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Abstract. Classifying streams of data, for instance financial transac-
tions or emails, is an essential element in applications such as online
advertising and spam or fraud detection. The data stream is often large
or even unbounded; furthermore, the stream is in many instances non-
stationary. Therefore, an adaptive approach is required that can manage
concept drift in an online fashion. This paper presents a probabilistic
non-parametric generative model for stream classification that can han-
dle concept drift efficiently and adjust its complexity over time. Unlike
recent methods, the proposed model handles concept drift by adapting
data-concept association without unnecessary i.i.d. assumption among
the data of a batch. This allows the model to efficiently classify data us-
ing fewer and simpler base classifiers. Moreover, an online algorithm for
making inference on the proposed non-conjugate time-dependent non-
parametric model is proposed. Extensive experimental results on several
stream datasets demonstrate the effectiveness of the proposed model.

Keywords: Stream classification, Concept drift, Bayesian non-
parametric, Online inference.

1 Introduction

The emergence of applications such as spam detection [29] and online advertising
[1,23] coupled with the dramatic growth of user-generated content [7,35] has
attracted more and more attention to stream classification.The data stream in
such applications is large or even unbounded; moreover, the system is often
required to respond in an online manner. Due to these constraints, a common
scenario is usually used in stream classification: At each instant, a batch of data
arrives at the system. The system is required to process the data and predict their
labels before the next batch comes in. It is assumed that after prediction, the
true labels of the data are revealed to the system. Also due to limited additional
memory the system can only access one previous batch of data and their labels.
For example, in online advertising, at each instant, a large number of requests
arrive and the system is required to predict for each ad, the probability that
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it will be clicked by each user. After a short time, the result is revealed to the
system and the system can use it to adapt the model parameters.

One of the main challenges of stream classification is that often the process
that generates the data is non-stationary. This phenomenon, known as concept
drift, poses different challenges to the classification problem. For example, in a
stationary classification task, one can model the underlying distribution of data
and improve estimates of model parameters as more data become available; but
this is not the case in a non-stationary environment. If we can not model the
change of the underlying distribution of data, more data may even reduce the
model’s efficiency. Formally, concept drift between time ¢; and ts occurs when
the posterior probability of an instance changes, that is [19]:

a2 pr, (ylr) 7 peo (y|z) (1)

When modeling change in the underlying distribution of data, a common as-
sumption is that the data is generated by different sources and the underlying
distribution of each source, which is called its concept, is constant over time [19].
If the classification algorithm can find the correct source of each data item, then
the problem reduces to an online classification task with stationary distribution,
because each concept can be modeled separately. While the main focus in classifi-
cation literature is on stationary problems, recent methods have been introduced
for classification in non-stationary environments [19]. However, these algorithms
are often restricted to simple scenarios such as finite concepts, slow concept drift,
or non-cyclical environment [16]. Furthermore, usually heuristic rules are applied
to update the models and classifiers, which may cause overfitting.

Existing stream classification methods belong to one of two main categories.
Uni-model methods use only one classifier to classify incoming data and hence
need a forgetting mechanism to mitigate the effect of data that are not relevant to
the current concept. These methods use two main approaches to handle concept
drift: sample selection and sample weighting [30]. Sample selection methods keep
a sliding window over the incoming data and only consider the most recent
data that are relevant to the current concept. One of the challenges in these
methods is determining the size of the window, since a very large window may
cause non-relevant data to be included in the model and a small window may
decrease the efficiency of the model by preventing the model from using all
relevant data. Sample weighting methods weigh samples so that more recent data
have more impact on the classifier parameters [13,38]. In contrast to uni-model
methods, ensemble methods keep a pool of classifiers and classify data either by
choosing an appropriate classifier from the pool (model selection) or combining
the answers of the classifiers (model combination) to find the correct label [31].
Inspired by the ability of ensemble methods to model different concepts, these
models have been used in stream classification with encouraging results [16, 27,
29, 34]. The main problem is that many of these models update the pool of
classifiers heuristically and hence may overfit to the data. Moreover, a common
assumption among all existing ensemble methods is that all data of a batch
are i.i.d. samples of a distribution that are generated from the same source and
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hence have the same concept. This assumption may cause several problems. For
example, since the data of a batch are not necessarily from the same source or
may even belong to conflicting concepts, we may not be able to classify them with
high accuracy even using complex base classifiers. Moreover, since the diversity
of batches of data can be very high, the number of needed base classifiers may
become very large.

