
Speeding Up Recovery from Concept Drifts

Silas Garrido Teixeira de Carvalho Santos1, Paulo Mauricio Gonçalves Júnior2,
Geyson Daniel dos Santos Silva1, and Roberto Souto Maior de Barros1

1 Centro de Informática, Universidade Federal de Pernambuco, Brazil
{sgtcs,gdss,roberto}@cin.ufpe.br

2 Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, Brazil
paulogoncalves@recife.ifpe.edu.br

Abstract. The extraction of knowledge from data streams is an activ-
ity that has progressively been receiving an increased demand. However,
in this type of environment, changes in data distribution, or concept
drift, can occur constantly and is a challenge. This paper proposes the
Adaptable Diversity-based Online Boosting (ADOB), a modified version
of the online boosting, as proposed by Oza and Russell, which is aimed
at speeding up the experts recovery after concept drifts. We performed
experiments to compare the accuracy as well as the execution time and
memory use of ADOB against a number of other methods using several
artificial and real-world datasets, chosen from the most used ones in the
area. Results suggest that, in many different situations, the proposed ap-
proach maintains a high accuracy, outperforming the other tested meth-
ods in regularity, with no significant change in the execution time and
memory use. In particular, ADOB was specially efficient in situations
where frequent and abrupt concept drifts occur.

Keywords: data stream, concept drift, ensemble classifier, online boost-
ing, diversity.

1 Introduction

Nowadays, several applications need the use of mechanisms that enable the ex-
traction of knowledge in real time. Examples of such applications include mon-
itoring the purchase history of customers, the movement data from sensors, or
water temperatures. Thus, the algorithms used for this purpose must be con-
stantly updated, trying to adapt to new instances and taking into account the
computational constraints.

When working in environments with a continuous flow of data, it is not pos-
sible to guarantee that the distribution of the data will remain stationary. On
the contrary, several changes may occur over time, triggering situations com-
monly known as concept drift. The speed with which the changes occur may be
classified as abrupt, when the transition from an old to a new concept occurs
suddenly, or gradual, when such a transition is smooth [1].

There are several approaches proposed to detect changes in concepts. Some
of these approaches provide for the adaptation of the internal structure of a

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 179–194, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



180 S.G.T. de Carvalho Santos et al.

classifier to deal with the changes of concept. Others try to identify when a
concept drift has occurred, and then drop the old classifier and create a new
one for the most actual concept [1–6]. Other existing methods use ensemble
classifiers with some weighting policy applied to their members as well as for
dropping the worst classifiers and adding new ones [7–11]. Finally, there are also
approaches that seek to increase the efficiency of change detection when dealing
with concepts that have previously occurred [12–14].

In situations where many changes of concepts occur, learning algorithms con-
stantly need to adapt to the new distribution. In such scenarios, it is common to
observe a delay before the complete adaptation occurs, i.e., a period that is used
for learning a satisfactory generalization. The longer this period, the greater the
number of incorrect predictions.

Based on these observations and using an ensemble of classifiers, we decided
to try modifying the online version of boosting, originally proposed by Oza and
Russell [15], aiming at a more rapid recovery of the experts accuracy in environ-
ments with frequent changes of concepts. More specifically, we have changed the
way diversity is distributed during training.

This paper describes the Adaptable Diversity-based Online Boosting (adob)
and compares the performance of our proposal with some of the major existing
ensemble methods for dealing with data streams and concept drifts using the
Massive Online Analysis (moa) framework [16]. The results indicate that adob
maintains good accuracies in different situations, surpassing the other tested
methods in regularity.

The rest of this paper is organized as follows: Section 2 surveys the related
work; Section 3 introduces the datasets used in the experiments; Section 4 de-
scribes in detail the operation of our proposal; Section 5 compares the proposed
method to other existing ensemble methods; and, finally, Section 6 presents our
conclusions.

2 Related Work

A large number of methods have been proposed to learn from data streams con-
taining concept drifts. Examples of older methods include [12, 17, 18]. Nowadays,
several methods have been proposed using the concept of ensemble classifiers.

Bagging [19] and Boosting [20] are techniques that use a set of classifiers
trained on the original data by aggregating the responses of each classifier to
get a better prediction. They use different strategies both to manipulate the
data during the training of experts and also to combine their predictions. Online
Bagging and Boosting [15] are adapted versions of these techniques to data
stream environments. They both make use of the Poisson distribution to simulate
a behavior similar to their offline versions.

