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Abstract. We study a distributed training of a linear classifier in which the data is
separated into many shards and each worker only has access to its own shard. The
goal of this distributed training is to utilize the data of all shards to obtain a well-
performing linear classifier. The iterative parameter mixture (IPM) framework
(Mann et al., 2009) is a state-of-the-art distributed learning framework that has a
strong theoretical guarantee when the data is clean. However, contamination on
shards, which sometimes arises in real world environments, largely deteriorates
the performances of the distributed training. To remedy the negative effect of the
contamination, we propose a divergence minimization principle for the weight
determination in IPM. From this principle, we can naturally derive the Beta-IPM
scheme, which leverages the power of robust estimation based on the beta diver-
gence. A mistake/loss bound analysis indicates the advantage of our Beta-IPM
in contaminated environments. Experiments with various datasets revealed that,
even when 80% of the shards are contaminated, Beta-IPM can suppress the influ-
ence of the contamination.

1 Introduction

A linear classifier is one of the most fundamental concepts in the field of machine learn-
ing. Online learning algorithms [20,5,6] are able to train linear classifiers effectively.
An online algorithm sequentially processes data points, and thus, it requires all data to
be accessible from a single machine. While the training on a single machine is of its
own importance, training in distributed environments has attracted increasing interest
[1,10,16]. In such environments, data is divided up into disjoint sets of shards and each
worker has access to only one shard.

Iterative Parameter Mixture (IPM) [16,17] is a state-of-the-art distributed training
framework, which involves a master node and worker nodes. Advantages of IPM lies in
its communication efficiency and simplicity: in each epoch, each worker trains a model
in parallel on his own shard, and the master mixes the training results (Fig. 1).

IPM implicitly assumes that each shard is noiseless. However, it is not always the
case: there can be some adversarially or randomly labelled data in some distributed
learning scenarios. For example, web mail systems possibly involve some users who
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Fig. 1. Illustration of the communication in IPM

Fig. 2. Illustrative example of KL-IPM and Beta-IPM. Each horizontal line represents a parameter
space, and each vertical line represents a parameter returned by a worker, the height of which is
proportional to the mixing weight. While KL-IPM equally weights all the parameter vectors,
Beta-IPM adaptively weights each parameter as described later.

adversarially labels spams and non-spams, or incorrect data formats [9] lead to cor-
rupted classification result. Let us call such flawed data contamination. We verified
that, the performance of the trained classifier is deteriorated by contamination.

Meanwhile, IPM has freedom in how to weight the individual workers’ results. If
some shards are known to be contaminated, we can avoid the effect of these shards by
setting their weights to zero. However, it is unlikely that there will be prior knowledge
about which shards are contaminated, and thus, the strategy we should take is to weight
seemingly contaminated results less on the basis of their statistical anomalousness.

With this in mind, we propose a weight determination principle based on a di-
vergence minimization criterion. This criterion reinterprets the most straightforward
choice, which is to weight each worker equally, as the minimization of the Kullback-
Leibler divergence (KL-IPM). On the other hand, the beta divergence, which is the
extension of the KL divergence, provides robust inference against contamination. We
propose the weight determination formula by minimizing the beta divergence (Beta-
IPM). Moreover, We prove a mistake/loss bound of IPM. This theoretical result shows
that, by weighting less heavily to contaminated shards with Beta-IPM we can suppress
the upper bound of losses over training. The difference between KL-IPM and Beta-IPM
is illustrated in Fig. 2. Finally, an empirical evaluation on various datasets confirms that
Beta-IPM remedies the effect of contamination.
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2 Related Work

2.1 Distributed Training of Linear Models

Distributed training frameworks for linear models have been studied in the literature.
Asynchronous updates are sets of models in which all workers simultaneously operate
on shared parameters. There is a long line of work related to asynchronous updates
from the 1980s [22] onwards [24,12]. A problem of the shared memory resource it that,
it does not scale with many shards because the communication cost is proportional to
the number of updates.

The distributed gradient method [4] is a distributed extension of the gradient descent
method, which optimizes some smooth function by taking steps proportional to the neg-
ative gradient. In the distributed gradient method, individual workers compute partial
gradients based on their shards, which are then summed to make an update.

In the IPM method, each worker operates independently and shares parameters after
each worker finishes an iteration. A master mixes the parameters of the workers with
weights whose sum is normalized. IPM is used in many linear and regression models,
such as logistic regression [16], structured perceptron [17], etc. McDonald et al. [17]
proved that IPM with perceptron has mistake bound in a linearly separable case (i.e.,
the case in which every data point is correctly classified by some classifier). Moreover,
Hall et al. [14] empirically compared the asynchronous updates, the distributed gradi-
ent method and IPM using large-scale click-through data. The results show that IPM
combined with the perceptron [20] performed the best.

