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Abstract. From data collection to decision making, the life cycle of data of-
ten involves many steps of integration, manipulation, and analysis. To be able to
provide end-to-end support for the full data life cycle, today’s data management
and decision making systems increasingly combine operations for data manipu-
lation, integration as well as data analysis. Tensor-relational model (TRM) is a
framework proposed to support both relational algebraic operations (for data ma-
nipulation and integration) and tensor algebraic operations (for data analysis). In
this paper, we consider joint processing of relational algebraic and tensor analy-
sis operations. In particular, we focus on data processing workflows that involve
data integration from multiple sources (through unions) and tensor decomposition
tasks. While, in traditional relational algebra, the costliest operation is known to
be the join, in a framework that provides both relational and tensor operations,
tensor decomposition tends to be the computationally costliest operation. There-
fore, it is most critical to reduce the cost of the tensor decomposition task by
manipulating the data processing workflow in a way that reduces the cost of the
tensor decomposition step. Therefore, in this paper, we consider data processing
workflows involving tensor decomposition and union operations and we propose
a novel scheme for pushing down the tensor decompositions over the union oper-
ations to reduce the overall data processing times and to promote reuse of mate-
rialized tensor decomposition results. Experimental results confirm the efficiency
and effectiveness of the proposed scheme.

1 Introduction

As a higher-order generalization of matrices, tensors provide a suitable data represen-
tation for multidimensional data sets and tensor decomposition (which is a higher-
order generalization of SVD/PCA for multi-aspect data analysis) helps capture the
higher-order latent structure of such datasets. Consequently, the tensor data model is
increasingly being used by many application domains including scientific data man-
agement [6,9,18,25], sensor data management [24], and social network data analy-
sis [15,14,17]. On the other hand, from data collection to decision making, the life cycle
of data often involves many steps of integration, manipulation, and analysis. Therefore,
to be able to provide end-to-end support for the full data life cycle, today’s data man-
agement and decision making systems increasingly need to combine different types of
operations for data manipulation, integration, and analysis.
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Fig. 1. (a) Implementation of relational operations through tensor manipulation and (b) a query
plan with a join operation of two tensors, P and Q, preceding a tensor decomposition operation

We are currently building TensorDB, which extends a native array database,
SciDB [5], with operations needed to support the full life cycle of data. TensorDB is
based on a tensor-relational model (TRM) [11], which brings together relational alge-
braic operations (for data manipulation and integration) and tensor algebraic operations
(for data analysis) and supports complex data processing plans where multiple relational
algebraic and tensor algebraic operations are composed with each other (Figure 1(b)).

1.1 Tensor-Based Relational Model (TRM)

Let A1,..., A, be aset of attributes in the schema of a relation, R, and Dy, ..., D,, be
the attribute domains. Let the relation instance R be a finite multi-set of tuples, where
eachtuplet € Dy x...xD,.[11] defines various types of tensors representing relations,
including occurrence tensors and value tensor. For example, an occurrence tensor R,
corresponding to the relation instance R as an m-mode tensor, where each attribute
Ay, ..., A, is represented by a mode. For the ith mode, which corresponds to A;, let
D) C D, be the (finite) subset of the elements such that Vo € D} 3t € R s.t. t.A; =v
and let idz(v) denote the rank of v among the values in D}, relative to an (arbitrary) total
order, <;, defined over the elements of the domain, D;. The cells of the occurrence
tensor R, are such that R,[u1,...,u,) =1iff It € R s.t. Vicj<n idz(t.Aj) = u;
and 0 otherwise. Intuitively, each cell indicates whether the corresponding tuple exists
in the multi-set corresponding to the relation or not.

[11] also discusses the implementation of various relational algebraic operations to
manipulate relations represented as tensors in TRM (Figure 1(a)) as well as other tensor
manipulation operations, such as tensor decomposition.