Adwin Bagging (adwinbag) [8] and Leveraging Bagging (leveraging) [9]
both make use of the online version of bagging, as it was defined by Oza and
Russell [15], adding Adaptive Windowing (adwin) [3] as their concept drift
detector. In addition, Leveraging Bagging makes two changes to the original



Speeding Up Recovery from Concept Drifts 181

proposal: the first is to increase the value of diversity (λ) which, as a consequence,
leads to an increase in the probability that an expert trains on the same instance.
The second is to change the way the experts predict instances in order to increase
diversity and reduce the correlation.

The Dynamic Weighted Majority (dwm) [7] extends the Weighted Majority
Algorithm [21] and implements a weighted ensemble classifier specifically de-
signed to identify concept drifts. This method adds and removes classifiers ac-
cording to the ensemble global performance. If the ensemble commits an error,
then a classifier is added. If one classifier commits an error, its weight is reduced.
If after many examples a classifier continues with a low accuracy, indicated by
a low weight, it is removed from the ensemble.

Diversity for Dealing with Drifts (DDD) [10] uses four ensemble classifiers with
high and low diversity, before and after a concept drift is detected. A previous
study [22] analyzedhow these ensembles behaved in data sets suffering fromabrupt
and gradual concept drifts with several speeds of change, right after the drift and
longer after.With the results obtained,Diversity for Dealing with Driftsd was pro-
posed, trying to select the best ensemble (or weighted majority of ensembles) be-
fore and after drifts, detected by the use of a drift detection method.

The Accuracy Updated Ensemble (aue2) [11], recently proposed, maintains
a set of classifiers and its strategy is to, at every n instances (called chunks),
remove the expert with the worst accuracy and replace it with a new one. The
weight of the experts are also defined according to their accuracy, making the
most accurate one have a greater influence on the prediction. The way the experts
are updated makes the method sensitive to changes in concepts.

3 Datasets

This section describes the datasets that were selected for the experiments used
to analyze the performance of adob against those of other recent methods. We
chose both real-world and artificial datasets. In the artificial ones, it is possible
to define the position of the concept drifts as well as its quantity and size. Thus,
several situations can be simulated. In the real-world datasets, the unpredictabil-
ity and volume of data makes their use interesting, complementing the scenarios
provided by the artificial data. All the datasets used are available, most of them
in the moa website at the address http://moa.cs.waikato.ac.nz/.

3.1 Artificial Datasets

For the experiments described in Section 5, we chose four artificial datasets, two
of them with gradual concept drifts and two with abrupt concept drifts. These
are: LED [23, 24], RBF [8, 25], Sine [1, 2, 4], and Stagger [7, 17].

The LED dataset is composed of 24 categorical attributes, 17 of which are
irrelevant, and one categorical class with ten possible values. It represents the
problem of predicting the digit shown by a seven-segment LED display, where
each attribute has 10% probability of being inverted (noise). We used a version
of LED available at moa that includes concept drifts to the data sets by simply

http://moa.cs.waikato.ac.nz/


182 S.G.T. de Carvalho Santos et al.

changing the attributes positions. This dataset was used in our experiments to
test gradual concept drifts.

RBF (Radial Basis Function) creates complex concept drifts that are not
straightforward to approximate with a decision tree model. It works as follows:
a fixed number of random centroids are generated. Each center has a random
position, a single standard deviation, a class label, and a weight. New examples
are generated by selecting a center at random, taking weights into consideration
so that centers with higher weight are more likely to be chosen. A random
direction is chosen to offset the attribute values from the central point. The
length of the displacement is randomly drawn from a Gaussian distribution with
standard deviation determined by the chosen centroid. The chosen centroid also
determines the class label of the example. This effectively creates a normally
distributed hypersphere of examples surrounding each central point with varying
densities. Only numeric attributes are generated. Drift is introduced by moving
the centroids with constant speed. This speed is initialized by a drift parameter.
This dataset is composed of six classes and 20 attributes, and was also used to
test gradual concept drifts.

Sine presents the problem of identifying the position of coordinates, repre-
sented by two attributes, in relation to the curve y = sin(x). In the first context,
points below the curve are classified as positive. After each concept drift, the
classification is reversed. Each coordinate has values uniformly distributed in
the [0,1] interval. It is possible to include two other attributes, filled with ran-
dom data in the same interval, with no influence on the classification function
(irrelevant data). Gama et al. [1] named these data sets as Sine1 and Sinirrel1, re-
spectively. They also described Sine2, similar to Sine1 but using a different curve:
y < 0.5 + 0.3sin(3πx). Positive and negative examples are interchanged to en-
sure a stable learning environment. This dataset was used to test abrupt concept
changes and is available at https://sites.google.com/site/moaextensions/.