2.2 Robust Training Against Flawed Data

Detection of spam and malicious activities is an important problem in the highly dis-
tributed web industry [18,7]. In addition, poorly formatted data [19,9] causes a con-
siderable problem in distributed training. Despite significant efforts made at removing
such flawed data, there still is a need for robust models. Robust models are used in many
fields, including multi-task learning [13,23] and sensor networks [3].

The problem of contamination in distributed data can be broken down into two cases:
the first case is when the contamination is scattered across every shard, and the second
case is when some shards are clean while others are contaminated. Studies on the ro-
bustness of online learning algorithms [5,6,15] have mainly dealt with the first case,
which considers a single data repository affected by noise. In this case, the clean data
are hard to distinguish from the noise. Instead, we consider the second case and show
that a significant improvement is possible by putting less importance on statistically
extraordinary shards which are likely to be wrongly labeled or corrupted.

We note that, Daumé III et al. [8] proposed a distributed learning algorithm with ad-
versarially distributed data. Their definition of adversarially distributed data is different
from our adversarial noise: while they considered separable data with an adversary who
can generate an arbitrary imbalance among shards, we consider an adversarial attacker
that can harm the separability assumption by maliciously labelling.
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Algorithm 1. Iterative Parameter Mixture (IPM)

1: Shards: T1, ..., TM , w(avg,0) = 0
2: for n = 1, ..., N do
3: w(i,n) = SingleIterationTrain(Ti,w(avg,n−1))
4: w(avg,n) =

∑
i αi,nw

(i,n)

5: end for

3 Problem Setup

We consider a binary classification. Let X ∈ R
d be the input space and Y = {−1, 1}

be the output space. A data point is defined as an input-output tuple (x, y) ∈ X ×Y . A
linear classifier with parameter vector w predicts an output as ŷ = sign(w ·x). The goal
of our distributed training framework is to find the parameter vector w which explains
the whole data most.

In distributed training, the training data is divided into M non-overlapping subsets
(shards), and a shard is assigned to each worker. There also is a master who integrates
the results of workers. Training based on IPM (Algorithm 1) goes as follows. In each
epoch n = 1, 2, ..., N , each worker i independently does a single iteration of training
its own parameters w(i,n), which are then sent to the master. The master waits until all
workers finish their training before it computes a mixed parameter w(avg,n), which is
a weighted sum of the trainers’ parameters. The weight αi,n of each worker i in each
epoch n can be chosen arbitrarily as long as it is normalized (i.e.

∑M
i=1 αi,n = 1).

Later in Section 4 we propose weight determination formulas that we call KL-IPM and
Beta-IPM. At the end of the epoch, the mixed parameters w(avg,n) are sent back to
the workers, who in the next epoch start the new single iteration training based on the
received mixed parameter. After N epochs have been completed, the master outputs the
final parameter vector (a linear classifier).

3.1 IPM Combined with Online Algorithms

We use online learning algorithms in single iteration training (“SingleIterationTrain” in
Algorithm 1). We specifically deal with the perceptron [20] and the Passive Aggressive
(PA) method [5]. Section 5 describes that, IPM combined with perceptron and PA is
able to extend the theoretical guarantee of these single-machine online algorithms.

4 Divergence Minimization Principle

In this section, we describe our main proposal, which is how to determine the weights
based on the divergence minimization principle. Section 4.1 describes our statistical
assumptions and the divergence minimization principle. Section 4.2 describes the KL
and beta divergences, and Section 4.3 shows KL-IPM and Beta-IPM formulas. Section
4.4 demonstrates the behavior of KL-IPM and Beta-IPM with a simple example.
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4.1 Statistical Assumption And Divergence Minimization Principle

The statistical assumption is as follows: the parameters returned by the workers in each
epoch n should be drawn from a Gaussian distribution Qn. Our proposal is that, in
each epoch n the mixed parameter vector w(avg,n) is determined to be the mean of the
Gaussian Qn. However, the parameters are actually drawn from Pn, which possibly
contains contamination. Namely, w(i,n) ∼ Pn. The mean µ and covariance Σ of Qn

are determined in such a way as to minimize the divergence:

arg min
µ,Σ

D(Pn||Qn(µ,Σ)), (1)

where D is the divergence between Pn and Qn. If we use a robust divergence that
suppresses the influence of contamination, we are able to estimate the true µ and Σ.

4.2 KL and Beta Divergences

The KL divergence is the most basic measure that indicates the deviation of a distribu-
tion from another distribution. The KL divergence between two probability distributions
P and Q on R

d is defined as

DKL(P ||Q) =

∫

P (w) log
P (w)

Q(w)
dw, (2)

which is non-negative and equal to zero if and only if P = Q almost everywhere. While
the KL divergence is of fundamental importance in information theory, it is not robust
to the contamination of outliers.

