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Abstract. In this paper, we address the problem of fitting multivariate
Hawkes processes to potentially large-scale data in a setting where series
of events are not only mutually-exciting but can also exhibit inhibitive
patterns. We focus on nonparametric learning and propose a novel al-
gorithm called MEMIP (Markovian Estimation of Mutually Interacting
Processes) that makes use of polynomial approximation theory and self-
concordant analysis in order to learn both triggering kernels and base
intensities of events. Moreover, considering that N historical observa-
tions are available, the algorithm performs log-likelihood maximization
inO(N) operations, while the complexity of non-Markovian methods is in
O(N2). Numerical experiments on simulated data, as well as real-world
data, show that our method enjoys improved prediction performance
when compared to state-of-the art methods like MMEL and exponential
kernels.

1 Introduction

Multivariate Hawkes processes are a class of multivariate point processes which
are often used to model counting processes where physicals events rate of occur-
rence usually depend on past occurences of many other events. This is typically
the case for earthquakes aftershocks [1] and financial trade orders on marketplace
[2,3,4,5], but also in other fields such as crime prediction [6], genome analysis
[7] and more recently for modeling social interactions [8]. Multivariate Hawkes
processes are fairly well-known from a probabilistic point of view : their Pois-
son cluster representation was outlined by the seminal paper of Hawkes and
Oakes [9], stability conditions and sample path large deviations principles were
derived in a sequence of papers by Bremaud and Massoulie (see e.g [10]). In
the unidimensional case, Ogata [11] showed that the log-likelihood estimator en-
joys usual convergence properties under mild regularity conditions. However, in
practical applications, estimation of the triggering kernels guv has always been
a difficult task. First, because Hawkes log-likelihood contains the logarithm of
the weighted sum of triggering kernels, most of the aforementioned papers made
the choice of fixing triggering kernels up to a normalization factor in order to
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ensure concavity, that is guv = cuv · g. Secondly, when computational efficiency
is an issue, the dependency of the stochastic rate at a given time on all the past
occurences implies quadratic complexity in the number of occurences for tasks
like log-likelihood computation. This issue has often been tackled by choosing
memoryless exponential triggering kernels, but the actual dynamics of kernels
strongly depends on the field of application: price impacts of a given trade [12]
and process of views of Youtube videos [13] were shown to be better described
by slowly decaying power-law kernels whereas for DNA sequence modelization
[7] kernels are known to have bounded support. Thus, it is highly desirable to
estimate triggering kernels in a data-driven way instead of assuming a given
parametric form. Nonparametric estimation has been successfully addressed for
unidimensional [7,14] and symmetric bidimensional [12] Hawkes processes. In
the case where triggering kernels are known to sparsely decompose over a dictio-
nary of basis functions of bounded support (e.g for neuron spikes interactions),
a LASSO-based algorithm with provable guarantees was derived in [15].

Recently, combining majorization-minimization techniques with resolution of
a Euler-Lagrange equation, Zhou, Zha and Song [8] proposed what is to our
knowledge the first nonparametric learning algorithm for general multivariate
Hawkes processes. But although this work constitutes a significant improvement
over existing parametric methods, it still relies on several assumptions. First,
interactions between events are assumed to be ”mutually-exciting”, i.e guu′ are
non-negative for all u, u′. We nevertheless argue that in real-world settings, there
is no reason to think that interactions beween events are only mutually-exciting.
Secondly, the background rates μu are assumed to be constant. While this is
a common assumption for multivariate Hawkes processes, it was shown by [16]
that estimating μu(t) from the data could lead to significant improvement. To ad-
dress these different issues, we construct a novel algorithm MEMIP (Markovian
Estimation of Mutually Interacting Processes) based on polynomial approxima-
tion of a mapping of the triggering kernels to [0, 1]. Our method does not assume
non-negativity on triggering kernels and is able to estimate time-dependent back-
ground rate on a data-driven way. Moreover, by constructing a markovian and
linear estimator, we carry the more appealing properties of the most widely
used parametric setting, where triggering kernels are fixed to exponentials up to
a normalization factor : concavity of the log-likelihood that ensures global con-
vergence of the estimator, and O(N) log-likelihood calculation in a single pass
through the data. While giving a concave formulation of the exact log-likelihood
that can be maximized by multiple optimization techniques, we propose an algo-
rithm based on maximisation of a self-concordant approximation that is shown
to outperform state-of-the-art methods on both simulated and real-world data
sets.