In this paper, we propose a principled probabilistic framework for stream
classification that is impervious to the aforementioned issues and is able to adapt
the complexity of the model to the data over time. The idea is to model the
data stream using a non-parametric generative model in which each concept is
modeled by an incremental probabilistic classifier and concepts can emerge or
die over time. Moreover, instead of the restrictive i.i.d. assumption among data
of a batch, we assume that the data of a batch are exchangeable which is a much
weaker assumption (refer to Section 3.1 for a detailed definition). This is realized
by modeling each concept with an incremental probabilistic classifier and using
the temporal Dirichlet process mixture model (TDPM) [3]. For inference, we
propose a variation of forward Gibbs sampling.

To summarize, we make the following main contributions: (i) We propose a
coherent generative model for stream classification. (ii) The model manages its
complexity by adapting the size of the latent space and the number of classifiers
over time. (iii) The proposed model handles concept drift by adapting data-
concept association without unnecessary i.i.d. assumption among data of a batch.
(iv) An online algorithm is proposed for inference on the non-conjugate non-
parametric time-dependent model.

The remainder of this paper is organized as follows: Section 2 briefly discusses
the prior art on this subject. The details of the proposed generative model are
discussed in Section 3. To demonstrate the effectiveness of the proposed model,
extensive experimental results on several stream datasets are reported and an-
alyzed in Section 4. Finally, Section 5 concludes this paper and discusses paths
for future research.

2 Review on Prior Art

Stream classification methods can be categorized based on different criteria. As is
mentioned in [19], based on how concept drift is handled the different strategies
can be categorized into informed adaptation and blind adaptation. In informed
adaptation-based models, there is a separate building block that detects the drift
allowing the system to act according to these triggers [8,22]. However, blind
adaptation models adapt the model without any explicit detection of concept
drift [19]. In this paper, the focus is on blind adaptation.

Chu et al. proposed a probabilistic uni-model method for stream classification
in [13] that uses sample weighting to handle concept drift. This method, uses a
probit regression model as a classifier and adaptive density filtering (ADF) [32]
to make inference on the model and update it. Probit regression, is a linear
classifier with parameter w and prior distribution N (w; po, Xo). After observing
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each new data, the posterior of w is updated and approximated by a Gaussian
distribution, that is:

wg ~ N(wt§ Ht, Et) (2)
p(y|e, we) = P(yrw] z4) (3)
p(wes1 |z, ye) o D(yrwy ) N (wy; e, ) (4)

In order to decrease the effect of old data, this method introduces a memory
loss factor and incorporates the prior of w; with this factor in computing the
posterior of w, that is:

p(wis1|me, yi) o Dysw] o) N(wi; e, 20)Y 0y < 1 (5)

Using this method, the effect of out-of-date data is reduced as new data arrives
into the system. As it is evident in (5), this method forgets old data gradually
and hence can not handle abrupt changes in the distribution of data. On the
other hand, since sample selection methods only consider the selected data, they
easily can handle abrupt drift but they miss the information in the old data that
are relevant to the current concept.

