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Abstract. We suggest an approach to automate variable construction
for supervised learning, especially in the multi-relational setting. Domain
knowledge is specified by describing the structure of data by the means of
variables, tables and links across tables, and choosing construction rules.
The space of variables that can be constructed is virtually infinite, which
raises both combinatorial and over-fitting problems. We introduce a prior
distribution over all the constructed variables, as well as an effective al-
gorithm to draw samples of constructed variables from this distribution.
Experiments show that the approach is robust and efficient.
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1 Introduction

In a data mining project, the data preparation phase aims at constructing a
data table for the modeling phase [19,6]. The data preparation is both time
consuming and critical for the quality of the mining results. It mainly consists in
a search of an effective data representation, based on variable construction and
selection. Variable selection has been extensively studied in the literature [12].
Two main approaches, filter and wrapper, have been proposed. Filter methods
consider the correlation between the input variables and the output variable as
a pre-processing step, independently of the chosen classifier. Wrapper methods
search the best subset of variables for a given classification technique, used as
a black box. Wrapper methods, which are time consuming, are restricted to
the modeling phase of data mining, as a post-optimization of a classifier. Filter
methods are better suited to the data preparation phase, since they can be
combined with any data modeling approach and can deal with large numbers of
input variables. In this paper, we focus on the filter approach, in the context of
supervised classification.

Variable construction [18] has been less studied than variable selection in the
literature. It implies a large amount of work for the data analyst and heavily
relies on domain knowledge to construct new potentially informative variables. In
practice, the initial raw data usually originate from relational databases. As most
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classification techniques need a flat input data table with instances × variables
tabular format, such relational data cannot be directly analyzed.

Learning from relational data has recently received an increasing attention in
the literature. The term Multi-Relational Data Mining (MRDM) was initially
introduced in [13] to address novel knowledge discovery techniques from multi-
ple relational tables. The common point between these techniques is that they
need to transform the relational representation. In Inductive Logic Programming
(ILP) [9], data is recoded as logic formulas. In 1BC method [16] and its successor
1BC2 [17], simple predicates are used together with a naive Bayes classifier. More
expressive approaches cause scalability problems especially with large-scale data.
Other methods named by propositionalisation [14] try to flatten the relational
data by constructing new variables. These variables aggregate the information
contained in non target tables in order to obtain a classical tabular format.
For example, the RELAGGS method [15] uses functions such as mean, median,
min, max to summarize numerical variables from secondary tables in zero to
many relationship, or counts per value for the categorical variables. The TILDE
method [2,24] aims at constructing complex variables based on conjunctions of
selection conditions of records in secondary tables. However, the expressiveness
of such methods faces the following problems: complex parameter setting, com-
binatorial explosion of the number of potentially constructed variables and risk
of over-fitting that increases with the number of constructed variables.

In this paper, we suggest an approach aiming at the automation of variable
construction, with the three-fold following objective: simplicity of parameters,
efficient control of the combinatorial search in the space of variable construction
and robustness w.r.t. over-fitting. Section 2 presents a formal description of a
variable construction domain. Section 3 introduces an evaluation criterion of
the constructed variables exploiting a Bayesian approach, by suggesting a prior
distribution over the space of variables that can be constructed. Section 4 studies
the problem of drawing a sample from this space and describes an efficient and
computable algorithm for drawing samples of constructed variables of given size.
Section 5 evaluate the approach on several datasets. Finally, Section 6 gives a
summary and discusses future work.

2 Specification of Variable Construction Domain

We suggest a formal specification of a variable construction domain in order to
efficiently drive the construction of variables for supervised classification. The
objective is not to propose a new expressive and general formalism for describing
domain knowledge, but simply to clarify the framework exploited by the variable
construction algorithms presented in Section 4. This framework consists in two
parts: description of the data structure and choice of the construction rules.

2.1 Data Structure

The simplest data structure is the tabular one. Data instances are represented
by a list of variables, each defined by its name and type. The standard types,
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numerical or categorical, can be extended to other specialized types, such as
date, time or text. As real data usually comes from relational databases, extend-
ing tabular format to multi-table looks natural. We suggest to describe these
structures similarly to structured or object-oriented programming languages.
The statistical unit (root instance) belongs to a root table. A root instance is
then defined by a list of variables, whose type can be simple (numerical, categor-
ical...) as in the tabular case, or structured: one record of a secondary table in
zero to one relationship or several records of a secondary table in zero to many
relationship. In the case of supervised classification, the output variable is a cat-
egorical variable in the root table. Figure 1 presents an example of the use of
this formalism. The root instance is a Customer, with secondary records Usages
in zero to many relationship. The variables are either of simple type (Cat, Num
or Date) or structured type (Table(Usage)). The identifier variables (prefixed by
#) are mainly used for practical purposes, in order to establish a matching with
a relational database; they are not considered as input variables.