The paper is organized as follows. In Section 2, we formally define multi-
variate Hawkes processes as well as the associated log-likelihood maximization
problem. In section 3, we decompose the log-likelihood on a basis of memoryless
triggering kernels. Through Section 4, we develop two novel algorithms for ex-
act as well as fast approximate maximization of the log-likelihood, analyze their
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complexity and show numerical convergence results based on the properties of
self-concordant functions. In section 5, we show that MEMIP significantly im-
proves over state of the art on both synthetic and real world data sets for the
tasks of predicting future events as well as estimating underlying dynamics of
the Hawkes process.

2 Setup and Notations

2.1 Model Description and Notation

We consider a multivariate Hawkes process, that is a d-dimensional counting
process N(t) = {Nu(t) : u = 1, . . . , d} for which the rate of occurence of each
component Nu(t) is defined by:

λu(t) =

⎛
⎝μu(t) +

∑
v∈[1...d]

∑
tv<t

guv(t− tv)

⎞
⎠

+

, ∀u = 1, . . . , d (1)

where μu(t) is the natural rate of occurence of events along dimension u. Note
that the occurence of a given event affects stochastic rates of occurence of ev-
ery dimension. With an empty history, events of type u will occur as if they
were drawn from a non-homogeneous Poisson process of rate μu(t). The kernel
function evaluation guv(t− tv) quantifies the change in the rate of occurence of
event u at time t caused by the realization of event v at time tv. Following the
intuition, we can characterize three situations depending on the values taken by
the kernel function at a given time lapse s:

– Excitation corresponds to the case where we have guv(s) > 0, i.e. an event
of type v is more likely to occur if an event of type u has occured at a time
distance of s.

– Independence is observed when guv(s) = 0, meaning that the realization of
an event of type u has no effect on the rate of occurence of an event of type
v at time distance s.

– Inhibition takes place when guv(s) < 0, i.e. an event of type v is less likely
to occur if an event of type u occured at time distance s.

Such processes can be seen as a generalization over the common definition of
multivariate Hawkes process where the kernels guv are non-negative and the
componentwise background rate μu is often taken constant.

2.2 Log-Likelihood of Multivariate Hawkes Processes

Input Observations. We define a realization h of a multivariate point process
by the triplet T−

h , T+
h , (thi , u

h
i )i∈[1...nh], where T−

h and T+
h are respectively the

beginning and the end of the observation period, and (thi , u
h
i ), for i ∈ [1...nh],

is the sequence of the nh events occuring during this period. In the rest of the
paper, we will assume we are given n i.i.d realizations of a multivariate Hawkes
process. Without loss of generality, we will assume minh(T

−
h ) = 0 and take

T = maxh(T
+
h ).
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Expression of the Log-Likelihood. We first set Λ = {λu : u = 1, . . . , d}.
For a general multivariate point process, the log-likelihood of the whole dataset
H is given by (e.g. [17]):

L(Λ,H) =

d∑
u=1

∑
h∈H

∫ T+
h

T−
h

ln(λu(s))dN
u
h (s)−

d∑
u=1

∑
h∈H

∫ T+
h

T−
h

λu(s)ds (2)

where
∫
f(s))dNu

h (s) =
∑nh

i=1 f(t
h
i )1
{
uh
i = u

}
. In the case of a linear Hawkes

process (1), we introduce Λ = (M,G) where M = {μu : u = 1, . . . , d} and
G = {gu,v : u, v = 1, . . . , d} and the log-likelihood can be rewritten as:

L(M,G,H) =
∑
h∈H

nh∑
i=1

ln

(
μuh

i
(thi ) +

∑
j : thj <thi

guh
j ,u

h
i
(thi − thj )

)

−
d∑

u=1

∑
h∈H

∫ T+
h

T−
h

(
μu(s) +

nh∑
j=1

1
{
uh
j = u

}
gu,uj (s− tj)

)

+

ds (3)

Depending on the parametrization of triggering kernels guv, this log-likelihood
may or may not be concave. For instance, in the widely used setting where the
background rates μu are constant and the kernels guv are non-negative and fixed
up to the normalization factor νuv, the log-likelihood is concave and can be
relatively easily maximized. However, even for the simple case of nonnegative
exponential kernels guv(t) = νuv exp(−αjt) where νuv ≥ 0 the product term
νuv exp(−αvt) makes the log-likelihood not concave with respect to αv. There-
fore, global convergence of maximization methods is not guaranteed anymore.