In Stagger, each example consists of the following attributes: color ∈ {green,
blue, red}, shape ∈ {triangle, circle, rectangle}, and size ∈ {small, medium,
large}. According to the Stagger original paper [17], there are three kinds of
different concepts: in concept 1, color = red ∧ size = small; in concept 2,
color = green∨shape = circle; and in concept 3, size = medium∨size = large.
This data set is usually used to simulate abrupt concept drifts and is fairly simple
to learn – it has few attributes and concepts, and concepts 2 and 3 overlap.

3.2 Real Datasets

In addition to the artificial datasets, we chose three real-world datasets, from
the most used ones in the area of data streams, all with very different number of
instances and complexity. In these datasets, the number and position of concept
drifts (if existent) are unknown.

The Electricity dataset [1, 2, 7, 8, 10, 25], composed of 45,312 instances and
eight attributes, presents data collected from the Australian New South Wales
Electricity Market. In that market the prices are not fixed, varying based on
market demand and supply. The prices are set every five minutes and the class

https://sites.google.com/site/moaextensions/


Speeding Up Recovery from Concept Drifts 183

label identifies the change of the price related to a moving average of the last 24
hours. The goal of the problem is to predict if the price will increase or decrease.

The Forest Covertype dataset [8, 15, 24, 25] contains the forest cover type for
30 x 30 meter cells obtained from US Forest Service (USFS) Region 2 Resource
Information System (RIS) data. The goal is to predict the forest cover type from
cartographic variables. It contains 581,012 instances and 54 attributes, including
numeric and categoric ones.

The Poker Hand data set [8, 25] represents the problem of identifying the
value of five cards in the Poker game. It is constituted of five categoric and five
numeric attributes and one categoric class with 10 possible values informing the
value of the hand; for example, one pair, two pairs, a sequence, a street flush,
etc. “In the Poker hand data set, the cards are not ordered, i.e., a hand can
be represented by any permutation, which makes it very hard for propositional
learners, especially for linear ones” [25]. Even though a simpler modified version
exists (where the cards are sorted by rank and suit, and duplicates are removed),
we decided to use the original harder version in our experiments. The used data
set contains 1,000,000 instances.

4 Adaptable Diversity-Based Online Boosting

The Adaptable Diversity-based Online Boosting (adob) is a variation of the
Online Boosting [15] method, which proposes to distribute instances more ef-
ficiently among experts, aiming to more quickly adapt to the situation where
concept drifts occur frequently, specially if they are abrupt. This distribution is
performed by controlling the diversity (λ) through the accuracy of each expert.

When a new distribution starts, the accuracy of the experts can be used to
reduce the initial error, increasing the focus on instances of difficult classification
and accelerating the diversity. As the experts have a high degree of similarity
in the beginning, due to the reduced number of known instances, the accuracy
can be used to define their behaviors. However, because more instances of the
same distribution are coming and experts are diversifying, the use of the experts
accuracies will tend to have little influence in their behaviors.

Algorithm 1 shows the adob pseudo-code, which is our modified version of
the Online AdaBoost algorithm [15]. Initially, the ensemble of classifiers (h) is
sorted by accuracy in ascending order. Before, several variables are initialized,
including minPos and maxPos with values that represent the classifier with the
worst and best accuracy, respectively, as well as λ, λsc, and λsw (lines 1 to 4).

When an instance d arrives, initially the expert with less accuracy will be
selected. If the instance is correctly classified, we assume that probably the
other experts, which are more accurate, will also have good chances of correctly
classifying it. However, the correct classification of the worst expert does not
guarantee that the others will do it properly too, even if an error is unlikely.
Accordingly, we will refer to the error of another expert with better accuracy as
an unlikely error.



184 S.G.T. de Carvalho Santos et al.

Algorithm 1. Adaptable Diversity-based Online Boosting

Input: ensemble size M , instance d, ensemble h
1 minPos ← 1; maxPos ← M ;
2 correct ← false;
3 λ ← 1.0; λsc ← 0.0; λsw ← 0.0;
4 sort h by accuracy in ascending order;
5 for m← 1 to M do
6 if correct then
7 pos ← maxPos; maxPos ← maxPos - 1;
8 else
9 pos ← minPos; minPos ← minPos + 1;

10 end
11 K ← Poisson(λ);
12 for k ← 1 to K do
13 hpos ← Learning(hpos, d);
14 end
15 if hpos(d) was correctly classified then
16 λsc

m ← λsc
m + λ;

17 λ ← λ
(

N
2λsc

m

)
;