1.2 Tensors Decomposition

The two most popular tensor decompositions are the CP [6,9] and Tucker [25] decom-
positions. CP decomposes the input tensor into a sum of component rank-one tensors;
i.e., the rank-r CP Decomposition, C P (P, x1,x..-x Iy )» Of the tensor Py, w1, x...x 1y 1S
defined as P(l), ..., PM) such that

PrislyxxIy %ZPIC(I)OPIC(Q)O"'OPIC(N)~ (D
k=1

We also use the formulation where the column vectors of each factor are normalized to
the unit length with the weights absorbed into a vector A; i.e., CP(Pr, x1yx.-xIy) =
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Fig. 2. Query optimization in relational algebra: (a) A logical query plan involving selection,
projection, and join operations: (b) an equivalent physical plan where the selection and projection
operations are pushed-down to minimize the amount of data fed into the join operator
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where ), is the ith element of vector A of size  and Ui(") is the ith unit-length column
vector of the matrix P(™) of size I, xr,forn=1,--- N.

While, as described above, CP decomposition can be represented in the form of a
diagonal core tensor and one factor matrix (also called a factor) per mode, the Tucker
decomposition results in a dense core tensor multiplied by a matrix along each mode.
Many of the algorithms for decomposing tensors are based on an iterative process, such
as alternating least squares (ALS), that approximates the solution though iterations until
a convergence condition is reached [6,9].

1.3 Decomposition Push-Down Strategy for Optimizating TRM Workflows

One key goal of TensorDB is to deploy optimization strategies for complex queries
involving both tensor decomposition and tensor manipulation operations, such as join
and union operations that integrate data from multiple sources.

Inrelational algebra, the costliest operation is the join operation. Consequently, given
a complex query plan, the relational optimizers push-down data reduction operations,
such as selections (which reduce the number of tuples) and projections (which reduce
the number of data attributes) over join-operations to reduce the amount of data fed into
the join operators (Figure 2). In TensorDB, based on TRM, however, tensor decomposi-
tion operation tends to be the computationally costliest operation: for dense tensors, the
cost is exponential in the number of modes of the data. While the operation is relatively
cheaper for sparse tensors, the cost and memory requirement still outweigh other more
traditional relational operators.

Therefore, a key criterion for optimizing query workplans in TensorDB is to reduce
the number of data modes and non-zero data entries in the tensors that need to be de-
composed. In [11], for example, we considered query plans that involve join operations
and tensor decompositions (Figures 1(b) and 3(a)) and proposed a decomposition push-
down strategy that reduces the number of modes of the data tensors being decomposed.
This join-by-decomposition (JBD) strategy pushes-down the tensor-decomposition op-
eration so that the input tensors (which have smaller number of modes than the join
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Fig. 3. (a) The query plan in Figure 1(b) and (b) an alternative query plan where the tensor de-
composition operation is pushed-down [11]
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Fig. 4. (a) A query plan with an union of two tensors, P and Q preceding tensor decomposition
and (b) an alternative query plan where the decomposition is pushed-down over union

tensor) are decomposed into their spectral components and then these decompositions
are combined to obtain the final decomposition as shown in Figure 3(b).

In this paper, we focus on query plans that involve tensor decomposition and union
operations (as in Figure 4(a)) and propose novel decomposition push-down strategies
(as in Figure 4(b)) that help reduce the overall cost of the query plan. We refer to the
query plan that first performs the union operation on the data and then applies the ten-
sor decomposition on the union of the data as union-then-decompose (UTD) plan. The
query plan with decomposition push-down, which first performs the tensor decompo-
sitions on each input data source and then combines these decomposed tensors as the
union-by-decomposition (UBD) plan.

1.4 Contributions of This Paper: Union-by-Decomposition (UBD)

A union-by-decomposition (UBD) plan, with decomposition push-down, has various
advantages over the conventional union-then-decompose (UTD) plan:

— Firstly, especially when the overlaps between the input data sources are small, the
union operation can combine relatively small and sparse tensors into a larger and
denser tensor. Consequently, the decomposition over the union data can be much
more expensive than the decompositions over the input data sources. Moreover
multiple tensor decompositions on input tensors can run in parallel, which will
further reduce the cost.
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— Secondly, a union-by-decomposition (UBD) based plan provides opportunities for
materializing decomposition of data tensors and re-using these materialized decom-
positions in more complex queries requiring integration of data.

Despite these advantages, however, implementing the UBD strategy requires us to ad-
dress a number of key challenges:

— Challenge 1: How can we combine the factor matrices of tensor decomposi-
tions with their own eigen basis into the eigen basis of the union tensor? If ten-
sor decomposition is thought of as a group of clusters, combining different groups
of clusters for different tensors into another group of clusters for the union of the
tensors is not straightforward.