3 Approximations of Multivariate Hawkes Processes on a
Basis of Exponential Triggering Kernels

3.1 A K-approximation of the Multivariate Hawkes Process

For a given multivariate Hawkes process Λ = (M,G), we consider finite ap-
proximations of the components of the rates of occurence μu and guv. We first
introduce the following functions:

∀y ∈ [− ln(T )/α, 1], νu(y) = μu(− ln(y)/α) and fuv(y) = guv(− ln(y)/α)

and we use Bernstein-type polynomial approximations of order K for νu and
fuv: there exist coefficients XK

uv,k such that

∀y ∈ [− ln(T )/α, 1], ν̂K(y) =

K∑
k=0

XK
u0,ky

k and f̂K
uv(y) =

K∑
k=0

XK
uv,ky

k .

These polynomial approximations are known to converge with a polynomial rate
for smooth functions (with first r derivatives continuously differentiable) and ge-
ometric rate for analytic functions (see below). The K-aproximation considered
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in this paper relies on a simple change of variable in the Bernstein approxima-
tions by setting: y = exp(−αt). We can now introduce the linear approximation
of a multivariate Hawkes process with exponential kernels:

∀t ∈ [0, T ], μ̂K(t) =

K
∑

k=0

XK
u0,k exp(−kαt) and ĝKuv(t) =

K
∑

k=0

XK
uv,k exp(−kαt) .

Classical arguments from approximation theory [18] lead to the following
proposition.

Proposition 1. For any function Ψ defined over [0, T ], we consider the supre-
mum norm ||Ψ ||T,∞ = supt∈[0,T ] |Ψ(t)|. The K-approximations (μ̂K

u )K≥1 and

(ĝKuv)K≥1 converge in supremum norm towards true functions μu and guv at the
following rates:

1. if μu is Cr,
∣∣∣∣μu(t)− μ̂K

u (t)
∣∣∣∣T
∞ = O(1/Kr)

2. if μu is analytic,
∣∣∣∣μu(t)− μ̂K

u (t)
∣∣∣∣T
∞ = O(exp(−K))

3. if guv is Cr,
∣∣∣∣guv(t)− ĝKuv(t)

∣∣∣∣T
∞ = O(1/Kr)

4. if guv is analytic,
∣∣∣∣guv(t)− ĝKuv(t)

∣∣∣∣T
∞ = O(exp(−K)).

Another property of the approximated multivariate Hawkes process is the
Markov property of the counting process. We set N̂K(t) the d-dimensional

Hawkes process uniquely defined by λ̂K = (μ̂K
u , ĝKuv)u,v.

Proposition 2. Assume that the empirical estimate N̂K(t) of the multivariate
Hawkes process is obtained after i.i.d. realizations of N(t) over the time interval

[0, T ]. There exists (�̂0, �̂1, . . . , �̂K) such that:

∀u ∈ {1, . . . , d} , λ̂K(t) =
K∑

k=0

(
�̂k(t)

)
+

and (N̂K(t), �̂0(t), �̂1(t), . . . , �̂K(t)) is a Markov Process on N
d × R

d(K+1).

The proof results from the following decomposition of each occurrence rate in
the approximation: ∀u ≥ 1,

λ̂K
u (t) =

(
XK

u0,0+

K∑
k=1

(
XK

u0,k exp(−kαt)+
∑

v : tv<t

XK
uv,(k−1) exp(−kα(t−tv))

)

+
∑

v : tv<t

XK
uv,K exp(−(K + 1)α(t− tv))

)

+

Markov property is then a direct consequence of the dynamics of the functions
�̂ku(t) : they decay at rate exp(−kαt) and jump by XK

uv,(k−1) whenever an event
of type v occurs. As they entirely determine the stochastic rate which determines
the conditional probability distribution of N̂K(t), the conditional probability dis-

tribution of future states of the process (N̂K(t), �̂0(t), �̂1(t), ...�̂K(t)) is uniquely
determined by the present state.
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3.2 A New Decomposition of the Log-Likelihood

The algorithms proposed in this paper rely on a novel expression of the log-
likelihood over a basis of triggering kernels. We use exponential excitation func-
tions to account for nonlinearity but our algorithms benefit from the properties
of linear approximations. Based on the expression of the log-likelihood for gen-
eral linear multivariate Hawkes process (3), we introduce the following notation
to discover the specific expression for the K-approximation based on exponential
triggering functions: ∀u, v = 1, . . . , d, ∀k = 1, . . . ,K, ∀h ∈ H, ∀i = 1, . . . , nh,

AK,h,i
uv,k =

∑
j : thj <thi

1
{
uh
i = v, uh

j = u
}
exp
(−(k + 1 {u > 0})α(thi − thj )

)
(4)

BK,h
0v,k(s) = exp(−kαs) (5)

BK,h
uv,k(s) =

∑

j : thj <s

1
{
uh
j = v

}
exp(−(k + 1)α(s− thj )) (6)