Fig. 1. Data structure for a problem of customer relationship management

2.2 Variable Construction Rules

A variable construction rule is similar to a function (or method) in a program-
ming language. It is defined by its name, the list of its operands and its return
value. The operands and the return value are typed, with the types defined in
Section 2.1. For example, the YearDay(Date)→Num rule builds a numerical vari-
able from a date variable. The operands can originate from an original variable
(in the initial data representation), from the return value of another rule, or
from values coming from a train dataset. In this paper, the construction rules
used in the experiments of Section 5 are the following ones:

– Selection(Table, Num)→Table: selection of records from the table according
to a conjunction of selection terms (membership in a numerical interval or
in group of categorical values),

– Count(Table)→Num: count of records in a table,
– Mode(Table, Cat)→Cat : most frequent value of a variable in a table,
– CountDistinct(Table, Cat)→Num: number of distinct values,
– Mean(Table, Num)→Num: mean value,
– Median(Table, Num)→Num: median value,
– Min(Table, Num)→Num: min value,
– Max(Table, Num)→Num: max value,
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– StdDev(Table, Num)→Num: standard deviation,
– Sum(Table, Num)→Num: sum of values.

Using the data structure presented in Figure 1 and the previous construction
rules (plus the YearDay rule for date variables), one can construct the following
variables to enrich the description of a customer:

– MainProduct = Mode(Usages, Product),
– LastUsageYearDay = Max(Usages, YearDay(useDate)),
– NbUsageProd1FirstQuarter = Count(Selection(Usages, YearDay(useDate) ∈

[1;90] and Product = “Prod1”)).

3 Evaluation of Constructed Variables

The issue is to exploit the variable construction domain in order to efficiently
drive the construction of variables which are potentially informative for the pre-
diction of the output variable. In the framework introduced in Section 2, the data
structure can have several level of depth or even have a graph structure. For ex-
ample, a molecule is a graph where the vertices are the atoms and the edges are
the bounds between atoms. The constructed rules can be used as operands of
other rules, leading to computation formulas of any length. The space of con-
structed variables is then of potentially infinite size. This raises the two major
following problems:

1. combinatorial explosion for the exploration of this construction space,
2. risk of over-fitting.

We suggest to solve these problems by introducing an evaluation criterion of
the constructed variables according to a Bayesian approach in order to penalize
complex variables. For this purpose, we propose a prior distribution on the space
of all variables and an efficient sampling algorithm of the space of variables
according to their prior distribution.

3.1 Evaluation of a Variable

Variable construction aims to enrich the root table with new variables that will
be taken as input of a classifier. As usual classifiers take as input only numerical
or categorical variables, only these variables need to be evaluated.

Supervised Preprocessing. The MODL supervised preprocessing methods
[3,4] consist in partitioning a numerical variable into intervals or a categorical
variable into groups of values, with a piecewise constant class conditional density
estimation. The parameters of a specific preprocessing model are the number of
parts, the partition and the multinomial distribution of the classes within each
part. In the MODL approach, supervised preprocessing is turned into a model
selection problem and solved in a Bayesian way. A prior distribution is proposed
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on this model space. This prior exploits the hierarchy of the parameters, with a
uniform distribution at each stage of the hierarchy. The methods exploit a max-
imum a posteriori (MAP) technique to select the most probable preprocessing
model given the input data. Taking the negative log of probabilities that are
no other than coding lengths [22] in the minimum description length (MDL)
approach [20], this amounts to the description length of a preprocessing model
MP (X) (using a supervised partition) of a variable X plus the description length
of the output data DY given the model and the input data DX .

costP (X) = L(MP (X)) + L(DY |MP (X), DX). (1)

We asymptotically have costP (X) ≈ Nent(Y |X) where N is the number of
train instances and ent(Y |X) the conditional entropy [7] of the output given
the input variable. Formula (1) and the related optimisation algorithms are fully
detailed in [4] for supervised discretization and [3] for supervised value grouping.