— Challenge 2: For the common data elements at the intersection of multiple data
sources, which factors (clusters when the clustering analogy is used) among the
different tensor decompositions should we choose? This is critical as the choice
can impact the final accuracy of the UBD based plan.

In this paper, we present algorithms and techniques to address these questions. We first
review the related work in Section 2. In Section 3, we extend TRM with the proposed
union-by-decomposition operation: we discuss strategies for combining the tensor de-
compositions for the union of the tensors from different sources and consider alternative
selection measures to choose a group of factors for data entries common to input data
sources. We also consider query plans that include both join and union operations along
with tensor decomposition. We, then, experimentally evaluate the proposed scheme in
Section 5 and conclude the paper in Section 6.

2 Related Work

2.1 Tensors and Tensor Decomposition

The two most popular tensor decompositions are the CANDECOMP/PARAFAC
(CP [6,9]) and Tucker [25] decompositions. CANDECOMP [6] and PARAFAC [9]
decompositions (together known as the CP decomposition) decompose the input ten-
sor into a sum of component rank-one tensors. While CP decomposition can be repre-
sented in the form of a diagonal core tensor and one factor matrix (also called a factor)
per mode, the Tucker decomposition results in a dense core tensor. Many of the algo-
rithms for decomposing tensors are based on an iterative alternating least squares (ALS)
process that approximates the solution by iteratively improving the decomposition un-
til a convergence condition is reached [6,9]. In [21], the complexity of ALS schemes
has been discussed. Non-iterative approaches to tensor decomposition include closed
form solutions, such as generalized rank annihilation method (GRAM) [19] and di-
rect trilinear decomposition (DTLD) [20], which fit the model by solving a generalized
eigenvalue problem. [13] provides an overview of the tensor decomposition algorithms.

Tensor decomposition is a costly process. In dense tensor representation, the cost
increases exponentially with the number of modes of the tensor. While decomposition
cost increases more slowly (linearly with the number of nonzero entries in the tensor)
for sparse tensors, the operation can still be very expensive for large data sets. [24] uses
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Fig. 5. (a) Tensor decomposition on the union of the two relations and (b) the union operation on
the two tensor decompositions of the input relations

randomized sampling to approximate the tensor decomposition where the tensor does
not fit in the available memory. A modified ALS algorithm proposed in [18] computes
Hadamard products instead of Khatri-Rao products for efficient PARAFAC for large-
scale tensors. [15] developed a greedy PARAFAC algorithm for large-scale, sparse ten-
sors in MATLAB. [14] proposed a memory-efficient Tucker (MET) decomposition to
address the intermediate blowup problem in Tucker decomposition. A parallelization
strategy of tensor decomposition on MapReduce has been proposed in [10]. ParCube
proposed in [17] is a parallelizable tensor decomposition algorithm, which produces
sparse approximation of tensor decompositions. In [11,12], we proposed parallelized
tensor decompositions within a tensor relational algebraic framework.

2.2 Array Databases

There are several in-database data models for modeling tensor data. Column-oriented
organizations [22] are efficient when many or all rows are accessed, such as during
an aggregate computation. Row-oriented organizations, on the other hand, are efficient
when many or all of the columns on a single row are accessed or written on a single
disk seek. Key-value organizations [1] are useful when working with less structured
data, such as documents, which tend not to be relational. The array model [4,5,8,26] is
a natural representation to store multidimensional data and facilitate multidimensional
data analysis. Approaches to represent array based data can be broadly categorized into
four types. (a) The first approach is to represent the array in the form of a table [7,26].
(b) A second approach is to use blob type in a relational database as a storage layer
for array data [4,8]. (c) Sparse matrices can also be represented using a graph-based
abstraction [16]. For example, in [16], ALS (alternating least squares) is solved using
a graph algorithm that represents a sparse matrix as a bipartite graph. (d) The last ap-
proach is to consider a native array model and an array-based storage scheme, such as
a chunk-store, as in [5].

3 Union-by-Decomposition (UBD) and Decomposition Push-Down

In this section, we describe our proposed union-by-decomposition (UBD) approach that
pushes down tensor decompositions over union operators: Unlike the more conventional
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Fig. 6. Naive grid-based UBD: (a) Input tensors are partitioned into an intersecting sub-tensor
and non-intersecting sub-tensors; (b) intermediary decompositions of grid-based UBD
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union-then-decompose (UTD) scheme, which applies decomposition on the union of
the two relations (Figure 5(a)), UBD first performs the tensor decomposition on the
input tensors then these decompositions are combined into the final result (Figure 5(b)).