18 correct ← true;

19 else
20 λsw

m ← λsw
m + λ;

21 λ ← λ
(

N
2λsw

m

)
;

22 correct ← false;

23 end

24 end
25 return h;

Looking into lines 15 to 23 of Algorithm 1, it is possible to observe that the
value of λ will be reduced when the classification is done correctly and increased
when it is incorrect. In this way, if an unlikely error occurs, the later it occurs,
the smaller the influence on λ it will have. To minimize the consequences of an
unlikely error, the next expert selected to do the classification will be the one
with the best accuracy, followed by the second best, and so on (lines 6 to 7).
Using this procedure, experts with the worst accuracies, and most likely to make
mistakes, will only be selected at the end.

Another possible scenario is the case where the expert with the worst accuracy
incorrectly classifies the instance. In this situation, we distribute the greatest
possible λ for the next experts which are more likely to make mistakes in the
classification. Therefore, the next experts will be selected according to their
performances, from the worst to the best (lines 8 to 9). Assuming that experts
with the lowest performances have higher probabilities of making mistakes in
the classification, we force them to be selected earlier and maximize λ.



Speeding Up Recovery from Concept Drifts 185

As previously mentioned, after more instances of the same distribution are
presented, the lower the influence of this procedure in the experts accuracy will
be. At this stage, the experts tend to have a low correlation, and the accuracy of
the worst expert will have low importance to the others. Thus, adob will now
have similar behavior to the original online boosting [15], except for the fact
that experts begin to be selected unpredictably, varying for each instance. Thus,
these changes are especially valid for situations in which the concept changes
often and abruptly, as a consequence of their rapid recovery.

To help understanding how adob is used, Algorithm 2 presents a simplified
version of MOA’s singleClassifierDrift. The classification result is monitored by
a concept drift detection method – we used adwin. To classify new instances,
ADOBclassifier (line 4) behaves the same as defined in [15] and the return is:

h(x) = argmaxy∈Y

∑
m : hm(x) = ylog

1
βm , where

βm = εm
1−εm

, εm =
(

λsw
m

λsc
m+λsw

m

)
,

and m ∈ [1..M ] is limited by the number of experts. If adwin returns a warning,
a new ensemble h2 immediately starts to be trained using adob alongside the
existing one (lines 6-7). When the drift is confirmed, the newly created ensemble
is used and the old one, representing the last distribution, is removed (lines 8-9).

Algorithm 2. Simplified code of MOA’s singleClassifierDrift with ADWIN

Input: ensemble size M , data stream D, base learner b
1 ADWIN ← new ADWIN method;
2 h, h2 ← new ensemble using M times b;
3 foreach instance d in D do
4 ADWIN ← ADOBclassifier(M , d, h);
5 switch ADWIN do
6 case detect a warning level
7 h2 ← ADOB(M , d, h2);
8 case detect a drift
9 h ← h2; h2 ← reset ensemble;

10 endsw
11 h ← ADOB(M , d, h);

12 end

It is worth pointing out that, in the real code, h2 is also reset when a warning
is not confirmed. This and other less important details were omitted here.

5 Experiments Configuration and Results

This section describes the set up and results of the experiments used to evaluate
adob against other implementations of online bagging and boosting, as well as
other recent ensemble methods aimed at detecting concept drifts in data streams.
The chosen methods are: adwinbag, leveraging, dwm, ddd, and aue2. The



186 S.G.T. de Carvalho Santos et al.

original online version of AdaBoost (OzaBoost) [15] was included in the tests for
comparative purposes, also using adwin to detect concept drifts. This method
will be called Adwin Boosting (adwinboost). All these methods were compared
in terms of accuracy, execution time, and memory used.

The choice of methods was also based on the following additional criteria:
adwinbag and adwinboost were selected because they implement the original
version of online bagging and boosting, respectively; leveraging and ddd,
because they use modified versions of the online bagging; whereas dwm and
aue2, because they set their own training strategies to detect changes.

To compute the precision, memory usage, and execution time of the meth-
ods, experiments were repeated 40 times in the artificial datasets. Average was
computed alongside with a 95% confidence interval. In addition, each artificial
dataset was composed of 10,000 instances.

Finally, all the tests were performed in a Core i3 350M processor, 2GB of
main memory, running the Ubuntu 12.04 64 bits operating system.

5.1 Drift Configuration in the Artificial Datasets

In the configuration of the artificial datasets, we inserted abrupt and gradual
concept drifts. Noise was also inserted in some datasets in order to check the
behavior of the methods in these situations.