As mentioned in Section 1, ensemble methods can be categorized into model
selection and model combination methods. Model combination methods assume
that each data item is generated by a linear combination of base classifiers and
thereby enrich the hypothesis space [15]. There have been different methods
for stream classification based on model combination [16,34]. These methods
maintain a pool of classifiers and estimate the label of each datum of batch t by
combining base classifiers using:

gt = arg max Z W}U[hk(wﬁ)=01 ©)
k

where W} is the weight of base classifier & for batch ¢, which is an estimate of its
accuracy relative to other classifiers. After observing the true labels of a batch,
these methods update the model by adding new classifiers or removing inefficient
classifiers, or changing the weights of classifiers.

The main idea of model selection methods, is to find the concept of each data
item, hence reducing the problem to an online classification task. The challenge
is that finding the concepts of the data is an unsupervised task. There have
been different methods to tackle this issue. The simplifying assumption that is
common among almost all of these methods is that all of the data of a batch
are ii.d. and hence generated from one concept. For example, [29] uses this
assumption and extracts some feature from each batch and finds their concept
by clustering the extracted feature vectors. This method assumes that all of the
batches that lie in the same cluster, can be classified using a single classifier.
This assumption may not be true in many applications, which may decrease
the efficiency. Since this method finds the concepts of data by clustering the
features that are extracted from the whole batch and the diversity of batches
may be very high, the number of clusters may become very large and hence the
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model can become very complex. Hosseini et al. proposed an improved version of
this method in [27]. This method introduces a new distance metric in the feature
space together with pool management operations such as splitting or merging of
concepts.

There is some prior work on classification using Dirichlet process mixture
models [14,24,36]. All of these methods have been designed for classifying batch
data and can’t be applied to stream classification due to two main reasons.
First, these methods does not model the temporal dependency among data and
second, the inference algorithm in these methods is offline which is not suitable
for stream classification. In order to solve these two issues, we proposed a time-
dependent non-parametric generative model and an online inference algorithm
based on forward collapsed Gibbs sampling which is an online version of Gibbs
sampling [1].

3 Proposed Method

In this section, we introduce our proposed method for stream classification. In
order to model concept drift, we propose a non-parametric mixture model with
potentially infinite number of mixtures, in which each mixture represents a con-
cept. This model uses a Bayesian model selection approach [31] and assumes
that each data item is generated by one concept. Each concept is modeled with
a generative classifier. In order to model the change in popularity of concepts
over time and their emergence and death, we use TDPM. After observing the
true labels of a batch, this model allows the number of concepts and the data-
concept associations to be determined by inference, for which we propose an
online inference algorithm based on Gibbs sampling.

For clarity, we define the problem setting and notations in Section 3.1. To
make the presentation self-sufficient, TDPM is reviewed in Section 3.2. The
proposed generative model is described in Section 3.3, followed by the details of
the inference algorithm in Section 3.4.

3.1 Problem Setting and Notation

Consider a stream classification problem in which each data item consists of
an [ — tuple feature vector and a label that associates it to one of C' predefined
classes. In this setting, data arrive in consecutive batches. The system is required
to predict the labels for each batch, after which the true labels are revealed.
Moreover due to limited memory, the system only has access to one previous
batch of data. In summery, our goal is to classify a stream of data (D1, ..., Dr),
where T denotes the number of batches and D; is the batch of data that arrives
at time ¢. Also, Dy = (dy;);t, where dy; is the ith data item in batch ¢ and n,
is the number of data in that batch. Furthermore, each data item is denoted by

(z4i,yii), where xy; is an [ — tuple vector with [ discrete features xii’“"ll and [

continuous features xifl"“’l and y € {1,...,C}.
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For a general variable z, z; denotes the set of all z values of batch ¢ and zt ;.5
denotes the corresponding z values of data i to j in batch ¢. Moreover, by z; *,
we mean all z values of batch ¢ except the i’th one.