The beta divergence, which was introduced by [2] and [11], is parameterized by a
real parameter β > 0. The beta divergence between P and Q is defined as

Dβ(P ||Q) =

∫ {

P (w)
P β(w)−Qβ(w)

β

}

− P β+1(w)−Qβ+1(w)

β + 1
dw. (3)

When β → 0, the beta divergence is consistently defined as limβ→0 Dβ(P ||Q) =
DKL(P ||Q). Therefore, the beta divergence can be considered as an extension of the
KL divergence. One of the main motivations of investigating the beta divergence is to
devise a robust inference against contamination. That is, the beta divergence between
two distributionsP andQ remains undisturbed by some fraction of the contamination in
P . β is a trade-off parameter. The bigger β is, the more robust and less computationally
effective the divergence becomes.

4.3 KL-IPM and Beta-IPM

KL-IPM: KL-IPM is a weight determination formula in IPM that equally weights each
worker. Namely,

αi,n =
1

M
. (4)

However, if flawed data contaminate some of the shards, the performance of KL-IPM
deteriorates. To remedy this problem, we derive Beta-IPM that minimizes the beta di-
vergence.



6 J. Komiyama, H. Oiwa, and H. Nakagawa

0 5 10 15 20
x

−6

−4

−2

0

2

4

6

y

2d samples on parameter space

w

w(avg) in KL-IPM

w(avg) in Beta-IPM

Fig. 3. Illustration of a two-dimensional example. Each of the 100 crosses represents the param-
eters w ∼ P . The 80 crosses are from the true distribution (Gaussian with µ = (0, 0)� and
Σ = diag(1, 1)). The other 20 crosses are contamination and generated from a false distribution
(Gaussian with µ = (20, 0)� and Σ = diag(2, 2)). The large red circle is the simple mean of all
parameters, determined by KL-IPM (Equation (4)). The large blue square is the mixed parameter
determined by Beta-IPM with β = 0.1 (Equation (6)).

Beta-IPM: Let µc and Σc are respectively the empirical mean and covariance of the
parameter vectors {w(i,n)} defined as

µc =
1

M

M∑

i=1

w(i,n), and Σc =
1

M

M∑

i=1

(w(i,n) − µc)(w
(i,n) − µc)

�. (5)

Beta-IPM is defined as a weight determination formula in IPM that in each epoch n
chooses weight αi,n as follows:

αi,n =
expS(w(i,n)|µc,

1
βΣc)

∑M
j=1 expS(w

(j,n)|µc,
1
βΣc)

, (6)

where S(w(i,n)|µ,Σ) = −(1/2)(w(i,n) − µ)�Σ−1(w(i,n) − µ) is the exponent part
of the Gaussian. Namely, each weight of a shard is determined by the distance of the
parameter vector from the mean. Beta-IPM is parameterized by β ≥ 0 and is equivalent
to KL-IPM when β → 0 because the covariance (1/β)Σc in (6) becomes infinitely
large. The KL-IPM and Beta-IPM formulas above are derived in Appendix A.1. Note
that the problem of minimizing the beta divergence is non-convex, so we have made
some approximations in order to derive (6).

4.4 Example of KL-IPM and Beta-IPM

Fig. 3 is a two-dimensional example that displays the behaviors of KL-IPM and Beta-
IPM. While KL-IPM equally weights each parameter vector, Beta-IPM weights the
vector farther from the mean less, and in this way it suppresses the influence of con-
tamination. As a result, the mixed parameter vector chosen by Beta-IPM is closer to the
true center (=(0, 0)�) than that by KL-IPM.
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5 Mistake / Loss Bound in IPM

This section provides a theoretical viewpoint for the weight determination by Beta-IPM.
We first discuss the separable mistake bound of IPM with a single iteration perceptron
(IPM-perceptron) in Section 5.1, then goes to the corresponding loss bound of IPM
with a single iteration PA (IPM-PA) in Section 5.2. With these bounds, we discuss
about Beta-IPM as a suppressor of weights in contaminated shards in Section 5.3.

5.1 Mistake bound of IPM-perceptron

The following theorem, which is proven by McDonald et al. [17], is an extension of the
well-known mistake bound of the single machine perceptron to IPM,

Theorem 1. (Mistake bound of IPM-perceptron in the separable case) [Theorem 3 in
[17]] Assume all the training data is separable by a margin γ. Suppose that ||x|| ≤ R
holds for any training input x, and let ki,n be the number of mistakes in shard i during
the nth epoch of training. For any number of epochs N , the number of mistakes during
the training in the IPM-perceptron is bounded as

N∑

n=1

M∑

i=1

αi,nki,n ≤ R2

γ2
. (7)

Theorem 1 states that the IPM-perceptron with separable data has a finite number
of misses, which guarantees it converges to parameters that correctly classify the entire
data.