Two versions of the LED dataset were used, both with gradual concept drifts.
In one dataset, drifts occur at instances 3,000 and 6,000. In the other, four
gradual changes were inserted at instances 2,000, 4,000, 6,000, and 8,000. In
both versions, every time a change occurs, 10% of noise was added.

Other gradual changes were tested, this time making use of the Random RBF
dataset. The position of the concept drifts in the two versions of RBF were the
same used in the LED data sets.

The two versions of both Sine and Stagger datasets have four and eight abrupt
changes, respectively. In their first configurations, the changes were inserted at
instances 2,000, 4,000, 6,000, and 8,000. In their second versions, eight changes
occur at instances 2,000, 3,000, 4,000, ..., 8,000, and 9,000, respectively.

5.2 Ensemble Methods Configuration

To perform a fair comparison between the methods, common parameters were
all set similarly: the base learner was a Hoeffding Tree [18] and the number of
experts was set to ten. To set individual parameters, each method was executed
with ten different configurations for each dataset used, to check if their default
values were the ones which produced the best accuracy. In most cases this was
indeed the case, but there were exceptions. In these few cases, we adopted a
different parametrization – specific values are given below.

To detect concept drifts, adwinbag, adwinboost, leveraging, and adob
all make use of adwin. In all of them, the δ parameter of adwin, that corre-
sponds to the maximum global error, was set to 0.1. This value influences the
hypothesis test used to check for any change in the distribution [3].



Speeding Up Recovery from Concept Drifts 187

ddd originally uses the Early Drift Detection Method (eddm) [2] to detect
changes. The parameter values used for eddm were their defaults, i.e., n = 30,
w = 0.95, and d = 0.99. These represent, respectively, the number of instances
before starting to detect changes, the confidence level to activate the warning
level, and the confidence level to detect a change.

Regarding the parameters of the methods, leveraging uses λ, which controls
the weight of resampling. The higher the value of λ, the greater the probability
that a given instance is repeated for each expert ensemble. This probability is
defined according to the Poisson distribution [9]. In our tests, we used λ = 6.

dwm uses three parameters: p, which corresponds to the time needed to verify
if any expert will be removed or added as well as to update their weights if
any classifier incorrectly classifies the actual instance; β, the value that will be
decremented by the expert every time it makes a mistake; and, finally, θ, which
is the minimum value that an expert can have without being removed [7]. We
used p = 100 (artificial datasets), p = 250 (real datasets), β = 0.5, and θ = 0.01.

The parameters of ddd are: W , responsible for controlling the robustness of
the method to false alarms; λl, useful to define the value that will represent an
ensemble with low diversity; and λh, a parameter that will represent an ensemble
with high diversity [10]. In our experiments we used W = 1 (except in the LED
datasets), W = 3 (LED datasets), λl = 1, and λh = 0.05.

Finally, aue2 has two parameters, which control the memory usage (m) and
the chunk size (c). The first is responsible for limiting the maximum amount
of memory that each component of the ensemble may have. The latter defines
the number of instances needed to check the accuracy and memory usage of
the ensemble members [11]. After preliminary tests, their values were defined as
m = 32MB, c = 50 (except in the Forest Covertype and Poker Hand datasets),
and c = 500 (Forest Covertype and Poker Hand datasets).

5.3 Accuracy Analysis

Table 1 presents the accuracies obtained for each method on the artificial and
real-world datasets. Bold values identify the best results. The average rank is
the average of the positions that each method achieved in different datasets.

In the LED dataset with two concepts drifts, the adwinbag method had the
best accuracy, closely followed by leveraging. Following, there are ddd, adob,
and aue2. In general, these methods have similar performance, with differences
ranging from 0.1% to 3%, approximately. On the other hand, adwinboost and
dwm obtained the worst results. As can be seen in the first graphic of Figure 1,
the slow recovery of adwinboost negatively affects its accuracy at every concept
drift. In addition, dwm had the worst performance throughout the dataset.

With the addition of two more drifts in the LED dataset, as might be expected,
the performance of all methods deteriorated. The most affected method was
aue2, with a drop of about 3%. The less impacted was dwm, with a worsening
of only 0.74%. However, dwm’s performance remained well below those of the
others. In descending order of accuracy, the result is leveraging, adwinbag,
ddd, adob, aue2, adwinboost, and dwm.