3.1 Challenge 1: Implementing UBD through Partition-Based ALS

Naive Grid-Based UBD. One way to implement the UBD operation is to divide the
input tensors into common (or intersection) and (2N — 1 many when the number of
modes is N) uncommon sub-tensors as shown in Figure 6(a) and then considering each
partition as a cell of a larger tensor partitioned into a grid as shown in Figure 6(b)
and applying the grid-based tensor decomposition strategy proposed in [18] to combine
these into a single decomposition.
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Algorithm 1. Union-By-Decomposition (UBD) (input: two tensors
Prisxiyx-xiy and Qj xj,x...xJy. optional input: CP decompositions of
P and Q, (PW ... . PM)Y and (QW,..., QW)), respectively, output: factors
Uu®, ., UW) for P U Q)

. if no existing decompositions given then

Run any available CP algorithm on P and Q in parallel to get factors P ey P™) and

Q(l). . ’Q(N)

: end if

. for each mode n do .

create sub-factors PEI')) and PE’Z) and Q (2) ) and QE;")) with non-intersecting and intersecting sub-factors of
P and Q(™), respectively (see Figure 7(a))

. end for

. select either Pg) and QE;')) for factors T™) for intersection P N Q by a selection measure (see Section 3.2)

8: repeat the update process for sub-factors UE;')) UE;')) and UE;') using Equation 9 until a stopping condition is

~ O

satisfied, which are combined to U(") by Equation 7 (see Figure 7(b))

Proposed Implementation of UBD. An obvious shortcoming of the naive grid-based
UBD discussed above is that it leads to a very large number of intermediary decomposi-
tions and this number increases quickly with the number of modes of the input tensors.
To tackle this challenge, we propose to decompose input tensors directly (through de-
composition push-down) and recombine the resulting factor matrices in a way that re-
flects the common and non-intersecting sub-factors of these decompositions as shown
in Figure 7. The high-level pseudocode of this partition-based UBD scheme is shown
in Algorithm 1. We next present the details of the proposed UBD process:

Let us assume that we are given two tensors Pz, « 1, x...x 1y and L, x g, x...xJy and
let us assume we have already computed their CP decompositions

CPP) =P =PY, ... . PM) and CP(Q)=0=(QW,....Q"). (3

Our goal is to estimate CP(PUQ) = (UM ... UW)) efficiently using these decom-
positions. To achieve this, we solve the ALS problem

min [[(PUQ) — (UD, ..., UM 4)

by appropriately combining sub-factors of the input tensors. More specifically, each

factor of P and Q are split into two: a non-intersecting (PE1)) and QE;L)) ) and intersecting

(PE;)) and QES))) partitions. Given these, the CP decompositions of [k1, k2, ..., ky]-th
sub-tensor of P and Q are
k 1 N 1 N
CP@™) =), . PR)) and CPQ®)=(Qf)),....QL)), &)
respectively, where k = [k1, k2, . .., kn] for k,, € {1,2} for P® and k, € {2,3} for
0¥ Given these, we can approximate the decompositions of each sub-tensor of P and
Q with the CP decompositions of P and Q, respectively (see Figure 7(a)):

CP@™) ~ (P ... PR and CPQ®)~(Qf)),....QL)). ©)
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Let us denote the CP decomposition of [k1, k2, . . ., kn]-th sub-tensor of P U Q as

CP(@PuQ)®)=crPy®) =(Ul),....UY)),

where k = [ky, ko, ..., ky] for k, € {1,2,3}. Note that each factor of CP(P U Q)
can be split into three partitions
n n)T n)T n)TT
Ut = U o U )
one corresponding to a non-intersecting sub-factor from one input matrix, the other
corresponding to a common sub-factor, and the last corresponding to a non-intersecting
sub-factor from the second input matrix. Given these, we can re-formulate the mini-

mization problem in Equation (4) for each sub-tensor H(R) of P U Q as minimizing D,

where
Ly ~ y® (1) (N)
D=, > > 1% = (U Tl
k1=1 kn=1
or, considering the n-mode matricized tensor YEE; of H(R), as minimizing
1 (k) (n) 1) (2 (n—1) (n+1) (N)
D=, 2 Y im = U (U © Uy, @0 UE T 0UE T o0 U ),
k

where © is the Khatri-Rao product.

