
BMaD – A Boolean Matrix Decomposition

Framework

Andrey Tyukin, Stefan Kramer, and Jörg Wicker

Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55128 Mainz, Germany
tyukiand@students.uni-mainz.de, {kramer,wicker}@informatik.uni-mainz.de

Abstract. Boolean matrix decomposition is a method to obtain a com-
pressed representation of a matrix with Boolean entries. We present
a modular framework that unifies several Boolean matrix decomposi-
tion algorithms, and provide methods to evaluate their performance.
The main advantages of the framework are its modular approach and
hence the flexible combination of the steps of a Boolean matrix de-
composition and the capability of handling missing values. The frame-
work is licensed under the GPLv3 and can be downloaded freely at
http://projects.informatik.uni-mainz.de/bmad.

1 Introduction

The goal of a Boolean matrix decomposition (BMD) is to represent a given
Boolean matrix as a product of two or more Boolean factor matrices. It is a
well-known and researched problem with a wide range of applications [2], e.g. in
multi-label classification [9], clustering [7], bioinformatics [10], or pattern mining
[6]. In this demo, we introduce BMaD system, that understands BMD as a
three step process. This division into three steps is inspired by the work of Pauli
Miettinen [3,5,4] and uses and extends this work.

The presented implementation differs from previous ones in three points. First,
the BMD is implemented as a modular algorithm, where each step can be carried
out using multiple algorithms. Hence, different modules from different previous
publications can be freely combined to a new BMD method. Second, all im-
plemented matrix decomposition methods support missing values in the data.
Published algorithms for BMD can be easily extended to support this. In most
cases, no modification of the algorithms were necessary, yet no previous im-
plementation supported missing values in the data. This became necessary in
previous work, when BMD was applied to multi-label classification, where some
labels can be set to unknown [9]. Third, BMaD is implemented in Java, which
makes it easy to use with WEKA [1] and run on many systems out of the box.
Methods to load WEKA instances directly into BMaD are provided.

While BMaD does not introduce a completely new algorithm, it provides an
easy way to combine state-of-the-art steps of BMD to use established methods
for new ways of BMD. Due to its capability to handle missing values, it was
already used in previous publications [9] and has the potential to be used in

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 481–484, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://projects.informatik.uni-mainz.de/bmad


482 A. Tyukin, S. Kramer, and J. Wicker

future research, e.g. for developing machine learning algorithms using BMD, or
any applications using BMD that benefit from a Java implementation.

Previous implementations did not provide such a wide range of BMD methods
in one framework. Additionally, so far there is no implementation capable of
handling missing values and no implementation available in Java.

2 Boolean Matrix Decomposition

Let B be the two-element Boolean algebra, i.e. the set {0, 1} equipped with binary
operations ∧ (AND), ∨ (OR), and the unary operation ¬. First, we define the
Boolean matrix product. Let A ∈ B

h×m and B ∈ B
m×w be two Boolean matrices

for h,w,m ∈ N. Their Boolean product A⊗B ∈ B
h×w is defined as:

A⊗B :=

[
m∨

k=1

Ai,k ∧Bk,j

]
i,j

.

Real-world data often contains missing values (which we denote by ’?’). BMaD
accepts Boolean matrices with missing values as input for the decomposition
algorithms. Given a Boolean matrix A ∈ (B ∪ {?})h×w and a parameter d ∈
{1, . . . , h}, the goal is to find factor matrices C ∈ B

h×d and B ∈ B
d×w, such

that the reconstruction C ⊗ B is as close to the original matrix A as possible.
More precisely, the reconstruction error E is defined as:

E(A, Ã) := #
{
(i, j) ∈ {1, . . . , h} × {1, . . . , w} : Ai,j �=?andAi,j �= Ãi,j

}
for A ∈ (B ∪ {?})h×w

and Ã ∈ B
h×w, that is, the number of entries in Ã that

differ from known values of the matrix A. If all entries of A are known, this error
is just the L1 norm of the real-valued difference between Ã and A. Using these
definitions, a more precise formulation of the BMD problem is as follows: given
A ∈ (B ∪ {?})h×w

, and compression dimension d ∈ {1, . . . , h}, find matrices
C ∈ B

h×d and B ∈ B
d×w, such that the reconstruction error E(A,C ⊗ B) is

minimized.
The problem is known to be NP-complete for Boolean matrices without un-

known values [3,5]. By obvious reduction, this also holds for the problem pre-
sented here. Hence, we do not attempt to solve the problem exactly, but instead
consider a family of heuristics suitable for finding approximate solutions.

3 Algorithms and Implementation

We provide an implementation of a family of modular algorithms, which include
several algorithms previously proposed by Miettinen et al. [3,5,4]. As previously,
let A ∈ B

w×h, d ∈ {1, . . . , h} and c > 0 be the input parameters. Algorithms
representable in BMaD consist of three subalgorithms, which are more or less
independent of each other.



BMaD – A Boolean Matrix Decomposition Framework 483

Table 1. Example program using BMaD. First, the single modules are created, then
they are used to decompose the matrix. Finally, the reconstruction error is calculated
on the decomposition.