188 S.G.T. de Carvalho Santos et al.

Table 1. Average accuracy in percentage (%) with 95% confidence in artificial datasets

ADOB AdwinBag AdwinBoost Leveraging DWM DDD AUE2

LED2 59.30±0.14 61.18±0.08 55.52±0.53 61.08±0.09 45.48±0.78 60.62±0.16 58.18±0.23
LED4 56.86±0.10 58.57±0.09 53.69±0.52 59.01±0.06 44.74±0.89 57.92±0.14 55.13±0.29
RBF2 53.08±0.26 54.59±0.15 47.13±0.45 39.20±0.15 40.12±0.62 53.41±0.21 53.26±0.27
RBF4 56.77±0.40 58.29±0.12 51.13±0.36 43.58±0.20 42.75±0.59 57.58±0.22 57.19±0.28
Sine4 90.28±0.10 81.84±0.79 90.68±0.13 89.90±0.14 87.60±0.43 88.97±0.31 87.57±0.21
Sine8 88.42±0.10 80.14±0.53 88.91±0.12 87.42±0.14 86.90±0.36 87.55±0.33 86.06±0.23
Stagger4 99.02±0.02 92.73±0.21 96.00±1.21 97.80±0.05 96.45±0.32 97.47±0.15 94.27±0.17
Stagger8 98.74±0.02 90.32±0.18 96.52±0.82 94.70±0.13 95.34±0.29 96.59±0.13 88.29±0.19

Elec 87.98 86.44 87.09 89.71 88.17 85.72 80.98
Cov 82.79 84.44 81.31 88.16 87.34 83.96 65.95
Poker 53.74 53.20 52.42 52.18 46.60 53.19 48.84

Rank 2.82 3.82 4.18 3.36 5.09 3.18 5.55

Analyzing the RBF dataset with two concept drifts, adwinbag again had the
best accuracy, closely followed by ddd, aue2, and adob. adwinboost, dwm,
and leveraging had the worst results. Unlike the previous dataset, with the
insertion of two more concept drifts, the performance of the methods improved.
This can be explained by how the changes were defined. In RBF2, the gradual
changes take twice as long to fully occur than in RBF4. Thus, methods spend
more time to detect if there was a change and, consequently, take longer to
recover. Although all methods increased their accuracies in this version, the order
remained the same, except for the fact that dwm assumed the worst position,
swapping places with leveraging.

Up to this point, the presented datasets included gradual concept drifts. Mak-
ing a general analysis of this type of change, the methods that had the best ac-
curacies were: adwinbag, ddd, adob, and aue2, with differences ranging from
0.77% to 2.21%. Right after, with a considerable distance, follows adwinboost,
leveraging, and dwm occupying the last positions, respectively.

Differently from the other datasets, at Sine, adwinbag returned the worst
results. Its differences to aue2 are of 5.73% and 5.92%, in the datasets with four
and eight drifts, respectively. These are significant differences, given that the
differences from the first (adwinboost) to the second to last (aue2, in both
cases) are of only 3.11% and 2.85%, respectively.

Finally, on Stagger the results were somewhat different from those on Sine.
aue2 and adwinbag were again the worst methods, but the order was different
in the two versions used. The best accuracies were achieved by adob and ddd.

Analyzing the overall accuracy of the methods in all datasets with abrupt
concept drifts, adob had the best performance, followed by adwinboost, ddd,
leveraging, dwm, aue2, and adwinbag. Comparing these results with the
results of the datasets with gradual concept drifts, adwinbag had the highest
drop in performance, from first to last. The methods that maintained a better
balance in different situations were adob and ddd, respectively.

In the real datasets, leveraging was the method with the best overall per-
formance, followed by adob, adwinbag, ddd, adwinboost, dwm, and aue2,
respectively. It is worth noting that, despite its poor overall performance in these



Speeding Up Recovery from Concept Drifts 189

datasets, dwm was the second best in both Electricity and Forest Covertype.
This is explained by its very bad performance in the Poker Hand dataset.

Finally, observe that, in the first two graphics of Figure 1, it is possible to
visualize the gradual and abrupt changes, respectively. However, in the third,
referring to the Electricity dataset, apparently no drastic change occurs.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

20

30

40

50

60

70

80

Instances

A
cc

ur
ac

y

 

 

AUE2
DDD
DWM
Leveraging
ADOB
Adwin Bagging
Adwin Boosting

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
80

82

84

86

88

90

92

94

96

98

100

Instances

A
cc

ur
ac

y

 

 

AUE2
DDD
DWM
Leveraging
ADOB
Adwin Bagging
Adwin Boosting

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

70

75

80

85

90

95

Instances

A
cc

ur
ac

y

 

 

AUE2
DDD
DWM
Leveraging
ADOB
Adwin Bagging
Adwin Boosting

Fig. 1. Accuracy results in the LED2, Stagger4 and Electricity datasets



190 S.G.T. de Carvalho Santos et al.

Complementing the accuracy analysis, a statistic based on the nonparametric
Friedman test [26] was used. For this test, the null hypothesis states that all
methods are statistically equal. If this hypothesis is rejected, the test indicates
that there is a statistical difference in any of the methods, but it does not specify
which method(s). For this task, the use of a post-test is required. In our case,
we used the Bonferroni-Dunn [27] to compare adob with the other methods.

