformal

Table 5. The comparison of 10-fold cross-validated error rate of classification for LS-ECOC, LS-
ECOC-R-ave and LS-ECOC-R on 6 real datasets with n instances, a attributes and k classes. The
stars in the table indicate which errors of LS-ECOC-R are significantly lower than the respective
error for LS-ECOC according to t-test at confidence level 95%.

dataset n a k model LS-ECOC LS-ECOC-R-ave LS-ECOC-R

shuttle 14500 9 7
LR .0383± .0016 .0259± .0014 * .0323± .0017 *
SVM .0914± .0015 .0888± .0017 .0859± .0018 *

sat 6435 36 6
LR .1713± .0021 .1514± .0028 * .1489± .0027 *
SVM .1737± .0026 .1554± .0021 * .1610± .0026 *

page-blocks 5473 10 5
LR .0453± .0025 .0420± .0034 .0426± .0035
SVM .0426± .0021 .0429± .0026 .0411± .0028

segment 2310 19 7
LR .0887± .0040 .0775± .0036 .0753± .0046 *
SVM .0987± .0041 .0788± .0036 * .0771± .0031 *

yeast 1481 8 10
LR .4327± .0134 .4279± .0124 .4314± .0165
SVM .4084± .0147 .4246± .0145 .4198± .0132

vehicle 846 18 4
LR .2174± .0088 .2258± .0085 .2081± .0136
SVM .2316± .0125 .2375± .0113 .2553± .0136
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prediction is a general approach that can be applied to both regression and classification
in an on-line setting. It outputs a so-called region prediction which might be a confi-
dence interval (in regression) or a set of possible values (in classification) that contains
the true value with a certain level of confidence [13]. This is different from the approach
in this paper where we try to assess the uncertainty associated with a point estimate.

In the area of multi-class classification and probability scores, the original error-
correcting output codes method is due to [4]. The least-squares method for obtaining
multi-class posterior probabilities was developed not much later by [8], but does not
appear to be widely known. Better-known is the loss-based decoding method by [1],
which takes classifier margins rather than probabilities as input and outputs classes
rather than posterior probabilities. A review on combinations of binary classifiers in a
multi-class setting is given by [9]. [16] study coding and decoding strategies in ECOC,
and also originated the synthetic 5-class data set we used in this paper. The same dataset
was used by [15] and [18] to study the behaviour of LS-ECOC.

Calibration of multi-class posterior probabilities is often studied in a cost-sensitive
setting [17,11]. The effect of calibration in classifier combination is studied by [2]. Per-
haps closest in spirit to our work in this paper is the work by [6] who propose methods
to identify and remove unreliable classifiers in a one-vs-one setting. Also related is the
work on neighborhood-based local sensitivity by [3].

7 Concluding Remarks

Assessing the reliability of probability scores in classification is clearly an important
task if we want to combine scores from different classifiers. If we want to combine two
scores of 0.5 and 0.3, say, it makes a difference if one of them is deemed much more
reliable than the other. Yet the problem of estimating this reliability in an instance-wise
manner appears not to have been widely studied in the machine learning literature. In
this paper we present a theoretically well-founded and practically feasible approach to
the problem. We demonstrate the quality of the reliability estimates both in compari-
son with the true values on synthetic data, and in obtaining well-calibrated multi-class
probability scores through the improved LS-ECOC-R method.

The paper opens many avenues for further work. We are particularly interested in
developing cost models in cost-sensitive classification that can take these reliability
estimates into account. Incorporating instance-wise confidence ratings into boosting
also appears a fruitful research direction.
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