The key expression of the approximate log-likelihood can then be derived by
plugging-in the previous notations and replacing the intrinsic parameters (M,G)
by the linear coefficients XK :

LK(XK ,H) =
∑
h∈H

nh∑
i=1

ln(AK,h,iXK)−
∑
h∈H

∫ Th

0

( nh∑
i=1

BK,h(s)XK

)

+

ds (7)

Note that the dependance of LK on the history H is entirely expressed by
vectors (AK,h,i)h∈H,i∈[1...nh] and (BK,h(s))h∈H,s∈[0,T ]. An important feature of
the approximate log-likelihood expressed in the parameter space defined by lin-
ear decompositions onto bases of exponential triggering kernels is given in the
following proposition.

Proposition 3. The function X → LK(X,H) is concave.

From there, we have a complete roadmap for the design of algorithms estimat-
ing the parameters of multidimensional Hawkes processes: the last propostion
indicates that a proxy of the log-likelihood (3) can be globally maximized with
tools of convex analysis. Moreover, thanks to the approximation rates of conver-
gence (Proposition 1), triggering kernels can be accurately estimated for large
K through maximization of the new objective (7). Finally, the Markov property
is an important feature that will allow us to construct the vectors (AK,h,i) and
(BK,h) with linear complexity.

4 Markovian Algorithms for the Estimation of Triggering
Kernels

Computational tractability of algorithms on large data sets depends on the algo-
rithmic complexity in the dominating dimensions of the problem. For realizations
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of multivariate Hawkes processes, dominating dimensions are almost always the
total number of events N =

∑
h∈H nh and the time of observation T . Indeed,

it would be unrealistic to try to learn d2 nonparametric functions in an infinite
dimensional space with only N observations without the condition N � d2. In
the rest of the paper, we will therefore focus on constructing two algorithms with
no more than linear complexity in N and T .

4.1 Exact Maximization of the Approximated Log-Likelihood

Vectors (AK,h,i)h∈H,i∈[1...nh] and (BK,h(s))h∈H,s∈[0,T ] can be constructed in a
single pass through the data by Algorithm 1.

Algorithm 1. Algorithm for construction of vectors (AK,h,i) and (BK,h(s))

Initialize i = 0 and fix a time step dt
for all h do

Initialize (Ck
uv = 0)u≥1,v≥1 ; t = T−

h ; (Dk
uv(T

−
h ) = 1{u=0})u≥0,v≥1

while t < T+
h do

t← t+ δt = min(t+ dt, ti)
for all k,u,v do

Ck
uv ← Ck

uv exp(−(k + 1 {u > 0}αδt), Dk
uv ← Dk

uv exp(−(k + 1 {u > 0}αδt)
BK,h

uv,k(t)← Dk
uv

end for
if t = ti then

for all k,u do
AK,h,i

uv,k ← Ck
uui

end for
for all k,v do

Ck
uiv ← Ck

uiv + 1, Dk
uiv ← Dk

uiv + 1
end for
i← i+ 1

end if
end while

end for

Complexity of Algorithm 1. With M = T/dt the number of discretizations
steps, construction of vectors (AK,h,i) and (BK,h(s)) has thus a complexity of
O(N+M). As each log-likelihood evaluation (7) requires 2N+M scalar products
computations, various optimization techniques can be used to find the global
maximum of X → LK(X,H) in O(N + M) operations. On the contrary, a
nonmarkovian estimator, even linear, would need at each time t to compute the
values of triggering kernels between current time and all preceding occurence
times, thus leading to a O(

∑
h n

2
h) complexity. This construction is thus very

often the bottleneck of the whole maximization procedure.
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4.2 Relaxed Version of the Log-Likelihood

While the previous paragraph exposes a fully tractable method to estimate the
triggering kernels for potentially large data sets, we now develop an approxi-
mate algorithm called MEMIP, for Markovian Estimation of Mutually Interact-
ing Processes, that leads to a substantial speed-up, as well as theoretical guar-
antees in terms of efficiency. For this purpose, we approximate the log-likelihood
LK(M,G,H) by dropping the positive part in log-likelihood (3), i.e.

L̃K(M,G,H) =
∑
h∈H

(
nh∑
i=1

ln

(
μuh

i
(thi ) +

∑
j : thj <thi

guh
j ,u

h
i
(thi − thj )

)

−
d∑

u=1

∫ T+
h

T−
h

(
μu(s) +

nh∑
j=1

1
{
uh
j = u

}
gu,uj (s− tj)

)
ds

)
(8)

which can be rewritten:

L̂K(XK ,H) =
∑
h∈H

( nh∑
i=1

ln(AK,h,iXK)

)
− B̂KXK (9)

where B̂K
uv,k =

∑
h∈H

nh∑
j=1

1
{
uh
j = v

}∫ T+
h

T−
h

exp(−kα(s− thj )).