3.2 Temporal Dirichlet Process Mixture Model

Suppose that we assume that the data (z1,...,2n) are infinitely exchangeable,
that is, the joint probability distribution underlying the data is invariant to
permutation, then according to De Finetti theorem [26], the joint probability
p(x1,...,zN) has a representation as a mixture:

N
parow) = [ (Hpmc:)) aP(G) (7)

i=1

for some random variable G. The theorem needs G to range over measures, in
which case P(G) is a measure on measures. The Dirichlet process denoted by
DP(Gy, o) is a measure on measures with base measure Gy and concentration
parameter « [17], and hence can be used to model exchangeable data . We write
G ~ DP(Gy, ) if G is drawn from a Dirichlet process in which case G itself is
a measure on the given parameter space 6. Integrating out G, the parameters
0 follow the Chinese Restaurant Process (CRP) [9], in which the probability of
redrawing a previously drawn value of 6 is strictly positive which makes G a
discrete probability measure with probability one; that is:

p(0i10via) =Y " s(en) + Go (8)
k

@
1— 14+« 1— 14+«
where ¢is are unique 6 values and my is the number of ;s having value ¢y.
The CRP metaphor explains (8) clearly. In this metaphor, there is a Chinese
restaurant with infinite number of tables. When a new customer x; comes into
the restaurant, she either sits on one of the previously occupied tables ¢ with
probability , "/* =~ or sits on a new table with probability z‘—1a+a' Using the
Dirichlet process as the prior distribution of a hierarchical model, one obtains the
Dirichlet process mixture model (DPM) [6]. As is evident from (8), DPM assumes
the data are exchangeable. Since there are temporal dependencies among data
in a stream, DPM is not appropriate for modeling.

There are several methods to incorporate temporal dependency in DPM [1,3,
11,37]. In this paper, we focus on TDPM introduced in [3], and use a variation
of that in our proposed model for stream classification. TDPM assumes that
the stream of data arrives in consecutive batches. Moreover, this model assumes
that data are partially exchangeable, i.e., the data that belong to one batch are
exchangeable but exchangeability does not hold among batches. A sample G
drawn from TDP(Gy, o, \, A) is a time dependent probability measure over the
parameter space 0:

/
My

o
. ~ DP /
Gt|p1.k, Go, (Zk: Sl + aé((bk) + S ml, + aGo,a + zk:mkt>
9)
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where ¢y, are the set of unique 6; values used in recent A batches and mj, is
the weighted number of ;s having value ¢;. More formally, if my; denotes the
number of s in batch ¢ with value ¢, then:

A
mh = 3 e R (10
=1

As it is evident from Eq. (9), the data in each batch are modeled by a DP
and hence it is assumed that they are exchangeable. However, the parameters
of these processes evolve over time and are dependent. By marginalizing over
G}, the parameters 6 follow the Recurrent Chinese Restaurant Process (RCRP)
introduced in [3]:

0ril0i—n, 07", Go o< Y (miy + mu)3(dk) + aGo (11)
k

According to (11), when customer z; comes to the restaurant, the probability of
choosing table ¢y, is proportional to the weighted number of customers in previ-
ous A batches that chose that table and the number of customers in the current
batch that chose the same table. In fact, RCRP in (10), uses sample selection
and sample weighting to model the evolution of the probability distribution over
parameters. Moreover, this process assumes that the data in a batch are only
exchangeable and doesn’t force them to select the same mixture. Therefore, we
use this process as the prior over the parameters of a classifier which uses model
selection.