Null Model and Variable Filtering. The null model MP (∅) corresponds to
the case of a preprocessing model with one single part (interval or group of val-
ues) and thus to the direct modeling of the output values using a multinomial
distribution, without using the input variable. The value of criterion costP (∅)
amounts to a direct coding of the output values: the null cost is costP (∅) ≈
Nent(Y ), where ent(Y ) is the entropy of Y . The evaluation criterion of a vari-
able is then exploited according to a filter approach [12]: only variables whose
evaluation is better than the null cost are considered informative and retained
at the end of the data preparation phase.

Accounting for the Variable Construction Process. When the number
of original or constructed variables increases, the chance for a variable to be
wrongly considered as informative becomes critical. In order to prevent this risk
of over-fitting, we suggest in this paper to exploit the space of constructed vari-
ables described in Section 2 by proposing a prior distribution over the set of all
variable construction models MC(X). We then get a Bayesian regularization of
the constructed variables, which allows to penalize the most “complex” variables.
This translates into an additional construction cost L(MC(X)) in the evaluation
criterion of the variables, which becomes that of Formula (2).

costCP (X) = L(MC(X)) + L(MP (X)) + L(DY |MP (X), DX). (2)

L(MC(X)) is the negative log of the prior probability (coding length) of an
original or constructed variable X , defined below.

3.2 Prior Distribution of the Original and Constructed Variables

A variable to evaluate is a numerical or categorical variable in the root table,
either original or built using construction rules recursively. The space of such
variables being of virtually infinite size, defining a prior probability on this space
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raises many problems and involves many choices. To guide these choices, we will
stick to the following general principles:

1. taking into account the constructed variables has a minimal impact on the
original variables,

2. in order to have a minimum bias, the prior is as uniform as possible,
3. the prior exploits at best the variable construction domain.

Case of Original Variables. In the case where no variable can be constructed,
the problem reduces to the choice of an original variable to evaluate among the
K numerical or categorical variables of the root table. Using a uniform prior for
this choice, we obtain p(MC(X)) = 1/K, thus L(MC(X)) = logK.

Case of Constructed Variables. In the case where variables can be con-
structed, one must first choose whether to use an original variable or to con-
struct a new variable. Using a uniform prior (p = 1/2) for this choice implies an
additional cost of log 2, which violates the principle of minimal impact on the
original variables. We then suggest to consider the choice of constructing a new
variable as an additional possibility beyond the K original variables. The cost of
an original variable becomes L(MC(X)) = log(K + 1), with an additional cost
of log(1 + 1/K) ≈ 1/K w.r.t. the case of original variables only.

Constructing a new variable then relies on the following hierarchy of choices:

– choice of constructing a new variable,
– choice of the construction rule among the R applicable rules (with the re-

quired return value type and available operands of the required types),
– for each operand of the rule, choice of using an original variable or to con-

struct a new variable with a rule whose return value is compatible with the
expected operand type.

Using a hierarchical prior, uniform at each level of the hierarchy, the cost of
a constructed variable is decomposed on the operands of the used construction
rule according to the recursive Formula (3), where the variables Xop are the
original or constructed variables used as operands op of the rule R.

L(MC(X)) = log(K + 1) + logR+
∑

op∈R
L(MC(Xop)). (3)

Case of the Selection Rule. The case of the Selection rule that extracts
records from a secondary table according to a conjunction of selection terms
is treated similarly. The hierarchy of choices is extended in the following way:
number of selection operands, list of selection variables (original or constructed)
and for each selection variable, choice of the selection part (numerical interval
or group of categorical values). The selection part is itself chosen hierarchically
with first a choice of granularity of the partitioned variable into a set of quantiles
and second the index of the quantile in the partition. In definitions 1 and 2, we
precisely define quantile partitions both for numerical and categorical variables.
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Definition 1 (Numerical quantile partition). Let D be a dataset of N in-
stances and X a numerical variable. Let x1, x2, . . . , xN be the N sorted val-
ues of X in dataset D. For a given number of parts P , the dataset is di-
vided into P equal frequency intervals ] − ∞, x�1+N

P �[, [x�1+N
P �, x�1+2N

P �[, . . .,

[x�1+iN
P �, x�1+(i+1)N

P �[, . . ., [x�1+(P−1)N
P �,+∞[.