Although L̂K(X,H) is an upper bound of the actual log-likelihood and it
is not clear at first sight why its maximization should lead to large values of
LK(X,H), we point out that the difference L̂K(X,H)−LK(X,H) is only caused

by intervals where there exists u ∈ [1...d] such that λ̂K
u (t) = 0. But maximizers

of L̂K(X,H) are very unlikely to exhibit wide range of negative values in their
triggering kernels because any single event realization with a predicted nonpos-
itive stochastic rate yields L̂K(X,H) = −∞. Therefore, we assume we can rely
on this approximation in order to construct fast algorithms.

4.3 MEMIP: a Learning Algorithm for Fast Log-Likelihood
Estimation

Since the gradient and the hessian matrix of X �→ L̂K(X,H) can be computed
analytically and their size does not depend on N , we derive the proposed algo-
rithm MEMIP on the base of successive Newton optimizations. In the following,
we denote by NewtonArgMax(f, x0) the result of a Newton maximization of func-
tion f with starting point x0 using a classical backtracking linesearch method.

The main idea is to construct recursively a sequence (X̂1...X̂K) of maximizers

of functions (L̂k)k∈[1...K] by using NewtonArgMax(L̂k−1, Ŵ k−1) as the starting

point Ŵ k of maximization of L̂k. From the estimated sequence (X̂1...X̂K), the
best value of k can be estimated by cross-validation or various other model selec-
tion techniques. Interestingly, Ak,h,i = (AK,h,i

•,j )j∈[1...k] and Bk = (BK
•,j)j∈[1...k]

such that only (AK,h,i)h∈H,i∈[1...nh] and BK need to be computed.
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Algorithm 2.Algorithm (MEMIP) for learning background rates and triggering
kernels of a multivariate Hawkes process

input Mapping parameter α > 0, maximal polynomial degree K, starting point ̂W 1 ∈
R

d(d+1)

Construct (AK,h,i) and BK according to O(N) modified version of Algorithm 1
̂X1 ← NewtonArgMax( ̂L1,̂W 1)
for k ∈ [2...K] do

̂W k = 0
for j ∈ [1...k − 1], u ∈ [1...d], v ∈ [0...d] do

̂W k
uv,j = ̂Xk−1

uv,j

end for
̂Xk ← NewtonArgMax( ̂Lk,̂W k)

end for

Complexity of Algorithm 2.We obtain two substantial computational speed-
ups compared to exact log-likelihood maximization. First, time discretization is
no longer needed for the construction of BK . Thus, vectors (AK,h,i) and BK

can be constructed with the same procedure than Algorithm 1 except that
updates are made only on time occurence of events. Therefore, construction
complexity is O(N). Similarily, approximate log-likelihood evaluations are also
of complexity O(N). Secondly, the approximate log-likelihood is separable by

type of event u : L̂K =
∑d

u=1 L̂K
u where L̂K

u only depends on background rate
μu and triggering kernels (guv)v∈[1...d]. Maximization can thus be parallelized
across the different dimensions. Note that because of the Hessian inversion at
each Newton step, complexity in d of maximization of L̂K

u is O(d3) for any u,
which yields a O(d4) overall complexity. In cases where N � d2 but d4 > N , the
use of quasi-Newton method might therefore be preferable. For instance, BFGS
method enjoys superlinear convergence [19], and would lead to a O(d3) overall

complexity, the maximization of each L̂K
u requiring O(d2) operations.

4.4 Self-concordance Property and Numerical Convergence of
MEMIP

Problem (9) can be solved by various optimisation techniques. Algorithm 2 is
actually based on the concept of self-concordance [20] that we apply to func-

tion X �→ −L̂k(X,H). Self-concordant functions are, along with strongly-convex
functions with Lipschitz-continuous Hessian matrices, a very important class of
functions for which nonasymptotic upper bounds of the number of Newton steps
necessary to reach precision ε is known. More specifically, the following property
holds:

Proposition 4. Starting from a d(d+1)-dimensional vector Ŵ 1, MEMIP con-

structs a sequence of K estimates (X̂1...X̂K) verifying for any k ∈ [1...K],

|L̂k(X̂k,H)−supX(L̂k(X,H))| ≤ ε in at most C
(
supX(L̂K(X,H))−L̂1(Ŵ

1,H)
)

+K(log2 log2(1/ε) + Cε) Newton iterations.
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Lemma 1. Using Newton method with backtracking line search from a start-
ing point x0 ∈ Rd, there exists C > 0 depending only on the line search
parameters such that the total number of Newton iterations needed to min-
imize a self-concordant function f up to a precision ε is upper bounded by
C(sup(f)− f(x0)) + log2 log2(

1
ε ).