3.3 Infinite Concept Stream Classifier

In this section, we introduce our generative model for stream classification. In
order to model concept drift, we propose a Bayesian model selection method [31].
Figure 1 depicts the graphical representation of the proposed generative model.
In this graph, observed variables are depicted using shaded nodes and blank
nodes represent latent variables. Moreover, arrows are used to represent the
dependency among random variables. The plate structure is used to act as a for
loop to represent repetition. As it can be seen, there are in total T' batches of
data, in which batch ¢, contains n; data. Each data item consists of a feature
vector  which is an observed variable and a latent variable label y which will be
revealed to the system after it is estimated. In this model, there are potentially
infinite number of concepts. Each concept is in fact a classifier with parameter set
¢. Moreover, since it is based on model selection, it assumes that each (x¢;, y¢;) is
generated by a single concept, where z¢; is the concept indicator. More formally,
if data (x4, ) is generated by a classifier with parameters 0y;, then 6y = ¢,,.
Since the size of data is very large in data streams, it is not possible to keep them
all. Therefore, we need an incremental model for the base classifiers. The classifier
model that we used in our model is a naive Bayes classifier. In this model, each
continuous feature in each class is modeled by a Gaussian distribution and each
discrete feature is modeled by a categorical distribution. In order to model the
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Fig. 1. The Graphical Model of the Proposed Method

temporal dependency among the data of the stream, we used RCRP(Gy, o, \, A)
as the prior over concept indicators. The generative process of this model is
described in Algorithm 1. According to this process, in order to generate the
ith element of batch ¢, one may either choose one of the existing classifiers that
have generated at least one data item in last A batches, or a new classifier. The
probability of choosing each classifier is determined by RCRP. Furthermore, if a
new classifier is needed to generate dy;, then the parameters of the classifiers are
obtained by drawing a sample from Gg. In order to make inference easier, we
selected G conjugate to the classifier’s likelihoods. That is, Dirichlet distribution
is used for the prior over class prior probabilities as well as the distribution of
discrete features in each class, and Gaussian-Gamma distribution is used for the
prior over continuous features in each class.

Indeed, this model assumes that the amount of activity of classifier k at batch
t is proportional to the weighted number of data that this model has classified in
the last A batches and hence uses sample selection and sample weighting concur-
rently to handle concept drift. Moreover, this model allows the data of a batch to
select different concepts. This assumption increases the efficiency of the model
in applications where the data of a batch are not necessarily i.i.d. Furthermore,
unlike most existent ensemble methods that set the number and the weights of
classifiers using heuristic rules, the number of classifiers and their corresponding
weights are determined consistently in this method through Bayesian inference
on the proposed model. The details of the inference algorithm are discussed next.

3.4 Inference

When a new batch of data arrives at the system, we need to find their labels by
estimating the posterior probability of labels given all previously observed data,
that is:
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Algorithm 1. The proposed Generative Model
for all batch t € {1,2,...,7} do
for all datai € {1,...,n¢} do
Draw zt:|z1.6-1,2; - ~ RCRP(a, \, A)
if z:; is a new concept then
Draw B:new|Go ~ Dir(m)
for allce {1,...,C} do
for all j € {1,...,m1} do
Draw pznew,j,c|Go ~ Dir(vj,c)
for all j € {1,...,m2} do
Draw Aznew,j,c|Go ~ Gam(aj,c,bj,c)
Draw fznew,j.e|Go ~ N(1j,e, (Vj,eAznew,je) )
Draw yi,i ~ Cat(yt,i; Bz, ;)

41,0y, lg G+, ) —1
Draw z,};," [yt,i ~ Hj:l N(xt,i ’lu’zt,iv]vyt‘q‘,?Azt‘i,j,yt,i)

p(yt‘xtaxlzt—layl:t—laG07a7)\’ A) (12)

This can be done by marginalizing over concept indicators z;.; and concepts’
parameters ¢rs. However, since the posterior of TDPM is not available in closed
form, we need an algorithm to approximate it. Moreover, in stream classification,
the algorithm only has access to one previous batch of data and hence, the
inference algorithm must be online. Therefore, we approximate the posterior (12)
in two phases. First, after observing the true labels of batch ¢ — 1, we update
the model accordingly and then, after batch t is available, we approximate (12)
using the updated model.

Several approximate algorithms have been introduced for inference on DPM
models [21]. These methods either use Markov Chain Monte Carlo (MCMC)
sampling methods [3,33] or Variational methods [10,28] to estimate the posterior
distribution of desired latent variables. Moreover, online inference algorithms
have been proposed for making inference on TDPM which are based on sequential
Monte Carlo estimation [2] or Gibbs sampling [1]. The proposed algorithm for
making inference on the proposed model is a variation of forward Gibbs sampling
[1] which we explain next.