This minimization problem can be solved using an ALS problem by identifying gra-

dient components with respect to sub-factors as in [18]. More specifically, the gradient
component with respect to sub-factor UEZ,) ) is

_ (k)7 10-n (n) 170-nT11O-n
Ay D= ) (_Yw)U(R) + U4 Ui U(R))

. (®)
— _ (k) 110-n (n) T 1@
- 72 ( Y(n)U(E) + U(k:n){U(k)U(k)} ) >

kn=Fkn,

where ® is the Hadamard (element-wise) product. Given this, each sub-factor UEZ))
can be updated using the update rule /

-1

(n) (l_() O-—n T _ \®_n
Uy € Z YU 72 Ui Um) : )

Kn=kn Kn=kn

Note that, from Equation 6, for each sub-tensor H(k) = ?(k), considering to the first
input matrix we have

(K)11@0-n P HO-nTrO(=n)
YU = Pu)Pe” Y

(10
Similarly, for each sub-tensor yk) _ gk considering to the second input matrix, we
have (k)71 (n) AO-—nTyO
-~ O OO (—n)

YU * Qun Qi Yw (11)
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Finally, for each sub-tensor H(R) such that H(r‘) =PNQ,

YU = TOTOTU (12)

where T(") are the factors of CP(P N Q). Note that T can be estimated from either
the CP decomposition of P32

CPPNQ) = CP@®) ~ (PY).... . PL)),
where 2 = [kq, ka, ..., ky] for all k,, = 2, or the CP decomposition of o
CP@®nQ)=cPQ®)~ (QY).....Q1).

The choice is critical and can impact significantly on the accuracy of the overall process.
Therefore, we next discuss how to select whether to use PEQ) or QE;L)) to estimate T'(™).

3.2 Challenge 2: Selection of Sub-factors for the Overlapping Sub-tensor

As described above, the factors T(™) of the overlapping sub- tensor fP N Q (used in the
computation of C P(PUQ)) can be selected from either P(2) or Q 2 As also explained
before, the choice is critical as it may impact the accuracy of the fgnal decomposition,

CP(PUQ). Therefore, in this subsection, we explore alternative ways for choosing the
sub-factors, T, of CP(PNnQ).

Intersection-Based Selection Criteria. When we are choosing between PE")) and

QE;)) to use as T'™), one criteria would be to consider how well fj’( <Pg; PES?)
~(2) A (1)
and Q" = (Q(Q) Q(Q) ) fitPNQ:
- +(2) i, ~(2)
+(2) [(PNQ) -2 7 A (2) [(PNQ)—Q 7|
101(? ):1— and IOl(Q ):1—
1PN 1PN

One obvious difficulty with this fit-based intersection criterion, /C1, is that the fit com-
putations can be very costly. Alternatively, if we consider the two tensor decomposi-
tions, fj’@) and Q(z as two groups of clusters, then we need to choose the group of
clusters on which the membership of the shared elements (the overlapping part) is more
tight and we can use the norms of the sub-factors to quantify how strongly elements be-
longs to the corresponding clusters. Intuitively, norms of the sub-factors corresponding

to the overlapping region

16,@®) = (B, ... PO 10y(0"

(2) 2 A(N
)= Q). Q).

explain the contribution of each element to these clusters and the one with the larger
intersection criterion measure, ICs, can be used to NN
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Note that the norm of the sub-factors of the overlapping region excludes any knowl-
edge about how the groups fit with the rest of the tensors. Alternatively, we can account
for the strengths of the groups in the whole tensor by also considering the core tensor

. A (2) A
PO, 165(Q%) = 10, QL) ... Q)]

- (2)
1C5(P7) = (A, P @ Q)

2y

and select the tensor which leads to the larger intersection criterion, /C3, measure.

~ (2 ~ (2
Here, A, and A, are core vectors of ZP( ) and Q( ) respectively.
Note that for /C5 and IC3, the columns of PE 2) and QE;L)) are normalized to length
one with the weights absorbed into the vector A, and A, respectively.