Proof of Proposition 4. Self-concordance of functions (−L̂k)k∈[1...K] is a direct
consequence of self-concordance on R∗

+ of f : x �→ − ln(x) and affine invariance
properties of self-concordant functions. By applying the aforementioned lemma
to function −L̂k and starting point Ŵ k at each Newton optimization, we get the
bound

C
∑
k

(
sup
X

(L̂k(X,H))− L̂k(Ŵ k,H)
)
+K log2 log2(1/ε) (10)

By construction of MEMIP iterates, we also have L̂k(Ŵ k,H)

= L̂(k−1)(Ŵ k,H) = L̂(k−1)(X̂k−1,H) where the first equality holds because for

any u, v, Ŵ k
uv,k = 0 and the second because for any u, v, j ≤ k−1, Ŵ k−1

uv,j = X̂k−1
uv,j .

But for any k ≥ 2, L̂k−1(X̂k−1,H) ≥ supX(L̂k−1(X,H))−ε. Therefore the bound
reformulates as

C
K∑

k=1

(
sup
X

(L̂k(X,H))− sup
X

(L̂k−1(X,H)))
)
+K(log2 log2(1/ε) + Cε) (11)

which proves Proposition 4, using the notation supX(L̂0(X,H)) = L̂1(Ŵ
1,H).


�
Remark. The previous proposition emphasizes the key role played by the start-
ing point Ŵ 1 in the speed of convergence of Newton-like methods. In our case,
a good choice is for instance to select it by classical non-negative maximiza-
tion techniques for objectives of type (9) (see e.g [21]). Because these methods
are quite fast, they can also be used for steps k ∈ [2...K] in order to pro-

vide an alternative starting point Ŵ k
+. The update X̂k is then given by either

NewtonArgMax(L̂k, Ŵ k) or NewtonArgMax(L̂k, Ŵ k
+) depending on the most

succesful maximization.

5 Experimental Results

We first evaluate MEMIP on realistic synthetic data sets. We compare it to
MMEL [8] and fixed exponential kernels and show that MEMIP performs sig-
nificantly better in terms of prediction and triggering kernels recovery.

5.1 Synthetic Data Sets: Experiment Setup and Results

Data Generation We simulate multivariate Hawkes processes by Ogata mod-
ified thinning algorithm (see e.g. [22]). Since each occurence can potentially in-
crease stochastic rates of all events, special attention has to be paid to avoid
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explosion, i.e the occurence of an infinite number of events on a finite time win-
dow. In order to avoid such behavior, our simulated data sets verify the sufficient
non-explosion condition ρ(Γ ) < 1 where ρ(Γ ) denotes the spectral radius of the
matrix Γ = (

∫∞
0

|guv(t)dt|)uv (see e.g [17]). We perform experiments on three
different simulated data sets where triggering kernels are taken as

guv(t) = νuv
sin
(

2πt
ωuv

+ π
2 ((u + v) mod 2)

)
+ 2

3(t+ 1)2
(12)

We sample the periods ωuv from an uniform distribution over [1, 10]. Absolute
values of normalization factors νuv are sampled uniformally from [0, 1/d[ and
their sign is sampled from a Bernoulli law of parameter p. Except for the toy data
set, background rates μv are taken constant and sampled in [0, 0.001]. An impor-
tant feature of this choice of triggering kernels and parameters is that resulting
Hawkes processes respect the aforementioned sufficient non-explosion condition.
For quantitative evaluation, we simulate two quite large data sets (1) d = 300,p =
1 (2) d = 300,p = 0.9. Thus, data set (1) contains realizations of purely mutually-
exciting processes whereas data set (2) has 10% of inhibitive kernels. For each
data set, we sample 10 sets of parameters (ωuv, νuv)u≥1,v≥1,(μv)v≥1 and simu-
late 400,000 i.i.d realizations of the resulting Hawkes process over [0, 20]. The
first 200,000 are taken as training set and the remaining 200,000 as test set.