Generally, the main idea of MCMC estimation is to design a Markov Chain
over the desired latent variables in which the equilibrium distribution of the
Markov chain is the posterior of the variables [5]. By drawing samples from this
Markov chain, one can obtain samples from the posterior of the desired ran-
dom variables. Gibbs sampling is a widely used variation of MCMC sampling.
If p(21.m) is the distribution that we want to draw samples from, then Gibbs
chooses an initial value for 2., and in each iteration, chooses one of the ran-
dom variables z; and replaces its value by the value drawn from p(z;|2;.7,). This
process is repeated by iterating over z;s [20]. Gibbs sampling can not be applied
to online applications such as stream classification where there is temporal de-
pendency among latent variables. The reason is that in these models, the system
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doesn’t have access to old data and hence iterating over all latent variables is
not practical.

After observing the labels of batch ¢, the set of latent variables in our model is
z1.¢+ and ¢gs. In order to use Gibbs sampling to draw samples from the posterior
of these variables, it is necessary to access all previous batches of data. In order
to solve this issue, we use forward Gibbs sampling, an online variation of Gibbs
sampling [1]. In this method, at each time step ¢, we estimate the posterior of
new random variables z; using the estimates of concept indicators in previous
batches. In order to do so, we run batch Gibbs sampling over newly added
random variables given the state of the sampler in the last batch. In fact, in this
method, the value of latent variables that are set in previous batches is no longer
changed and the dependency of these variables on future data is not considered.
Although this causes suboptimal estimates for initial batches, the estimates will
improve over time.

Formally, for inference on the proposed model, we use a collapsed Gibbs sam-
pler, the state of which at time ¢ is z1.4. In order to draw a sample at time ¢,
we collapse the concepts’ parameters ¢s and compute the posterior of z; ; given
the values assigned to z1.;—1 in previous batches. To compute this conditional
distribution, we use the exchangeability among data of a batch and assume that
data i is the last data of the batch. Moreover, using the independency relations
among random variables, which can be inferred from the graphical model in Fig.
1, we have:

p(zti = k‘zl_;t(ti)aDlzthOaaa)‘vA) X (13)
p(th‘ = k|21_;t(t1)a GOa «, )‘7 A) p(dti|zti = ka zl_;t(m)v dl_EtZ))

According to Algorithm 1, the prior over z;; obeys RCRP (G, a, A\, A), i.e.:

m;€7t +mpt, kel

p(zrs = k|27 Go, a, A, A) { (14)

a, if k is a new concept

where I;_ a.¢ is the set of all concept indices that generated at least one data
in the last A batches. Since we chose Gy conjugate to the likelihood functions
of the base classifiers, the second term in (13) can be analytically computed by
marginalizing over ¢y; that is:

p(dt,z‘

o k,zit(t,i)’digt,i)) - /p(dt,z‘ Or)p(orl{drj : 2r; = k})dor (15)

where p(dx|{d-; : zr; = k}) is the posterior of the parameters of classifier
k given all data that was generated by this classifier. Since the base classifier
is a naive Bayes classifier with normal likelihood for continuous features and
categorical likelihood for discrete features and due to the conjugacy relationship
between Gy and classifier likelihoods, the posterior of the parameters of these
classifiers can be easily computed using a few sufficient statistics.
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When a new batch of data arrives to be classified, we find the labels by
approximating their posteriors by:

P (YegrilTer1, diies 21:) 2 P(Yes1,il @105 dices 210 (16)
= Zp(yt+1,i Ti1,is 21,0 = Ky 2105 Ait)D(2e 41,0 = K|Teq14, 2106, drze) (17)
%

In this approximation, we have discarded the information that x, +i1 may have
about z¢41,. The first term of (17) can be calculated similar to (15) and the
second term is calculated by:

P(2e41,0|Te1,4, 21085 1:t) X P(@a1,5| 241,05 210t A1) D(Ze41,4] 2102 (18)

where the first term is calculated using (15) and marginalizing over y;41 ;.