Union-Based Selection Criteria. The aforementioned intersection-based selection cri-
teria have a potential weakness: as we see later in Section 5, the selection measures
based on intersection fit and norm work well when the two input tensors are balanced
in size. If the two tensors are unbalanced in size (i.e. one of the tensors is much larger
than the other) the non-overlapping region of the larger tensor is likely to have a large
impact on the final accuracy and the intersection-based selection criteria which primar-
ily focus on the overlapping region of the tensors may fail to capture this. To address
this limit of intersection-based selection criteria, we also consider union-based selec-
tion criteria that take into account both non-overlapping and overlapping parts of the
tensors.

Firstly, we consider the fit of the union of the decomposed tensors to the union of the
two original tensors

(1) (N\y _ 1 (PUQ)—(UW, ... . UM)|

UC;((UW,...,U¥Y)) =1 IPUQ ,
and we choose between the two alternatives by setting the initial U™ to
[PE?))TPES))TQEQ))T]T and to [P! ) QE;))TQ(?’)T}T and observing which one leads to
a better fit. UC] is the initial fit of the union of the decomposed tensors to the union of
the two original tensors in the beginning of the update process of U( ") for kn=1,2,3
(see Equation 9). Intuitively, this initial fit can be thought of as a rough 1ndlcator of
whether the final fit of the union of the decomposed tensors solved by the learning
process will be close to the decomposition on the union of two tensors or not.

As a second criterion, we consider the density of the input tensors, Pr, x 1, x...x I

andQJlszx...XJN,

Q
UCy(P) = HN Iz UC2(Q) = HN |J-
=171 =17

where |X| is the number of non-zeros of X. Given this, we set the initial U™,

9

U = [PE;L))TP(")TQEQ))T]T, if P has a larger density, or

U = [PE;L))TQ(")TQEQ))T]T, if Q has a larger density.



Pushing-Down Tensor Decompositions over Unions 699

AoUMo U@ o ... o UN) AoUMo U@ ... o UM AoUMo U@ ... o UN

Rank-r CP UBD UBD

/( N, G \\/ K7 X

JTD. JBD

P, P, P, Q P, Q P, Q
(a) Union, join, decompose  (b) Join-then-decompose (JTD) (c) Jom—by—decomposion (JBD)
and union-by-decomp. (UBD) and union-by-decomp. (UBD)

Fig. 8. Three alternative query plans for implementing a complex query plan with union, join,
and decompose operations

Intuitively, the overlapping part will be more tightly connected with the non-
overlapping part in the input tensor with the larger density — simply because there are
less chances that an entry will be seen only in the overlapping part. Thus, given the
choice between using the decompositions (for the overlapping part) of the input tensor
with the larger density and of the tensor with the smaller density, the former is likely to
lead to lesser errors.

4 Parallelization, Materialization, and Further Optimizations

The proposed union-by-decomposition (UBD) scheme leads to various optimization
opportunities. First of all, assuming the availability of multiple computation units, the
individual data sources can be decomposed in parallel. Moreover, each individual de-
composition of the sub-tensors can also be obtained in parallel, leading to highly paral-
lelizable execution plans. Secondly, as we see in Section 5, in situations where the same
data source is integrated (unioned) with different data sources over time, we can decom-
pose this data source once and materialize the decomposition for later reuse within a
UBD process, thereby avoiding significant amount of runtime work.

In addition, the proposed union-by-decomposition (UBD) operator is compatible
with other novel (decomposition push-down based) operators that are part of TensorDB,
including the join-by-decomposition (JBD) operator, discussed in Section 1.3, and can
be used as part of a general optimization framework. Figure 8 provides an example:
in Figure 8(b) first the join is pushed down over union and then the decomposition is
pushed down over union, whereas in Figure 8(c) the decomposition is pushed down also
over the join operator leading to (as we see in Section 5) a highly efficient query plan.

S Experimental Evaluation

In this section, we present experimental results assessing the efficiency and effective-
ness of the proposed union-by-decomposition (UBD) scheme and the selection criteria.