In contrast, when some fraction of the dataset is non-separable, there are no parame-
ters that perfectly classify all the data. Yet even in this case, we can bound the mistake
in terms of the loss of the possible best classifier (parameter vector) u.

Theorem 2. (Mistake bound of IPM-perceptron in the non-separable case) Let ki,n be
the number of mistakes in shard i during the nth epoch of training. Furthermore, let u
be an arbitrary normalized parameter vector u ∈ R

n(||u|| = 1) Let ξ = max{0, γ −
y(u · x)} and Ξi =

∑
t′ ξ, where the index t′ runs over all data points in shard i. For

any number of epochs N and any γ ≥ 0, the following inequality holds:

N∑

n=1

M∑

i=1

αi,nki,n ≤ R2

γ2
+

2

γ

N∑

n=1

M∑

i=1

αi,nΞi. (8)

Theorem 2 is proven by the combination of the technique for the IPM loss bound [17]
and an ordinary technique for the non-separable mistake bound of perceptron. The proof
of Theorem 2 is in a full version of this paper. Notice that, ξ is the distance from the
margin with a data point (x, y), which indicates how the classification with a classifier
u fails for this data point. Therefore, Ξi, the sum of ξ over shard i, can be considered
as a cumulative loss if u is run on shard i. From inequality (8), the number of mistakes
of IPM-perceptron is bounded in terms of the cumulative loss of an arbitrary vector u.
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5.2 Loss Bound of IPM-PA

Here, we describe the loss bound of IPM with the Passive Aggressive algorithm (IPM-
PA). As in the case of IPM-perceptron, we can obtain separable and non-separable loss
bounds. The proofs of the bounds are in Appendix A.2.

Theorem 3. (Loss bound of IPM-PA in the separable case)
Let there be a parameter vector u that suffers no loss for any data point (x, y) in the

training data set. Suppose that ||x|| ≤ R holds for any input x. Then,

N∑

n=1

M∑

i=1

αi,nLi,n ≤ ||u||2R2, (9)

where Li,n is the cumulative squared loss which worker i suffers in epoch n.

Theorem 4. (Loss bound of IPM-PA in the non-separable case)
Assume ||x|| = 1 holds for any data point. Then, for any parameter vector u,

N∑

n=1

M∑

i=1

αi,nLi,n ≤
⎛

⎝||u||+ 2

√
√
√
√

N∑

n=1

M∑

i=1

αi,nL∗
i

⎞

⎠

2

, (10)

where L∗
i is the cumulative squared loss of parameter vector u with data on shard i.

5.3 Superiority of Beta-IPM from a Theoretical Perspective

The cumulative loss in (8) is weighted by αi,n. Suppose the shards are divided into
two categories: separable shards i = 1, ...,m which can be classified by u and non-
separable shards i = m+1, ...,M with no vector to correctly classify them. The smaller
the weights of the non-separable shards αm+1, ..., αM are, the smaller the weighted cu-
mulative loss

∑M
i=1 αi,nΞi we can obtain, and this means that it is very important to

reduce the weights corresponding to contaminated shards. The same argument goes
with PA. In general, Beta-IPM suppresses the weights of non-separable shards as de-
scribed in Section 4, and thus Beta-IPM is expected to have a smaller mistake count
than KL-IPM.

6 Empirical Evaluation

We conducted an evaluation with various datasets. The overall goal of these experiments
was to study how KL-IPM and Beta-IPM behave in contaminated environments.

6.1 Setup

Our experiments involved 16 datasets (Table 1). Zeta and ocr datasets are from the
Pascal large-scale learning challenge1, and the imdb and citeseer datasets are from Paul
Komarek’s webpage2. The other datasets are from the LIBSVM dataset repository3.

1 http://largescale.ml.tu-berlin.de/
2 http://komarix.org/ac/ds/
3 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.
html

http://largescale.ml.tu-berlin.de/
http://komarix.org/ac/ds/
http://www.csie.ntu.edu.tw/~{}cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~{}cjlin/libsvmtools/datasets/binary.html
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Table 1. List of the binary classification datasets evaluated. The tasks of the datasets are CI
(census income prediction), DC (document categorization), HA (human answer prediction), IP
(involvement prediction of person to some contents), IR (image recognition), MD (malware /
suspicious contents detection), S (synthetically created problem), TC (toxicity categorization), or
TD (text decoding).

# of features # of data points task

ijcnn1.tr 22 49,990 TD
mushrooms 112 8,124 TC
a8a 123 22,696 CI
ocr 1,156 3,500,000 IR
epsilon 2,000 400,000 S
zeta 2,000 500,000 S
gisette 5,000 6,000 IR
real-sim 20,958 72,309 DC

# of features # of data points task

rcv1 47,236 20,242 DC
citeseer 105,354 181,395 IP
imdb 685,569 167,773 IP
news20 1,355,191 19,996 DC
url 3,231,961 2,396,130 MD
webspam 16,609,143 350,000 MD
kdda 20,216,830 8,407,752 HA
kddb 29,890,095 19,264,097 HA

Data shards: For each dataset, we used 80% of the data for training and 20% for
testing. Then, the training dataset is divided into 100 shards associated with workers.
Algorithms are trained with the training data and evaluated in terms of the classification
accuracy of the test data.