4 Experimental Results

In this section, we provide experimental results and analysis regarding applica-
tion of the proposed non-parametric generative model on real stream classifica-
tion datasets, known as spam [29], weather [16], and electricity [25]!.

The spam dataset consists of 9324 emails extracted from the Spam Assassin
Collection. Each email is represented by 500 binary features which indicate the
existence of words derived using feature selection. The ratio of spam messages is
approximately 20%, hence the classification problem is imbalanced. The emails
are sorted according to their arrival date in to batches of 50 emails.

The weather dataset consists of 18,159 daily readings including features such
as temperature, pressure, and wind speed. The data were collected by The U.S.
National Oceanic and Atmospheric Administration from 1949 to 1999 in the
Offutt Air Force Base in Bellevue, Nebraska which has diverse weather patterns
making it a suitable dataset for evaluating concept drift. We use the same eight
features as [16]. The samples belong to one of two classes: “rain” with 5698
(31%) and “no rain” with 12461 (69%) samples, and are sorted into 606 30-day
batches. The model must predict the weather forecast for 30 days, after which
the true forecast is revealed.

The electricity dataset consists of 45,312 samples from the Australian New
South Wales Electricity Market. Each sample is described by 4 attributes, namely
time stamp, day of the week, and 2 electricity demand values. The data was
collected from May 1996 to December 1998, during which period the prices vary
due to changes in demand and supply. The samples were taken every 30 minutes
and sorted into batches of 48 samples each. The target is to predict whether the
prices related to a moving average of the last 24 hours, increase or decrease.

In order to compare different stream classification methods on the above
datasets, we use two well known measures, namely accuracy defined as the ratio
of samples classified correctly and the x coefficient [12] which is a robust mea-
sure of agreement that corrects for random classification. Furthermore, in order

1 All codes for the experiments are available at http://ml.dml.ir/research/npsc
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to evaluate accuracy over time, we use prequential accuracy with fading factor
a = 0.95 defined as [18]:

Zt: t—1
Aa(t) = Zt at—‘f‘
T=1

where a(7) is the ratio of correctly classified samples in batch 7. The reason
for choosing this measure is two fold: First, at time ¢, all previous accuracies
contribute to A,(t), providing an overall picture for evaluation. Second, the
forgetting factor o mitigates the impact of older accuracies allowing us to observe
how well the algorithm responds to concept drift.

We compare the proposed Non-Parametric Stream Classifier (NPSC) with
Naive Bayes (NB) and Probit [13] as uni-model methods and with Conceptual
Clustering and Prediction (CCP) [29] and Pool Management base Recurring
Concepts Detection (PMRCD) [27] as state-of-the-art model selection algorithms
that attempt to handle concept drift. The results are depicted in Table 1 and
Fig. 2.

The parameters of Probit, CCP and PMRCD are set according to their cor-
responding publications. The proposed method has hyper-parameters that need
to be set, namely (Go, a, A, A). The baseline distribution Gy can be treated as
the expected distribution G, which is the prior distribution over the parameters
of the base classifiers at time ¢. According to [37], it is unrealistic to assume
that this parameter is constant over time. Therefore, we learn this parameter
by training a single naive Bayes classifier on all observed data until time ¢.
The precision parameter «, controls how much G; can deviate from the base-
line distribution GGo. Moreover, this parameter controls how often new classifiers
emerge.This parameter was set equal to the batch size of each dataset. The pa-
rameter A is the forgetting factor which determines how fast the effect of old
data is mitigated. This parameter was set to 0.4 for all datasets. The parameter
A can be safely set to any large value for which e~ S is sufficiently small [4]; to
incur less computation cost, we set A to 30 for all datasets.