Definition 2 (Categorical quantile partition). Let D be a dataset of N
instances and X a categorical variable with V values. For a given number of parts
P , let NP = �N

P � be the expected minimum frequency per part. The categorical
quantile partition into (at most) P parts is defined by singleton parts for each
value of X with frequency above the threshold frequency NP and a “garbage”
part consisting of all values of X below the threshold frequency.

The number of selection terms is chosen according to the universal prior for in-
teger numbers of Rissanen [21]. This prior distribution is as flat as possible, with
larger probabilities for small integer numbers. Each selection variable (original
or constructed) is distributed using the prior defined previously in this section.
As for the granularities, we consider only powers of two 20, 21, 22, . . . 2p, . . . for
the sizes of the partitions, with the exponent p distributed according to the uni-
versal prior for integer numbers. Finally, the index of each quantile is distributed
uniformly among the 2p parts.

Whereas all the other rules exploit only the data structure and the set of
construction rules, the Selection rule exploits the values of the train dataset to
build the actual definition of the selection parts. This requires one reading step of
each secondary table to instantiate the formal definition of each part (granularity
and part index) into an actual definition, with numerical boundaries for intervals
and categorical values for groups of values.

Synthesis. Figure 2 presents an example of such a prior distribution over the
set of variables that can be built using the construction rules Mode, Min, Max
and YearDay, in the case of the customer relationship management dataset
of Figure 1. For example, the cost of selecting the original variable Age is

Fig. 2. Prior distribution of variable construction in the case of the customer relation-
ship management dataset
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L(MC(Age)) = log 3. That of constructing the variable with formula Min(
Usages, Y earDay(Date)) exploits of a hierarchy of choices leading to

L(MC(Min(Usages, Y earDay(Date)))) = log 3 + log 3 + log 1 + log 1 + log 1.

This prior distribution on the space of variable construction corresponds to
a Hierarchy of Multinomial Distributions with potentially Infinite Depth (HM-
DID). The original variables are obtained from the first level of hierarchy of the
prior, whereas the constructed variables get all the more lower prior probabilities
as they exploit deeper parts of the HMDID prior with complex formulas.

4 Building a Random Sample of Variables

The objective is to build a given number of variables, potentially informative
for supervised classification, in order to create an input tabular representation,.
We suggest to build a sample of variables by drawing them according to their
prior distribution. We present a first “natural” algorithm for building samples of
variables, and demonstrate that it is neither efficient nor even computable. We
then propose a second algorithm that solves the problem.

4.1 Successive Random Draws

Algorithm 1. Successive random draws

Require: K {Number of draws}
Ensure: V = {V }, |V| ≤ K {Sample of constructed variables}
1: V = ∅
2: for k = 1 to K do
3: Draw V according to HMDID prior
4: Add V in V
5: end for

Algorithm 1 consists in successively drawingK according to the HMDID prior.
Each draw starts from the root of the prior and goes down in the hierarchy until
obtaining an original or constructed variable, which corresponds to a leaf in
the prior hierarchy. This natural algorithm cannot be used in the general case,
because it is neither efficient nor computable, as we demonstrate below.

Algorithm 1 Is not Efficient. Let us consider a construction domain with
V original variables that can be evaluated in the root table and no construction
rule. The HMDID prior reduces to a standard multinomial distribution with V
equidistributed values. If K draws are performed according to this multinomial
distribution, the expectation of the number of distinct obtained variables is V (1−
e−K/V ) [11]. In the case whereK = V , this corresponds to the size of a bootstrap
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sample, that is (1 − 1/e) ≈ 63% variables obtained using V draws. To obtain
99% of the original variables, one needs K ≈ 5V draws, which is not efficient.
Furthermore, in the case with construction rules, the multinomial at the root of
the HMDID consists now into K + 1 equidistributed values. The draws result
in the construction of a new variable in only 1

K+1 of the cases. It is noteworthy
that this problem of inefficiency occurs at all levels of depth of the HMDID prior
for the draw of the operands of the rules under construction.