To study the proposed algorithms’ robustness against contamination, we studied the
clean setting (i.e. no contamination) and two following contamination settings. Note
that the contaminations are only on the training shards (the test data is always clean).
Setting 1 - adversarial labels: In this setting, 30 out of 100 shards are adversarial data:
the labels of the data are reversed. This setting models situations where the data in some
shards are maliciously labeled.
Setting 2 - random labels: In this setting, 80 out of 100 shards are assigned random
labels. Each data point in these randomly labeled shards is labeled yt ∼ Bernoulli(p),
regardless of its true label. The ratio of positive labels, p, varies from 0.1 to 0.9 among
workers. This setting models situations where data in most shards are corrupted.
Algorithms: We compared four algorithms: KL-IPM with a single-iteration perceptron
or Passive Aggressive (KL-IPM-perceptron and KL-IPM-PA, respectively) and Beta-
IPM with a single-iteration perceptron or Passive Aggressive (Beta-IPM-perceptron
and Beta-IPM-PA, respectively). All values of β were the best among {10−1, 10−2, ...,
10−8}. Since our research includes high-dimensional datasets, we assumed that the
Gaussian in Beta-IPM was diagonal. The features with zero-variances were ignored in
the weight calculation. We normalized the parameter vector of each worker by using
the l2-norm when calculating the weights in Beta-IPM.

6.2 Results

The results for all datasets are shown in Table 2. The results of KL-IPM in the clean
setting can be considered to be the possible best performance of linear classifiers in our
distributed setting. As aforementioned, the performance of IPM is degraded by contam-
ination. Note that our main interest in these experiments is the extent to which Beta-IPM
can remedy the effects of contamination. First, let us compare the results of KL-IPM in
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Table 2. Accuracy of the algorithms in the clean/adversarial/random settings at the 50th epoch.
Boldface entries in the contamination settings are the best among the individual datasets.

Clean Setting
ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.913 0.999 0.845 0.763 0.899 0.628 0.947 0.968
KL-IPM-PA 0.912 0.999 0.845 0.762 0.899 0.694 0.958 0.975

rcv1 citeseer imdb news20 url webspam kdda kddb
KL-IPM-perceptron 0.960 0.976 0.981 0.953 0.986 0.990 0.881 0.886
KL-IPM-PA 0.966 0.977 0.985 0.958 0.986 0.990 0.882 0.887

Contamination Setting 1: Adversarial Labels
ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.908 0.937 0.838 0.760 0.881 0.582 0.854 0.824
KL-IPM-PA 0.908 0.983 0.837 0.760 0.886 0.651 0.912 0.904
Beta-IPM-perceptron 0.908 0.998 0.846 0.763 0.898 0.665 0.935 0.961
Beta-IPM-PA 0.908 0.989 0.846 0.762 0.898 0.663 0.957 0.972

rcv1 citeseer imdb news20 url webspam kdda kddb
KL-IPM-perceptron 0.762 0.976 0.980 0.703 0.983 0.987 0.743 0.759
KL-IPM-PA 0.871 0.977 0.984 0.844 0.983 0.987 0.689 0.712
Beta-IPM-perceptron 0.955 0.976 0.981 0.945 0.986 0.991 0.876 0.882
Beta-IPM-PA 0.962 0.977 0.984 0.950 0.986 0.991 0.676 0.693

Contamination Setting 2: Random Labels
ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.886 0.858 0.820 0.750 0.737 0.516 0.698 0.680
KL-IPM-PA 0.855 0.942 0.817 0.674 0.758 0.545 0.827 0.741
Beta-IPM-perceptron 0.911 0.980 0.825 0.755 0.886 0.642 0.888 0.948
Beta-IPM-PA 0.913 0.999 0.830 0.723 0.890 0.624 0.942 0.958

rcv1 citeseer imdb news20 url webspam kdda kddb
KL-IPM-perceptron 0.600 0.657 0.611 0.644 0.971 0.951 0.739 0.734
KL-IPM-PA 0.701 0.685 0.684 0.730 0.971 0.960 0.761 0.757
Beta-IPM-perceptron 0.919 0.836 0.826 0.717 0.981 0.986 0.853 0.833
Beta-IPM-PA 0.910 0.916 0.943 0.730 0.985 0.985 0.868 0.868

the adversarial/random settings with those in the clean setting. The contamination neg-
atively affected the results on almost all datasets. On the random setting, where 80% of
the shards are contaminated, the damage to the results tended to be more severe than that
on the adversarial setting. Second, let us compare the performances of Beta-IPM and
KL-IPM in the adversarial/random settings. One can see that Beta-IPM outperformed
KL-IPM on almost all datasets. Indeed, one many datasets Beta-IPM performed almost
as well as KL-IPM under the clean setting; this confirms that Beta-IPM can remove the
influence of contamination.