The results show that although Probit is a uni-model method, it provides
better results than CCP and PMRCD on the spam dataset. The reason is that
CCP and PMRCD assume that all data in a batch belong to the same concept.
This assumption coupled with the fact that initial batches in the dataset consist
of data from a single class, causes their classifiers to overfit to a single class.
Later batches in this dataset consist of data from different classes, which the
classifiers of CCP and PMRCD can not classify correctly. We have observed
that CCP and PMRCD tend to classify each batch with an accuracy similar to
the ratio of the majority label. The single classifier of Probit can better handle
this situation because it observes all the data and forgets older data gradually.
NPSC Provides the best accuracy on this dataset, because it can use multiple
classifiers without the unrealistic assumption that all data in a batch belong to
the same concept.

The weather dataset exhibits recurrent and gradual concept drift, for which
modeling with a finite number of concepts may be sufficient, but the assumption

(19)
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Table 1. Classification Accuracy (%) And k Measure For Different Classifiers For
Different Methods

NB Probit | CCP | PMRCD | NPSC

Spam Accuracy | 90.7 92.4 91.6 89.7 94.5

P " 0.8 | 0.8 | 0.76 0.7 0.85
Weather Accuracy | 73.8 73 73.2 73.0 75.5
K 0.31 0.41 0.37 0.32 0.41

Electricity Accuracy | 62.4 62.4 66.5 69.9 69.8
K 0.23 | 0.20 | 0.30 0.38 0.38

that all days in a month (one batch) belong to the same concept is still un-
realistic. That may be the reason for the better performance of NPSC on this
dataset (Table 1). According to Fig. 2, the ensemble methods (CCP, PMRCD,
and NPSC) handle concept drift better than uni-model methods (NB and Pro-
bit), but it is hard to distinguish which performs better. This was expected due
to the recurrent nature of weather which can be modeled by a finite number of
concepts without the need for a complex management scheme for the pool of
classifiers.

Finally, the results show that uni-model methods (NB and Probit) perform
poorly on the Electricity dataset. The reason is that this dataset exhibits com-
plex concept drift, due to the complex nature of demand and supply. Ensemble
methods (CCP, PMRCD, and NPSC) perform better, because they can handle
multiple concepts. On the other hand, CCP lacks a management scheme for the
pool of classifiers which explains its poor performance in comparison to PMRCD
and NPSC. Moreover, since each batch of data corresponds to a single day, the
assumption that data in a batch belong to the same concept is not unrealistic.
This explains the similar performance of PMRCD and NPSC.

5 Conclusions and Future Works

In this paper, we addressed the problem of stream classification and introduced a
probabilistic framework. The proposed method handles concept drift using a non-
parametric temporal model that builds a model selection based classifier via a
mixture model with potentially infinite mixtures. This method finds the number
of concepts and the data-concept association through inference on the proposed
model. In order to make inference on the proposed model, we introduced an
online algorithm which is based on Gibbs sampling.

Several directions of future research are possible. The proposed method yields
accurate results using simple naive Bayes classifier. As it was mentioned in Sec-
tion 4, more complex classifiers such as probit may provide better results. The
challenge is that there are no conjugate priors for probit’s parameters and hence,
it may be necessary to use some approximate inference algorithms such as Expec-
tation Propagation (EP) in each iteration of Gibbs sampling. Another direction
is to use model combination instead of model selection. The assumption that
each data is generated by one classifier may be a constraining assumption and
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Fig. 2. Classification results of classifiers on (a) Spam, (b) Weather, and (c) Electricity

since model combination methods enrich the hypothesis space by combining dif-
ferent classifiers, they may increase the efficiency of the model. Furthermore,
sampling based inference methods are non-deterministic and their convergence
can not be verified easily. A direction we are currently pursuing is to develop an
online variational inference algorithm based on the idea proposed in [28].
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