Algorithm 1 Is not Computable. Let us consider a construction do-
main with one single numerical variable x and one single construction rule
f(Num,Num) → Num. The variables that can be constructed are x, f(x, x),
f(x, f(x, x)), f(f(x, x), f(x, x)), f(f(x, x), f(f(x, x), x))... In combinatorial

mathematics, the Catalan number Cn = (2n)!
(n+1)!n! ≈ 4n

πn3/2 counts the number

of such expressions. Cn is the number of different ways n+1 factors can be com-
pletely parenthesized or the number of full binary trees with n+ 1 leaves. Each
variable represented by a binary construction tree with n leaves (repetitions of
x in the formula) comes into Cn−1 formally distinct copies, each with a prior
probability of 2−(2n−1) according to the HMDID prior. The expectation of the
size s(V ) of a constructed variable V (size defined by the number of leaves in the
binary construction tree) can then be computed. Using the above approximation
of the Catalan number, Formula (4) states that the expectation of the size of
the variable is infinite.

E(s(V )) =

∞∑

n=1

n2−(2n−1)Cn−1 = ∞. (4)

This means that if one draws a random variable according to the HMDID
prior among all expressions involving f and x, the drawing process will never
stop on average. Algorithm 1 is thus not computable in the general case.

4.2 Simultaneous Random Draws

As variables cannot be drawn individually as in Algorithm 1, we suggest to
draw a complete sample using several draws simultaneously. For a multinomial
distribution (n; p1, p2, . . . , pK) with n draws and K values, the probability that
a sample results in counts n1, n2, . . . , nK per value is:

n!

n1!n2! . . . nK !
pn1
1 pn2

2 . . . pnK

K . (5)

The most probable sample is obtained by maximizing Formula (5), which results
into counts nk = pkn per value according to maximum likelihood. For example,
in the case of an equidistributed multionomial distribution with pk = 1/K and
n = K draws, Formula (5) is maximized for nk = 1. As a consequence, all the
values are drawn, which solves the inefficiency problem described in Section 4.1.
Algorithm 2 exploits this drawing process using maximum likelihood recursively.
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Algorithm 2. Simultaneous random draws

Require: K {Number of draws}
Ensure: V = {V }, |V| ≤ K {Sample of constructed variables}
1: V = ∅
2: Start from the root of the hierarchy of the HMDID prior
3: Compute the number of draws Ki per branch of the prior tree (original variable,

rule, operand...)
4: for all branch of the prior tree do
5: if terminal leaf of the prior tree (original variable or variable constructed with

a complete formula) then
6: Add V in V
7: else
8: Propagate the construction process recursively by assigning the Ki draws of

each branch on the multinomial distribution at the sub-level of the prior tree
9: end if
10: end for

The draws are assigned on the original or constructed variables at each level of
depth of the HMDID prior, which results in a number of draws that decreases
with the depth of the prior hierarchy. In case of even choices (for example, one
single draw among K variables), the draw is chosen randomly uniformly, with a
priority for original variables when both original and constructed variables are
possible. By assigning recursively the draws according to multinomial distribu-
tions at each branch of the hierarchy of the HMDID prior, with numbers of draws
that decrease with the depth of the hierarchy, Algorithm 2 is both efficient and
computable.

In Algorithm 2, the number of draws may be greater than 1 in some leaves
of the prior hierarchy. This implies that the number of obtained variables can
be inferior to the number of initial draws. To reach a given number of variables
K, Algorithm 2 is first called with K draws, then called again successively with
twice the number of draws at each call, until the number of required variables is
reached or until no additional variable is built in the last call.

5 Experiments

The proposed method is evaluated by focusing on the following points: ability to
construct large numbers of variables without problem of combinatorial explosion,
robustness w.r.t. over-fitting and contribution to the classification performance.

5.1 Experimental Setup

The experiment performs comparisons with alternative relational data mining
methods based on propositionalisation and with inductive logic programming
Bayesian classifiers. The compared methods are:
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– MODL is the method described in this paper. It exploits the following con-
struction rules (cf. Section 2.2): Selection, Count, Mode, CountDistinct, Mean,

Median, Min, Max, StdDev, Sum. The only parameter (see Section 4.2) is the
number of variables to construct: 1, 3, 10, 30, 100, 300, 1000, 3000 and 10000
in the experiments. The variables are constructed using Algorithm 2 then
filtered using Formula (2), which accounts both for construction and prepro-
cessing cost. The filtered variables are used as input of a selective naive Bayes
classifier with variable selection and model averaging (SNB) 1 [5], which is
both robust and accurate in the case of very large numbers of variables.

– RELAGGS is a method similar to the Relaggs propositionalisation method
[15]. It exploits the same construction rules as MODL and exhaustively con-
structs all the possible variables, except for the Selection rule that raises
combinatorial problems. Instead, RELAGGS constructs all the rules based
on counts per categorical value in the secondary tables. The data preprocess-
ing and the SNB classifier are the same as for MODL, without accounting
the construction of the variables (Formula (1) is used for filtering).