5.1 Experimental Setup

For these experiments, we used real data tensors (Table 1): (a) MovieLens 1M data
set [2] with a 3-mode tensor (user, movie, rating) and (b) a 4-mode tensor
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Table 1. Tensor data sets

Data set Attributes Size Density (%)
3-mode MovieLens 1M (user, movie, rating) 6000 x 3400 x 5 0.8451
3-mode book rating (user, book, rating) 105283 x 340556 x 11 0.0003
4-mode Epinions (user, product, category, rating) 22111 x 296000 x 26 x 5  0.000007
4-mode MovieLens IM (user, movie, genre, rating) 6000 x 3400 x 18 x 5 0.0994

(user movie, genre, rating), (c)abook rating data set [27] with a 3-mode
tensor (user, book, rating), and (d) Epinions data set [23] with a 4-mode ten-
sor (user, product, category, rating).From each data tensor, we cre-
ated pairs of sub-tensors (chosen randomly) with different degrees of intersection (10%,
20%, 40%, 60%). The target rank that we consider for the CP decomposition is 10. The
default selection measure is the density-based selection measure, U Cs.

For evaluation, we consider both execution time and degree of fit defined as
X =@u)

1] ’
where X is the union of P and Q and P U Q is the tensor obtained by re-composing the
decomposition of P U Q in the considered scheme. Comparing the fit with respect to X
enables us not only to measure how well P U Q approximates the entries in P U Q, but

also whether P U Q includes any spurious entries that are not originally in P U Q.

We ran all the experiments on a machine with Intel Core i5-2400 CPU @ 3.10GHz
x4 with 7.7 GB RAM. We used MATLAB Version 7.13.0.564 (R2011b) 64-bit for
the general implementation and MATLAB Parallel Computing Toolbox for the parallel
implementations. We used the MATLAB Tensor Toolbox [3] to represent relational
tensors as sparse tensors.

fit(X,PUQ) =1 (13)

5.2 Results #1: UBD vs. UTD (with and without Materialization)

We first compare the proposed UBD against the more conventional UTD scheme. As a
second competitor, we also consider the naive grid-based UBD discussed in Section 3.

Firstly, as we see in Figure 9(a), when there are opportunities for reusing existing
materialized decompositions of the input tensors, as expected, UBD is much faster than
the UTD as well as the naive grid-based UBD.

Secondly, in Figure 9(c), we consider the case where there are no opportunities for
reusing existing decompositions. As we see in this figure, as expected, when the input
tensors have to be decomposed as part of the UBD process, whether UBD outperfoms
UTD depends on the characteristics of the input tensors: in particular, as expected, UBD
is faster than UTD when (a) the degree of intersection is low (< 20%) and (b) the input
tensors are not extremely sparse: if these conditions are not satisfied, the size of the
union result is close to the sizes of input tensors and, if the result is also sparse, there is
no gain in pushing down the decompositions.

Note that, when materialized decompositions of the input tensors do not exist, grid-
based UBD can out-pace the proposed UBD and UTD in many configurations. How-
ever, as we see in Figure 9(b), this comes at the cost of a significant drop in accuracy:
the proposed UBD scheme achieves fits close to the fit of UTD, whereas the accuracy
of the grid-based UBD is much lower. Note also that the accuracy of UBD is especially
good in data sets that are not extremely sparse.
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Fig.9. UBD vs. UTD vs. naive grid-based UBD on pairs of tensors with different intersection
sizes (10%, 20%, 40%, 60%)
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Fig. 10. Efficiency and accuracy of the different selection measures in average of different inter-
section sizes (10%, 20%, 40%, and 60%)

5.3 Results #2: Evaluation of the Alternative Selection Measures

In Section 3.2, we considered various approaches (ICy, ICs, IC3, UC1, and UC5)
for choosing the sub-factors for the overlapping parts of the input tensors. Figure 10(a)
shows that fit-based measures (intersection fit, /C; and union fit, UC}) are more ex-
pensive than norm-based measures (I C5, IC3). The density-based approach (U C5) has
an almost 0 execution cost. Note that, when we compare the computation times of these
selection measures to the execution times of the UBD operators (Figure 9), we see that
even the most expensive selection strategy is, in practice, affordable. Therefore, the
major criterion for selecting among these measures should be accuracy.

