
Distributional Clauses Particle Filter

Davide Nitti1, Tinne De Laet2, and Luc De Raedt1

1 Department of Computer Science, KU Leuven, Belgium
2 Tutorial services, Faculty of Engineering Science, KU Leuven, Belgium

{davide.nitti,luc.deraedt}@cs.kuleuven.be, {tinne.delaet}@kuleuven.be

Abstract. We review the Distributional Clauses Particle Filter (DCPF),
a statistical relational framework for inference in hybrid domains over
time such as vision and robotics. Applications in these domains are chal-
lenging for statistical relational learning as they require dealing with
continuous distributions and dynamics in real-time. The framework ad-
dresses these issues, it supports the online learning of parameters and it
was tested in several tracking scenarios with good results.

Keywords: statistical relational learning, probabilistic programming,
particle filters, sequential monte carlo, tracking.

1 Introduction

Robotics and vision have made a lot of progress in state estimation, planning
and learning, often employing probabilistic techniques [7]. However, the majority
of the techniques used in these domains cannot easily represent relational infor-
mation, i.e., objects, properties and the relations that hold between them. This
calls for the use of probabilistic programming and statistical relational learning
techniques (SRL) [1], which have integrated rich relational representations with
uncertainty reasoning. Even though many such formalisms are described in the
literature, only few of them have been applied to robotics or vision, especially
in an online setting. The main challenges are dealing with the dynamics of the
environment, continuous distributions and the real-time aspect. This paper re-
views the Distributional Clauses Particle Filter (DCPF) framework [5,6] that
addresses these issues and that has been applied in [6,3,4].

2 The Probabilistic Language: Distributional Clauses

The DCPF is based on a dynamic variation of Distributional Clauses [2], a
language that extends logic programming formalism to define random variables.
A distributional clause is of the form h ∼ D ← b1, . . . , bn. Informally speaking,
whenever the conditions in the body b1, . . . , bn hold, a random variable h is
defined with distribution D. A distributional clause is a powerful template to
define conditional probabilities; indeed bi, h, and D can contain logical variables
that parametrize the clause. Consider the following examples:

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 504–507, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Distributional Clauses Particle Filter 505

n ∼ poisson(6). (1)

pos(P) ∼ uniform(1, 10)← between(1,�(n), P). (2)

type(A) ∼ uniform([magnet, ferromagnetic, nonmagnetic])← object(A). (3)

Clause (1) states that the number of people n is governed by a Poisson dis-
tribution with mean 6; clause (2) models the position pos(P) as a continuous
random variable uniformly distributed from 1 to 10, for each person P such that
between(1,�(n), P) succeeds (i.e., 1 ≤ P ≤ n with P integer). Thus, if the out-
come of n is 2, there will be 2 independent random variables pos(1) and pos(2).
The term �(d) represents the value of the random variable d. Finally clause (3)
describe a uniform distribution over 3 possible types for each object A.

Dynamic Distributional Clauses (DDC) extend Distributional Clauses to-
wards temporal domains. They define a discrete-time stochastic process fol-
lowing the same idea of a Dynamic Bayesian Network. We need clauses that
define: 1) the prior distribution: h0 ∼ D ← body0, 2) the state transition model:
ht+1 ∼ D ← bodyt, 3) the measurement probability: ht+1 ∼ D ← bodyt+1, and
finally, 4) clauses that define a random variable at time t from other variables at
the same time: ht ∼ D ← bodyt. For example, to describe that the next position
of every ball is equal to the current position plus gaussian noise we write:

pos(A)t+1 ∼ gaussian(�(pos(A)t), cov)← ball(A). (4)

3 Inference and Parameter Learning in DCPF

Given a set of DDC clauses, the DCPF performs filtering, that is, it estimates the
current (non-directly observable) world state through the observations obtained
from sensors. Formally, filtering or state estimation computes the probability
density function p(xt|z1:t, u1:t), where xt is the current state, z1:t is the set of
observations, and u1:t the actions (inputs) performed from time step 1 to t.

Given a model defined as a set of DDC clauses, DCPF performs inference
based on particle filtering [7], a Monte-Carlo technique to perform filtering in
temporal models. Thus, DCPF is a relational particle filter where each particle

x
(i)
t is an interpretation, i.e., a set of ground facts for the predicates and values of

random variables at time t. A key advantage of the DCPF is that it exploits the
relational representation to optimize inference. Rather than working with full
interpretations (that list the values for all state variables), DCPF propagates
partial interpretations (Fig. 1), these are partial world descriptions in which the
many state variables have been marginalized. This significantly improves the
performance with respect to classical particle filters that keep the full state [5].

DCPF supports online parameter learning, that is, state estimation of static
variables. Learning can be considered as a state estimation problem, adding the
parameters to learn in the state. However, this solution produces poor results due
to the degeneracy problem in particle filters. To solve the problem we focused on
two simple techniques that have a limited computational cost: artificial dynamics
and a variation of resample-move. Details can be found in [6].