– 1BC is the first-order Bayesian classifier described in [16]. It can be consid-
ered as a propositionalisation method, with one variable per value in a sec-
ondary table. To preprocess the numerical values of each table, all numerical
variables are discretized into equal frequency intervals. In the experiments,
we use discretisation into 1, 2, 5, 10, 20, 50, 100 and 200 bins.

– 1BC2 is the successor of 1BC described in [17]. While 1BC applies proposi-
tionalisation, 1BC2 is a true first-order classifier. 2

Fourteen relational datasets are considered in the experiments. The Auslan,
CharacterTrajectories, JapaneseVowels, OptDigit and SpliceJunction datasets
come from the UCI repository [1] and are related to the recognition of Aus-
tralian sign language, characters from pen tip trajectories, Japanese speakers
from cepstrum coefficients of two uttered vowels, handwritten digits from a ma-
trix of 32*32 black and white pixels, and boundaries between intron and exon in
gene sequences (DNA). These sequential or time series datasets are represented
with one root table and a secondary table in zero to many relationship. The
Diterpenes [10], Musk1, Musk2 [8] and Mutagenesis [23] datasets are related to
molecular chemistry. The Mutagenesis dataset is a graph with molecules (lumo,
logp plus the class variable) in a root table, atoms (element, type, charge) as
vertices and bonds (bondtype) as edges. The Miml dataset [25] is related to im-
age recognition, with five different target variables. Table 1 gives a summary of
these datasets.

All the experiments are performed using a stratified 10-fold cross validation.
In each train fold, the variables are constructed and selected and the classifier
is trained, while the test accuracy is evaluated in the test fold.

1 The SNB classsifier is available as a shareware at http://www.khiops.com.
2 1BC et 1BC2 are available at
http://www.cs.bris.ac.uk/Research/MachineLearning/1BC/. I am grateful to
Nicolas Lachiche for providing support and advices regarding their use.

http://www.khiops.com
http://www.cs.bris.ac.uk/Research/MachineLearning/1BC/
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Table 1. Relational datasets: number of instances, records in the secondary tables,
categorical and numerical variables, classes, and accuracy of the majority class

Dataset Instances Records Cat.vars Num.vars Classes Maj.

Auslan 2,565 146,949 1 23 96 0.011
CharacterTrajectories 2,858 487,277 1 4 20 0.065
Diterpenes 1,503 30,060 2 1 23 0.298
JapaneseVowels 640 9961 1 13 9 0.184
MimlDesert 2,000 18,000 1 15 2 0.796
MimlMountains 2,000 18,000 1 15 2 0.771
MimlSea 2,000 18,000 1 15 2 0.710
MimlSunset 2,000 18,000 1 15 2 0.768
MimlTrees 2,000 18,000 1 15 2 0.720
Musk1 92 476 1 166 2 0.511
Musk2 102 6,598 1 166 2 0.618
Mutagenesis 188 10,136 3 4 2 0.665
OptDigits 5,620 5,754,880 1 3 10 0.102
SpliceJunction 3,178 191,400 2 1 3 0.521

As for computational efficiency, the overhead of the construction algorithm is
negligible w.r.t. the overall training time. Actually, Algorithm 2 consists in draw-
ing a sample of constructed variables with their construction formulas. This algo-
rithm mainly relies on the exploration of the construction domain (data structure
and set of construction rules). The Selection rule requires one reading step of
each secondary table to build the actual selection operands. This reading step
dominates the time of the variable construction process, and is itself dominated
by the data preparation and modeling steps of the classifier.

5.2 Results

The mean test accuracy versus the number of constructed variables per dataset is
reported in Figure 3, with the standard deviation represented by error bars. The
baseline (horizontal gray dashed line) is the accuracy of the majority classifier.
The MODL performance is reported for each number of actually constructed
variables. The RELAGGS performance is reported only once, with the number
of constructed variables resulting from an exhaustive application of the construc-
tion rules. The 1BC and 1BC2 performance are reported for each bin number of
the discretization preprocessing, with a number of constructed variables based
on the total number of actually different values per variable.