1 // initialize the modules

2 CandidateGenerator generator = new AssociationGenerator(0.2);

3 BasisSelector selector = new GreedySelector();

4 Combinator combinator = new DensityGreedyCombinator();

5 // import matrix from WEKA instances objet

6 BooleanMatrix original = new BooleanMatrix(instances);

7 // decompose matrix using variable dim as dimension

8 BooleanMatrixDecomposition bmd = new

BooleanMatrixDecomposition(generator, selector, combinator);

9 Tuple<BooleanMatrix, BooleanMatrix> t = bmd.decompose(original,

dim);

10 BooleanMatrix c = t._1, b = t._2;

11 // generate reconstruction by Boolean multiplication

12 BooleanMatrix reconstruction = c.booleanProduct(b);

13 // calculate the relative reconstruction error

14 double reconstructionError =

original.relativeReconstructionError(reconstruction,

onesWeight);

Candidate generation First, a set of potential basis patterns is generated
from the matrix A. It consists of rows of same width as matrix A.
Identity All rows of A are declared to be candidates [5].
Association Candidates are generated using pairwise associations [5].
Intersection For each pair of rows of A, the entrywise minimum is a can-

didate [8].
Basis selection The size of the set generated in the first step is usually much

larger than the parameter d. Hence we have to sort out the less meaningful
patterns and retain exactly d candidate patterns that are included into the
basis matrix B (basis, second factor). Most of the subalgorithms discussed
here also generate a coarse approximation of the matrix C at this step. In
the next step, one can obtain the final version of the matrix C by either
refining the approximation, or building C from scratch.
Greedy Algorithm The error is minimized in a greedy manner [5].
Local Search (with minor variations) Similar to the Greedy Algorithm

but it iterates over k ∈ {1, . . . , d}, replacing the k-th basis row of B [5].
Boolean combination In this step, the matrix C (combination, first factor)

is constructed. The goal is to represent rows of the original matrix A as
Boolean combinations of the basis patterns from the matrix B. Clearly, each
row of the matrix A can be represented independently, hence it is enough to
specify how to calculate entries of one single row of C.
Iter Iterates multiple times over entries of C, and uses the change in recon-

struction error to check if flipping an entry decreases the error [5].



484 A. Tyukin, S. Kramer, and J. Wicker

Cover-greedy algorithm Start with an empty matrix C and repeatedly
search a basis row ρ that maximizes the change in reconstruction error.

Density-greedy algorithm Basis rows with fewer 1s are preferred to rows
with more 1s.

The API of BMaD is straightforward (an example call is given in Table 1).
For each module, a class exists, for each step, a class must be initialized and
used. The classes provide the appropriate methods to perform the given step
of the BMD. Additionally, methods to compute errors or visualize matrices and
errors are implemented (examples of visualizations are shown on the web site
http://projects.informatik.uni-mainz.de/bmad and in the demo).

4 Conclusion

This demo presents a modular framework for BMD, implementing it as a modular
algorithm. Each step of the algorithm can be carried out by several modules,
providing a flexible implementation of the BMD. It is implemented in Java and
provides support for missing values in the data set and a WEKA interface. In
the demo, we will present a step-by-step tutorial how to use BMaD, showing
the possibilities of it and visualizing the results.

References

1. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explorations Newslet-
ter 11(1), 10–18 (2009)

2. Lu, H.: Boolean matrix decomposition and extension with applications. PhD thesis,
Rutgers University (2011)

3. Miettinen, P.: The Boolean column and column-row matrix decompositions. Data
Mining and Knowledge Discovery 17(1), 39–56 (2008)

4. Miettinen, P., et al.: Matrix decomposition methods for data mining: Computa-
tional complexity and algorithms. PhD thesis, University of Helsinki (2009)

5. Miettinen, P., Mielikainen, T., Gionis, A., Das, G., Mannila, H.: The discrete
basis problem. IEEE Transactions on Knowledge and Data Engineering 20(10),
1348–1362 (2008)

6. Shen, B.-H., Ji, S., Ye, J.: Mining discrete patterns via binary matrix factorization.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 757–766. ACM (2009)

7. Streich, A.P., Frank, M., Basin, D., Buhmann, J.M.: Multi-assignment clustering
for Boolean data. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 969–976. ACM (2009)

8. Vaidya, J.: Boolean matrix decomposition problem: Theory, variations and appli-
cations to data engineering. In: 2012 IEEE 28th International Conference on Data
Engineering (ICDE), pp. 1222–1224. IEEE (2012)

9. Wicker, J., Pfahringer, B., Kramer, S.: Multi-label classification using Boolean
matrix decomposition. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing, pp. 179–186. ACM (2012)

10. Zhang, Z.-Y., Li, T., Ding, C., Ren, X.-W., Zhang, X.-S.: Binary matrix factor-
ization for analyzing gene expression data. Data Mining and Knowledge Discov-
ery 20(1), 28–52 (2010)

http://projects.informatik.uni-mainz.de/bmad

	BMaD – A Boolean Matrix Decomposition
Framework

	1 Introduction
	2 Boolean Matrix Decomposition
	3 Algorithms and Implementation
	4 Conclusion
	References