506 D. Nitti, T. De Laet, and L. De Raedt

pos(1)t = (1, 0)
pos(2)t = (2, 0)

type(X) ∼ uniform(...)
near(X, Y)t

pos(1)t = (1, 0)
pos(2)t = (2, 0)

near(1, 2)t
type(1) = nonmagnetic
pos(1)t+1 = (0.9, 0)
pos(2)t+1 = (2.1, 0)

type(X) ∼ uniform(...) for X �= 1
near(X, Y)t for (X, Y) �= (1, 2)

Sampled

{

Marginalized

{

Before

After

Fig. 1. Partial particle example in the magnetic scenario, before (left) and after (right)
the propagation step. Initially the particle contains only the position of the two objects
of interest, marginalizing over all other variables. The model states that distant objects
do not interact, while close objects interact according to their types. Thus, to sample
the next position, DCPF needs to check whether the objects are close. This is the case,
so DCPF needs to sample the type of the objects to determine the possible interaction.
Object 1 is nonmagnetic in this example, therefore there is no interaction and we can
sample the next positions without sampling the type of the second object.

4 Applications

The DCPF framework has been applied to several tracking scenarios 1. In all
scenarios the objects are marked so that their position and orientation can be
easily recognized.

Magnetism Scenario [5]: there is a table with objects that can be either per-
manent magnets, ferromagnetic, or non-magnetic objects. The goal is to track
the objects and estimate their type from interactions of pair of objects. To rea-
son about the types of the objects, a theory of magnetism is provided. At the
high level it describes interactions, e.g., that two magnets attract or repulse each
other. At the lower level, it describes how the positions of the objects evolve over
time given the interactions between them.

Box Scenario [6]: the goal of this scenario is to track objects moved by a
human during a packaging activity with boxes (Fig. 2a-d). The model provided
implements principles such as: an object may fall inside the box if it is on the
box in the previous step; if the box is rotated upside down the objects inside will
fall down with a certain probability and so on. The framework is able to keep
track of objects inside boxes, even objects inside a box inside another box.

String Scenario [6]: we have a table with several objects possibly connected
by strings (Fig. 2e). The goal is to track the objects, estimate the current object
directly moved by human and learn online the length of the strings between
objects. To perform inference and learning we provide a model in DDC that
describe the behavior of objects connected by a string.

Distributional Clauses (the static version) have also been used for modeling
affordances in manipulation tasks [3] and occluded object search [4].

1 Videos available at https://dtai.cs.kuleuven.be/ml/systems/dc/

https://dtai.cs.kuleuven.be/ml/systems/dc/


Distributional Clauses Particle Filter 507

(a) cube on the box(b) cube inside the
box

(c) rotated box on a
beige box

(d) cube and box
inside the beige box

(e) String scenario

Fig. 2. (a-d) packaging scenario. The bottom images represent moments of the experi-
ment, while the top images show the corresponding estimated objects’ positions, where
each colored point represents an object in a particle. The cube is in blue, the small box
in fuchsia and the big box in beige (e) string scenario. The top figure represents the
estimated objects’ positions (yellow and grey), and the estimated string length in red.

5 Experiments and Conclusions

We proposed a flexible representation for hybrid relational domains in tempo-
ral models and provided an efficient inference algorithm for filtering and on-
line learning. This framework exploits the relational representation and the
(in)dependence assumptions to reduce the particle size (through partial interpre-
tations) and the inference cost. DCPF is particularly suited for (probabilistic)
relational models that involve objects and relations between them. It was empir-
ically evaluated and applied in several tracking scenarios with good results. The
results show that DCPF outperforms the classical particle filter, and is promising
for more complex robotics applications. The code, papers and videos (of all these
scenario’s) are available at https://dtai.cs.kuleuven.be/ml/systems/dc/.

References

1. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive
Logic Programming, Theory and Applications. Springer, Heidelberg (2008)

2. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic
of logical inference in probabilistic programming. Theory and Practice of Logic
Programming (2011)

3. Moldovan, B., De Raedt, L.: Learning relational affordance models for two-arm
robots. In: International Conference on Intelligent Robots and Systems (2014)

4. Moldovan, B., De Raedt, L.: Occluded object search by relational affordances. In:
IEEE International Conference on Robotics and Automation, ICRA (2014)

5. Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains.
In: International Conference on Intelligent Robots and Systems, IROS (2013)

6. Nitti, D., De Laet, T., De Raedt, L.: Relational object tracking and learning. In:
International Conference on Robotics and Automation, ICRA (2014)

7. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press (2005)

https://dtai.cs.kuleuven.be/ml/systems/dc/

	Distributional Clauses Particle Filter
	1 Introduction
	2 The Probabilistic Language: Distributional Clauses
	3 Inference and Parameter Learning in DCPF
	4 Applications
	5 Experiments and Conclusions
	References