Fig. 4 shows the classification results of Beta-IPM with a single iteration perceptron
for several values of β. The optimal value with this dataset was β = 10−5, and the
accuracy with this β value showed a steady rise in epochs. The accuracy after epoch
50 was nearly 95%. With a β value smaller than the optimal one (β = 10−6) and
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Fig. 6. Classification accu-
racy of Beta-IPM and single
machine PA-I/PA-II/AROW.
The algorithms were run with
news20 in the adversarial
setting.

with no beta (KL-IPM-perceptron), the algorithm failed to suppress the influence of the
adversarial workers. Conversely, with β values bigger than optimal (β = 10−3), the
regularization was so strong that even the influence of some of the correct workers was
suppressed. As a result, the learning rate with this beta value was very slow.

Fig. 7. Number of features and optimal
value of beta in the adversarial setting.
Each point corresponds to a dataset.

Fig. 5 compares several different algorithms
with the best beta values. Given a proper value
of β, Beta-IPM with a perceptron or PA success-
fully learned the parameter vectors. However,
PA-I and PA-II4, the noise-tolerant version of PA,
did not perform well. These results indicate that
robustness in a distributed environment is essen-
tially different from that of single machine online
learning: while we assume some fraction of the
data is clean and the rest is contaminated, robust
learning in a single machine aims to learn in envi-
ronments where the clean and contaminated data
are mixed. A possible hypothesis is that, the reg-
ularization of the learning rate in PA-I and PA-II
obscured the difference between clean and con-

taminated shards, which made the accuracies of IPM with PA-I and PA-II poor.
Fig. 6 compares Beta-IPM-perceptron with a single machine PA-I or PA-II and

AROW [6]. The hyper-parameter C in PA-I and PA-II and r in AROW were optimized
in {10−4, 10−3, ..., 104}. The data of all 100 shards were put into a single shard in
the single machine experiments. The two Beta-IPM algorithms performed better than
the single machine algorithms. These results are empirical evidence that Beta-IPM can
reduce the weights of adversarial shards.

Fig. 7 shows the optimal value of beta as a function of the number of features. Over-
all, in high-dimensional datasets, the value of beta tends to be small. The reason for

4 The parameter C in PA-I and PA-II was set to be 0.001.
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this is that the weight in Beta-IPM (Equation (6)) is a multivariate Gaussian, which is a
product of exponentials over all dimensions and thus is small at high dimensions.

7 Conclusion

We studied robust distributed training of linear classifiers. By minimizing the diver-
gence, we devised a criterion for determining the weights in IPM. Experiments revealed
that the performance of IPM is significantly recovered on many contaminated datasets
by determining the weights based on the beta divergence. An interesting direction of fu-
ture work is to remove the statistiscal assumption of Gaussian distribution, by allowing
more wider class of distributions, or non-parametric models.
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A Appendix

A.1 Derivation of KL-IPM and Beta-IPM

Derivation of KL-IPM. We want to show that a mixed weight based on KL-IPM mini-
mizes the KL-divergence between P and Q based on the parameter vectors {w(1,n), ...,
w(M,n)}. The following lemma states that KL divergence minimization based on Gaus-
sian distributions preserves the mean and covariance.

Lemma 5. [Theorem 3.2 in [21]] Let P be an arbitrary probability distribution on R
d

with a well-defined mean µ∗ and covariance matrix Σ∗, where Σ∗ is strictly positive-
definite. Let Q be a Gaussian distribution with mean µ and covariance matrix Σ. The
unique minimum value of DKL(P ||Q) is achieved when µ = µ∗ and Σ = Σ∗.

The inequality (4) follows by using Lemma 5 and the fact that the empirical mean of
P on the parameter vectors is (1/M)

∑
iw

(i,n).