Initially, we compared the accuracies of the methods, using a 95% confidence
interval: F6;60 = 2.25. Therefore, with FF = 2.79 (bigger than F6;60), the null
hypothesis is rejected. Then, proceeding to the post-test, the critical difference
(CD) was found to be 2.44. So, we can say that adob is statistically superior in
accuracy to aue2. Figure 2 graphically represents these results.

Fig. 2. Comparison results of adob against the other methods using the Bonferroni-
Dunn test with a 95% confidence interval

5.4 Time Analysis

Table 2 displays the values in seconds that each method took to rank the different
datasets. An important observation is that the times of the real-world datasets
were significantly higher than those of the artificial datasets, except for RBF
and Electricity, which presented similar times. Because the real-world datasets
are much bigger, requiring more time to be processed is an expected behavior.

Table 2. Average runtime in seconds (s) with 95% confidence in artificial datasets

ADOB AdwinBag AdwinBoost Leveraging DWM DDD AUE2

LED2 3.34±0.04 3.05±0.03 2.86±0.04 3.74±0.02 2.74±0.05 4.87±0.14 4.09±0.02
LED4 3.62±0.05 3.23±0.03 3.05±0.04 3.90±0.03 2.72±0.04 5.74±0.11 4.13±0.02
RBF2 8.10±0.07 8.79±0.10 7.76±0.10 12.63±0.06 9.63±0.11 13.80±0.50 11.65±0.11
RBF4 9.34±0.14 9.46±0.09 7.79±0.09 13.43±0.10 9.42±0.11 16.28±0.61 13.16±0.14
Sine4 2.30±0.03 2.10±0.02 2.36±0.04 3.79±0.04 1.48±0.04 2.97±0.06 2.49±0.03
Sine8 2.59±0.04 2.14±0.03 2.58±0.05 3.80±0.04 1.58±0.03 3.37±0.06 2.53±0.04
Stagger4 1.67±0.03 1.66±0.03 1.68±0.03 2.09±0.02 0.70±0.01 1.59±0.02 1.99±0.02
Stagger8 1.81±0.03 1.59±0.03 1.84±0.03 2.22±0.02 0.69±0.01 1.78±0.02 2.93±0.07

Elec 8.98 7.22 8.27 16.65 4.73 15.25 8.18
Cov 291.52 228.08 229.42 468.86 165.49 545.17 312.90
Poker 469.67 358.27 374.05 3574.45 155.88 358.56 152.66



Speeding Up Recovery from Concept Drifts 191

Analyzing these results, the slowest artificial dataset was RBF, with an av-
erage of 11.27s and 10.34s in the versions with four and two concept drifts,
respectively. All the others were much faster. The fastest was Stagger, with an
average time of 1.84s and 1.63s in the versions with 8 and 4 drifts, respectively.

In the real-world datasets, the average times were somewhat proportional to
the number of instances: Poker Hand was the one that took longer (777.65s),
followed by Forest Covertype (320.21s), and Electricity (9.90s).

A fact that possibly influences the time is diversity. The higher the diversity,
the higher the probability of the same instance be repeatedly distributed to
a different expert and hence more time be used. adob and adwinboost are
methods that tend to increase their diversities in proportion to the error. Thus,
the lower the accuracy of the method – which suggests more errors – the greater
the diversity, causing a longer running time.

For example, observing the RBF and Stagger results, the ones with the lowest
and highest accuracies, were the ones with the highest and lowest times in the
artificial datasets, respectively. The same idea might be true in the real-world
datasets, but these should be compared separately because they possess very
different numbers of instances. The differences in execution times between adob
and adwinboost demonstrate the first attempt to maximize/minimize diversity,
as discussed in Section 4, in favor of a better accuracy in different situations.

On the other hand, one of the characteristics of leveraging is to maintain
a higher diversity during the processing of the instances. As a result, it is the
slowest method, followed by ddd. Although adwinbag and leveraging use
a static diversity, Minku et al. [22] show that different diversities in different
situations of concept drifts contribute to improve the accuracy of the method.