Evaluation Metrics We evaluate the different algorithms by two metrics: (a)
Diff a normalized L2 distance between the true and estimated triggering kernels,
defined by

Diff =
1

d2

d∑
u=1

d∑
v=1

∫
(ĝuv − guv)

2

∫
ĝ2uv +

∫
g2uv

(13)

, (b) Pred a prediction score on the test data set defined as follows. For each di-
mension u ∈ [1...d] and occurence i in the test set, probability for that occurence

to be of type u is given by P true
i (u) = λu(ti)∑d

v=1 λv(ti)
. Thus, defining AUC(d, P )

the area under ROC curve for binary task of predicting (1{ui=u})i with scores

(P true
i (d))i and (Pmodel

i (d))i the probabilities estimated by the evaluated model,
we set

Pred =

∑d
u=1 (AUC(d, Pmodel)− 0.5)∑d
u=1 (AUC(d, P true)− 0.5)

(14)

Baselines We compare MEMIP to (a) MMEL for which we try various sets
of number of base kernels, total number of iterations and smoothing hyperpa-
rameter, (b) Exp the widely used setting where guv(t) = νuv exp(−αt) and only
νuv are estimated from the data. In order to give this baseline more flexibility
and prediction power, we allow negative values of νuv. We train three different
versions with α ∈ {0.1, 1.0, 10.0}.
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Results Part 1: Visualization on a Toy Dataset In order to demonstrate
the ability of MEMIP to discover the underlying dynamics of Hawkes processes
even in presence of inhibition and varying background rates, we construct the
following toy bidimensional data set. Amongst the four triggering kernels, g11

is taken negative and background rates are defined by μ0 =
cos( 2πt

ω0
)+2

1+t and

μ1 =
sin( 2πt

ω1
)+2

1+t with parameters ω0 and ω1 sampled in [5, 15]. We sample a set
of parameters (ωuv, νuv)u≥1,v≥1,(μv)v≥1 and simulate 200,000 i.i.d realizations
of the resulting Hawkes process. From Fig. 1, we observe that both compared
methods MEMIP and MMEL accurately recover nonnegative triggering kernels
g00, g01 and g10. However, MEMIP is also able to estimate the inhibitive g11
whereas MMEL predicts g11 = 0. Varying background rates μ0 and μ1 are also
well estimated by MEMIP, whereas by construction MMEL and Exp only return
constant values μ̄0 and μ̄1.

Fig. 1. Triggering kernels and background rates for toy data set estimated by MEMIP
and MMEL algorithms vs true triggering kernels and background rate

Results Part 2: Prediction Score In order to evaluate Pred score of the
competing methods on the generated data sets, we remove for each model the
best and worst perfomance over the ten simulated processes, and average Pred
over the eight remaining one. Empirical 10% confidence intervals are also in-
dicated to assess significativity of the experimental results. From Table 1, we
observe that MEMIP significantly outperforms the competing baselines for both
data sets. Prediction rates are quite low for all methods which indicates a rather
difficult prediction problem, as 90, 000 nonparametric functions are indeed to
be estimated from the data. In Fig. 2 , we study the sensitivity of Pred score
to α and K for simulated data sets (1)(above) and (2)(below). Left plots show
MEMIP and Exp Pred score with respect to α, as well as best MMEL average
score across a broad range of hyperparameters. Empirical 10% confidence inter-
vals are also plotted in dashed line. We see that MEMIP gives good results in a
wide range of values of α, and outperforms the exponential baseline for all values
of α. Right plots show MEMIP Pred score with respect to K for α = 0.1, as



Markovian Estimation of Mutually Interacting Processes 173

well as best Exp and MMEL average score. We see that MEMIP achieves good
prediction results for low values of K, and that taking K > 10 is not necessary.
For very large values of α, we also note that MEMIP and Exp baseline are the
same, because the optimal choice of K for MEMIP is K = 1.

Table 1. Pred score for prediction of the type of next event on simulated data sets

Dataset MEMIP MMEL Exp

(1) d=300,p=1 0.288 ∈ [0.258, 0.310] 0.261 ∈ [0.250, 0.281] 0.255 ∈ [0.236; 0.278]
(2) d=300,p=0.9 0.287 ∈ [0.266, 0.312] 0.261 ∈ [0.241, 0.280] 0.256 ∈ [0.242, 0.280]

Fig. 2. Sensitivity to hyperparameters α (left) and K(right) for Pred score of MEMIP
algorithm, compared to Exp and MMEL baselines on non-inhibitive simulated data set
(above) and simulated data set with 10 % inhibitive kernels (below)

Results Part 3: Accuracy of Kernel Estimation Besides having a greater
prediction power, we observe in Table 2 that MEMIP is also able to estimate
the true values of triggering kernels more accurately on both data sets. In Fig.
3, we study the sensitivity of Diff score to α and K for data sets (1)(above) and
(2)(below). We see that the variance of Diff score is very low for MEMIP, and
its fitting error is significatively lower than those of the baselines at level 10%.