For measuring the accuracy of different selection measures, we considered the per-
centage of the cases where each selection measure returned the best alternative. As
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Table 2. Average fit of the different selection measures (The highest fits for each data set are
highlighted in bold)

Data set 1C4 I1Co IC3 UcC, UCs
3-mode MovieLens 1M 0.0538 0.0539 0.0551 0.0551 0.0553
3-mode book rating 0.0127 0.0127 0.0134 0.0141 0.0138
4-mode Epinions 0.0133 0.0133 0.0144 0.0164 0.0164
4-mode MovieLens 1M 0.0380 0.0376 0.0378 0.0377 0.0380
Success rate on random tensor Success rate on random tensor
100% (5 selection measures) 100% (5 selection measures)
80% |iC1 80% =ic
60% - |ic2 60% - ooz
=IC3 Ic3
40% - BUCH 40% BUC1
20% | BUC? 20% muC2
0% - 0% -
1 3 5 4% 36% 64%
Ratio of non-zeros of two tensors Intersection size (%)
(a) Impact of balance (b) Impact of the overlap size

Fig. 11. Success rate in predicting the best fit of UBD using the 5 selection measures compared
among different (a) ratios of non-zeros of two tensors and (b) intersection sizes

shown in Figure 10(b), the union-based fit (UC7) measure works best overall. The
density measure (UC') also works well. The figure also shows that the intersection-
based measures (/Cy, ICs, IC3) are not good indicators, even behave negatively in
some cases: among them the IC'3 works the best since it also accounts for the non-
overlapping regions through the cluster strength indicated by the core. Table 2 further
studies the average degree of fits returned by the different strategies. The table confirms
that the average fits obtained by the union-based selection measures are overall better
than the intersection-based selection measures. While the numbers vary, the degrees of
fit based on the union-based selection measures are up to 20% better than IC; and 1C5.

To further study the impacts of various parameters on the selection accuracy, we
also created random tensors with different configurations, varying the balance (ratio of
densities) of the input tensors and intersection sizes. For each experiment, we created
10 different random tensors of size 5000 x 5000 x 10 and measured the percentage cases
in which each measure selected the better fitting tensor. As the default configuration, we
set the ratio of non-zeros to 1 (most balanced), intersection size to 4%, and the density
of the union tensor to 0.01%.

In Figure 11(a), we first study the impact of balance. Here, the configuration with
ratio = 1 corresponds to the most balanced configuration. As we expected, when the
tensors are balanced, all measures work similarly (with a slight edge to the intersection-
based measures); however, as the imbalance among tensors increases, intersection-
based measures get worse, while the union based measures, especially UC1, improve.

Unlike balance, the size of the intersection has no significant impact on the selection
accuracy (Figure 11(b)), indicating that all measures are robust in this respect.

5.4 Results #3: Impact of Composition of UBD with Other Operators

As we discussed in Section 4, the proposed union-by-decomposition (UBD) operator
is compatible with other operators that are part of TensorDB and can be used as part
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Fig. 12. (a) Running times and (b) fits of three alternative query plans “JBD and UBD” vs. “JTD
and UBD” vs. “union, join, and decompose” (see Figure 8) on 4-mode MovieLens 1M

of a general optimization framework. In Figure 12 for a sample data, we study the
alternative query plans considered in Figure 8. As expected, the figure shows that push-
ing decompositions down the join and union operations (i.e., using UBD, proposed in
this paper, and/or JBD, proposed in [11]) provides a much faster execution times than
the union operation and join operation followed by a final CP decomposition step. As
shown in Figure 12(a), among these three alternative query plans, the query plan using
JBD and UBD is the fastest (faster than 5x of the union, join, and decompose strategy)
but comes with ~ 20% drop in accuracy (Figure 12(b)). On the other hand, using UBD
proposed in this paper along with the conventional join-then-decompose (JTD) strategy
instead of JBD reduces the execution time relative to “union, join, and decompose” by
~ 20% (Figure 12(a)), with a negligible impact on accuracy (Figure 12(b)).

6 Conclusion

TensorDB, which extends array databases with a tensor-relational model (TRM), sup-
ports both relational algebraic operations (for data manipulation and integration) and
tensor algebraic operations (for data analysis) for the complete life cycle of data that
involves consecutive steps of integration, manipulation, and analysis. In TensorDB, we
focused on data processing workflows involving both tensor decomposition and data in-
tegration (union) operations and proposed a novel scheme for pushing down the tensor
decompositions over the union operations to reduce the overall data processing times
and to promote reuse of materialized tensor decomposition results. Experimental results
confirmed the efficiency and effectiveness of the proposed decomposition push-down
strategy and the corresponding union-by-decomposition (UBD) operator.
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