Derivation of Beta-IPM. Let the parameters of the workers be {w(1,n), ...,w(M,n)},
which is generated from a distribution P , and Q(µ,Σ) be a Gaussian distribution. We
would like to minimize the beta divergence, namely, w(avg,n) = arg min

µ
Dβ(P ||Q

(µ,Σ)). Then,

Dβ(P ||Q(µ,Σ)) (11)

= − 1

β

∫

P (w)Qβ(w|µ,Σ)dw +
1

β + 1

∫

Qβ+1(w|µ,Σ)dw +Const. (12)

= − 1

β
EP (w)[Q

β(w|µ,Σ)] +
1

β + 1

∫

Qβ+1(w|µ,Σ)dw +Const., (13)

where Const. is a term independent of µ and Σ, and EP (w) is the expectation un-
der the assumption that w follows the probability distribution P (w). Replacing the
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expectation of the first term with an empirical expectation over the parameter vectors
{w(1,n), ...,w(M,n)} yields

(13) = − 1

β

M∑

i=1

1

M

[
Qβ(w(i,n)|µ,Σ)

]
+

1

β + 1

∫

Qβ+1(w|µ,Σ)dw. (14)

The multivariate Gaussian Q is explicitly written as Q(w|µ,Σ) = Z(Σ)
expS(w|µ,Σ), where Z(Σ) = 1/

√
(2π)d|Σ| and S(w|µ,Σ) = − 1

2 (w − µ)�Σ−1

(w−µ). The second term in (14) is, from the property of multivariate Gaussian distri-
bution,

1

β + 1

∫

Qβ+1(w|µ,Σ)dw = Z(Σ)β(β + 1)−1−d/2, (15)

which is independent on µ. By using these facts, the first derivative of Dβ(P ||Q(µ,Σ))
is equivalent to the one of the first term in the RHS of (14), which is transformed as,

d

dµ

{

− 1

β

M∑

i=1

1

M

[
Qβ(w(i,n)|µ,Σ)

]
}

=
Z(Σ)β

βM

{

− d

dµ

M∑

i=1

expS(w(i,n),µ,
1

β
Σ)

}

.

=
Z(Σ)β

βM

{
M∑

i=1

expS(w(i,n),µ,
1

β
Σ)(βΣ−1)(w(i,n) − µ)

}

=
Z(Σ)β

βM

{

βΣ−1
M∑

i=1

expS(w(i,n),µ,
1

β
Σ)(w(i,n) − µ)

}

. (16)

Therefore, we obtain

d

dµ

{

− 1

β

M∑

i=1

1

M

[
Qβ(w(i,n)|µ,Σ)

]
}

= 0 ⇔
M∑

i=1

expS(w(i,n),µ,
1

β
Σ)(w(i,n) − µ) = 0

⇔ µ =

∑M
i=1 expS(w(i,n),µ, 1

β
Σ)w(i,n)

∑M
j=1 expS(w(j,n),µ, 1

β
Σ)

. (17)

RHS of (17) states that µ that minimizes Dβ(P ||Q) is a weighted mean
of each w(i,n) with weight expS(w(i,n),µ, 1

βΣ). Unfortunately, the weight

expS(w(i,n),µ, 1
βΣ) on the RHS includes µ, and thus, an exact solution is unattain-

able. To get a reasonable solution, we can approximate µ and Σ on the RHS of (17) by
the mean and covariance of the samples {w(1,n), ...,w(M,n)}, which finally yields (6).

A.2 Proof of Theorem 3 and 4

The crux in the mistake/loss bound proofs in online classifiers is to find some value
that can be bounded from both the upper and lower side: in the case of PA we bound
the value Δn = ||w(avg,n−1) − u|| − ||w(avg,n) − u||. By using these lower and upper
bounds we obtain Lemma 6, which leads to the proofs of Theorem 3 and 4.



Robust Distributed Training of Linear Classifiers 15

Algorithm 2. Single iteration Passive Aggressive
1: T = {(xt, yt)}, w
2: for t = 1, ..., |T | do
3: ŷt ← sign(w · xt)
4: lt ← max (0, 1− yt(w · xt))
5: τt ← lt/||xt||2
6: w← w + τtytxt

7: end for

Lemma 6. Let the index t = 1, ..., ki,n denotes the data points on shard i that the
worker suffered non-zero losses, and (xi,t, yi,t) be the data point at that round. More-
over, let li,t be the corresponding loss of the worker, and τi,t = li,t/||xi,t||2, and l∗i,t be
the loss of any constant classifier u with the data point. Then,

N∑

n=1

⎧
⎨

⎩

M∑

i=1

αi,n

ki,n∑

t=1

{
τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)

}
⎫
⎬

⎭
≤ ||u||. (18)

Proof (Lemma 6). Consider shard i in epoch n. Let Δi,n = ||w(avg,n−1) − u||2 −
||w(i,n) − u||2. Notice that the parameter vector is updated only when the loss is non-
zero, and For 1 ≤ t ≤ ki,n, let w([i,n]+t) be the parameter vector on shard i in epoch n

in the round just before the t-th loss occurred. Also, for t = ki,n + 1, let w([i,n]+t) =

w(i,n). Notice that w([i,n]+1) = w(avg,n−1). The update per single loss is,

||w([i,n]+t)− u||2 − ||w([i,n]+(t+1))− u||2
= ||w([i,n]+t)− u||2 − ||w([i,n]+t)− u+ yi,tτi,txi,t||2