Comparison to Related Work The closest work to ours is the algorithm
MMEL derived in [8] by Zhou, Zha and Song. MMEL decomposes the triggering
kernels on a low-rank set of basis functions, and makes use of EM-like methods
in order to maximize the log-likelihood. Compared to MMEL, the proposed al-
gorithm MEMIP enjoy three main improvements: 1) O(N) complexity instead
of O(N2), 2) global convergence of log-likelihood maximization, 3) the ability to
learn negative projection coefficients Xuv,k as well as varying background rates.
Experimental results also suggest that MEMIP may outperform MMEL signifi-
cantly even for non-inhibitive data set. Actually, even in purely mutually-exciting
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Table 2. Diff score for triggering kernels recovery on simulated data sets

Dataset MEMIP MMEL Exp

(1) d=300,p=1 0.759 ∈ [0.755, 0.768] 0.807 ∈ [0.803, 0.814] 0.791 ∈ [0.788, 0.800]
(2) d=300,p=0.9 0.803 ∈ [0.793, 0.810] 0.839 ∈ [0.833, 0.844] 0.830 ∈ [0.818, 0.836]

Fig. 3. Sensitivity to hyperparameters α (left) and K(right) for Diff score of MEMIP
algorithm, compared to Exp and MMEL baselines on non-inhibitive simulated data set
(above) and simulated data set with 10 % inhibitive kernels (below)

settings, these two algorithms can exhibit quite different behaviors due to their
smoothing strategies. Indeed, because the log-likelihood (1) can be made arbi-
trarily high by the sequence of functions (gnuv)n∈N defined by gnuv(t) = n1{t∈Tuv}
where Tuv = {tv − tu | (tu < tv ∧ (∃h ∈ H | (tv, v) ∈ h ∧ (tu, u) ∈ h))}, smooth-
ing is mandatory when learning triggering kernels by means of log-likelihood

maximization. Using a L2 roughness norm penalization α
∫ T

0
g′2, MMEL can

face difficult dilemmas when fitting power-laws fastly decaying around 0 : ei-
ther under-estimating the rate when it is at its peak or lowering the smoothness
parameter and being vulnerable to overfitting. On the contrary, MEMIP would
face difficulties to perfectly fit periodic functions with a very small period, as
the derivative of its order K estimates can only vanish K − 1 times.

5.2 Experiment on the MemeTracker Data Set

In order to show that the ability to estimate inhibitive triggering kenels and vary-
ing background rates yields better accuracy on real-world data sets, we compare
the proposed method MEMIP to different baselines on the MemeTracker data
set, following the experience plan exposed in [8]. MemeTracker contains links
creation between some of the most popular websites between August 2008 and
April 2009. We extract link creations between the top 100 popular websites and
define the occurence of an event for the ith website as a link creation on this
website to one the 99 other websites. We then use half of the data set as training
data and the other half at test data on which each baseline is evaluated by aver-
age area under ROC curve for predicting future events. From Fig. 4, we observe
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that the proposed method MEMIP achieves a better prediction score than both
baselines. Left plot shows MEMIP and Exp prediction score with respect to α,
as well as best MMEL score across a broad range of hyperparameters. We see
that MEMIP gives good results in a very broad range of values of α, and signifi-
cantly outperforms the exponential baseline for all values of α. Right plot shows
MEMIP prediction score with respect to K for α = 0.01, as well as best Exp and
MMEL score. For K = 10, MEMIP achieves a prediction score of 0.8021 whereas
best MMEL and Exp score are respectively 0.6928 and 0.7716. We note that,
even for K as low as 3, MEMIP performs the prediction task quite accurately.

Fig. 4. Sensitivity to hyperparameters α (left) and K(right) for prediction score of
MEMIP algorithm, compared to Exp and MMEL baselines on MemeTracker data set

6 Conclusions

In this paper, we propose MEMIP, which is to our knowledge the first method
to learn nonparametrically triggering kernels of multivariate Hawkes processes
in presence of inhibition and varying background rates. By relying on results
of approximation theory, the triggering kernels are decomposed on a basis on
memoryless exponential kernels. This maximization of the log-likelihood is then
shown to reformulate as a concave maximization problem, that can be solved in
linear complexity thanks to the Markov property verified by the proposed esti-
mates. Experimental results on both synthetic and real-world data sets show that
the proposed model is able to learn more accurately the underlying dynamics of
Hawkes processes and therefore has a greater prediction power.
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