Control of Variable Construction. The RELAGGS, 1BC and 1BC2 meth-
ods have little control on the size of the constructed representation space, which
strongly varies with the complexity of the data structure and the number of val-
ues in the dataset. For example, the size of the representation space goes from a
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Fig. 3. Test accuracy versus number of constructed variables per dataset.
MODL: ◦ red RELAGGS: � green 1BC: � cyan 1BC2: 
 blue.
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few tens of variables (SpliceJunction dataset) to around 20,000 variables (Musk2
dataset) for the 1BC method. The MODL method is much more expressive than
the alternative methods, with the Selection rule which can build conjunctions of
selection terms at any granularity. Still, Algorithm 2 allows to control the com-
binatorial exploration of this huge space and to construct the requested number
of variables, as shown in Figure 3.

Examples of Constructed Variables. For the Mutagenesis dataset, in one train
fold, the null cost (≈ NEnt(Y )) is 115.08 for the encoding of the classes of
the 177 train instances. Among the 10,000 generated variables, only 618 are
identified as informative. The original variable lumo in the root table has a
low construction cost of 2.08. The simplest informative constructed variable in-
volves one construction rule having one operand: Count(Atoms) with a construc-
tion cost of 5.08. The most complex informative constructed variable involves
three construction rules, including the Selection rule with two selection terms.
This rule Sum(Selection(Atoms, (type ≤ 23.5 and charge ≤ -0.0685)), Count-
Distinct(AdjacentBonds, bondtype)) has a construction cost of 17.66, which is
not negligible compared to the null cost for this small dataset. This illustrates
the ability of Algorithm 2 to build rather complex variables and of Formula (2)
to filter the constructed variables.

Test Accuracy. The 1BC and 1BC2 often obtain similar performance, ex-
cept for Auslan where 1BC is better and CharacterTrajectories and Diterpenes
where 1BC2 dominates 1BC. Both methods get generally better performance
as the number of bins increases, but they suffer from over-fitting, especially in
the Miml image datasets where their performance is under the baseline. The
RELAGGS propositionalisation method is used together with the SNB classifier
(same as for MODL) and inherits from its accuracy and robustness. It always
dominates the 1BC and 1BC2 methods. In the Musk1 and Musk2 datasets, the
MODL method is not better than the baseline. Actually, these datasets are very
small (around 100 instances), have a complex data structure (166 variables in
the secondary table) and the classes are not well separable. Altogether, the con-
struction penalization in Formula (2) results in rejecting almost all constructed
variables. More instances would be necessary to learn the concept. In all other
datasets, the MODL method benefits from its expressive construction language
and obtains better test accuracy than the alternative methods. Remarkably,
it often achieves good test accuracy with fewer variables than the alternative
methods, and its performance never decreases with the number of constructed
variables, which is the only user parameter in the approach.

Robustness. In order to evaluate the robustness of our approach, the classes
have been randomly shuffled in each dataset before performing the experiment
again. Two experiments are performed, one using criterion costCP of Formula (2)
(accounting for the construction cost of the variables), the other using costP of
Formula (1) (not accounting for the construction cost). The number of selected
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variables is collected in both cases. The used preprocessing methods [3,4] are
very robust. However, when 10,000 variables are constructed, on average 5 vari-
ables per dataset are wrongly selected, with more than 20 variables for the
JapaneseVowels dataset. When the construction regularization is used (criterion
costCP ), the method is extremely robust: the overall 1.4 millions of constructed
variables over all the datasets and folds of the cross-validation are all identified
as information-less, without any exception.

6 Conclusion

In this paper, we have suggested a framework aiming at automating variable
construction for supervised classification. On the basis of a description of a
multi-table schema and a set of construction rules, we have suggested a prior
distribution over the space of all variables that can be constructed. We have
demonstrated that drawing variables according to this prior distribution raises
critical problems of inefficiency and non-computability, then proposed an effi-
cient algorithm that is able to perform many simultaneous draws in order to
build a tabular representation with the required number of variables. The ex-
periments indicate that the proposed method solves the problem of combinato-
rial explosion that usually limits the approaches which construct variables by
a systematic application of construction rules, and the problem of over-fitting
that occurs in case of representations with very large numbers of variables. The
obtained classification performance are promising. In future work, we plan to
extend the description of the variable construction domain by providing addi-
tional construction rules with potential specialization per application domain.
Another research direction consists in drawing constructed variables according
to their posterior distribution rather than their prior distribution. Finally, ac-
counting for correlations between the constructed variables so as to avoid the
risk of constructing many variants of the same variables raises another challenge.
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