= ||w([i,n]+t)) − u||2 −
{
||w([i,n]+t) − u||2 + 2yi,tτi,t(w

([i,n]+t) − u) · xi,t + τ2i,t||xi,t||2
}

= −2yi,tτi,t(w
([i,n]+t) − u) · xi,t − τ2i,t||xi,t||2. (19)

Since we assumed li,t > 0 with this data point, yi,t(w([i,n]+t) · xi,t) = 1 − li,t and
l∗i,t ≥ 1− yi,t(u · xi,t) always holds. Thus, (19) can be bounded as,

(19) ≥ 2τi,t((1− l∗i,t)−(1− li,t))−τ2i,t||xi,t||2 = τi,t(2li,t−τi,t||xi,t||2−2l∗i,t). (20)

By using (20), Δi,n is bounded as,

Δi,n = ||w(avg,n−1) − u||2 − ||w(i,n) − u||2

=

ki,n∑

t=1

(
||w([i,n]+t)− u||2 − ||w([i,n]+(t+1))− u||2

)

≥
ki,n∑

t=1

{
τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)

}
. (21)
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We now lower-bound Δn as follows:

Δn = ||w(avg,n−1)− u||2 − ||w(avg,n)− u||2 = ||w(avg,n−1)− u||2 − ||
∑

i

αi,n(w
(i,n)− u)||2

≥
M∑

i=1

αi,n

(
||w(avg,n−1) − u||2 − ||w(i,n) − u||2

)
=

M∑

i=1

αi,nΔi,n

≥
M∑

i=1

αi,n

ki,n∑

t=1

{
τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)

}
, (22)

where we have used
∑

i αi,n = 1 in going between the first and second line, and used
(21) at the last transformation.

On the other hand, the sum of Δn is upper-bounded as follows:

N∑

n=1

Δn =

N∑

n=1

(
||w(avg,n−1) − u||2 − ||w(avg,n) − u||2

)

= ||w(avg,0) − u||2 − ||w(avg,N) − u||2 ≤ ||u||, (23)

where the last inequality follows from the fact that the initial parameter vector is the
zero vector and ||w(avg,N) − u||2 ≥ 0. Using (22) and (23) yields (18).

��
Proof (Theorem 3). By using the fact that l∗i,t = 0, li,t = τi,t||xi,t||2, Lemma 6 is
transformed as follows:

N∑

n=1

⎧
⎨

⎩

M∑

i=1

αi,n

ki,n∑

t=1

(li,t)
2

||xi,t||2

⎫
⎬

⎭
≤ ||u||2. (24)

With the fact that ||xi,t|| < R, we finally obtain

N∑

n=1

⎧
⎨

⎩

M∑

i=1

αi,n

ki,n∑

t=1

(li,t)
2

⎫
⎬

⎭
≤ ||u||2R2. (25)

Li,n, the cumulative squared loss the worker i suffers during epoch n, corresponds to
∑ki,n

t=1 (li,t)
2. Therefore, the inequality (25) is equivalent to (9).

��
Proof (Theorem 4). Next, we consider the case where l∗i,t is not necessarily zero. Let us
assume ||xi,t|| = 1. Notice that τi,t = li,t/||xi,t||2 = li,t. By these facts and Lemma 6,

N∑

n=1

⎧
⎨

⎩

M∑

i=1

αi,n

ki,n∑

t=1

{
(li,t)

2 − 2li,tl
∗
i,t)

}
⎫
⎬

⎭
≤ ||u||2. (26)

Let

XN =

√
√
√
√

N∑

n=1

M∑

i=1

αi,n

ki,n∑

t=1

(li,t)2, and YN =

√
√
√
√

N∑

n=1

M∑

i=1

αi,n

ki,n∑

t=1

(l∗i,t)2. (27)
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Using the Cauchy-Schwarz inequality on the LHS of (26), we obtain X2
N − 2XNYN ≤

||u||2, which is a quadratic inequality of XN , and thus XN ≤ YN +
√
Y 2
N + ||u||2 ≤

||u||+2YN , where we used the fact that
√
a+ b ≤ √

a+
√
b for a, b ≥ 0. By explicitly

writing XN and YN we obtain

√
√
√
√

N∑

n=1

M∑

i=1

αi,n

ki,n∑

t=1

(li,t)2 ≤ ||u||+ 2

√
√
√
√

N∑

n=1

M∑

i=1

αi,n

ki,n∑

t=1

(l∗i,t)2. (28)

The cumulative squared loss the worker i suffers in epoch n is Li,n =
∑ki,n

t=1 (li,t)
2.

Moreover,L∗
i ≥ ∑ki,n

t=1 (l
∗
i,t)

2 holds because the index t runs the subset of data on shard
i. Taking these into consideration, we finally obtain (10).

��
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