5.5 Memory Analysis

We decided to monitor the memory usage to confirm that, despite using more
memory than adwinboost, adob is not memory intensive in absolute terms.

The evaluation was based on a metric that computes the amount of memory
used by the methods per hour (in KB) and the results are presented in Table 3.
Again, in the real-world datasets, the methods used much more memory than in
the artificial datasets as a consequence of the greater number of instances.

The method with the lowest memory usage was dwm, followed by aue2,
adwinboost, adwinbag, adob, ddd, and leveraging. A possible explanation
for the high memory usage of ddd is that it stores four times more classifiers than
the value set by the user. But not all of them are used to classify each instance:
the best ones are chosen within the ensemble according to each situation.

Memory usage by methods using both the original and the modified online
bagging/boosting versions can be explained similarly to the explanation made
to the execution time. The greater the diversity, the greater the likelihood of
repetition of an instance among experts involving more training. As a direct
consequence, it increases the used memory. The observation of the relationship
with the precision, made earlier, apparently also applies to the memory usage.
However, it is important to notice that there are exceptions in both cases.



192 S.G.T. de Carvalho Santos et al.

Table 3. Average memory usage in (KB/h) with 95% confidence in artificial datasets

ADOB AdwinBag AdwinBoost Leveraging DWM DDD AUE2

LED2 0.34±0.00 0.21±0.00 0.29±0.00 0.26±0.00 0.02±0.00 1.29±0.05 0.26±0.00
LED4 0.36±0.01 0.22±0.00 0.31±0.00 0.26±0.00 0.02±0.00 1.56±0.04 0.27±0.00
RBF2 1.14±0.01 0.94±0.01 1.09±0.01 2.18±0.05 0.10±0.00 6.23±0.29 1.20±0.01
RBF4 1.31±0.02 1.00±0.01 1.09±0.01 2.89±0.06 0.10±0.00 7.36±0.37 1.36±0.01
Sine4 0.18±0.00 0.10±0.00 0.18±0.00 0.46±0.01 0.01±0.00 0.44±0.01 0.07±0.00
Sine8 0.20±0.00 0.10±0.00 0.19±0.00 0.39±0.01 0.01±0.00 0.49±0.01 0.07±0.00
Stagger4 0.10±0.00 0.07±0.00 0.10±0.00 0.11±0.00 0.00±0.00 0.18±0.00 0.04±0.00
Stagger8 0.11±0.00 0.06±0.00 0.11±0.00 0.12±0.00 0.00±0.00 0.20±0.00 0.29±0.01

Elec 0.85 0.47 0.86 3.43 0.05 2.40 0.29
Cov 37.54 25.75 31.79 290.38 3.76 168.50 27.41
Poker 293.80 208.34 195.37 30816.18 0.67 266.08 6.17

6 Conclusion

Dealing with concept drifts in data streams is a challenging topic, given that
such drifts can be abrupt or gradual, slow or fast, rare or frequent, cyclical or
not, etc. Thus, the single classifier approach is unlikely to achieve good results in
general and, so, the ensemble of classifiers methods are becoming more popular.

This paper presented adob, an ensemble algorithm based on the Online
Boosting [15] method specially built to deal more efficiently with frequent and
abrupt concept drifts on on-line learning environments. More specifically, adob
proposes to distribute instances more efficiently among experts, by controlling
the diversity (λ) through the accuracy of each expert, aiming at recovering faster
from the situations where concept drifts occur frequently.

We run experiments to compare adob to six different online ensemble meth-
ods, including other variations of Online Bagging and Boosting [15], all of them
using adwin [3] as their drift detector, namely Adwin Bagging [8], Leverag-
ing Bagging [9], and adwinboost, as well as other well known and/or recent
ensembles such as dwm [7], ddd [10], and aue2 [11].

To perform the comparison, we used two different versions of four selected
artificial datasets (eight in total), with both abrupt and gradual concept drifts,
as well as three real-world datasets, all of them chosen from the most used ones
in the concept drift research area.

It is important emphasizing that our main subject of interest in these exper-
iments was the performance evaluation of Algorithm 1 – more specifically we
wanted to compare it to the adwinboost version that inspired it. Mainly for
this reason, adob, adwinboost, adwinbag, and leveraging all used very
similar versions of Algorithm 2 – MOA’s singleClassifierDrift using adwin as
drift detection method, as well as the same parametrization. ddd also used a
similar version of singleClassifierDrift but the selected drift detection method
was eddm, as in its original reference [10].

The tested adob configuration presented good precision in several situations
and, in particular, it was specially efficient in the Stagger [17] and Sine [1]
datasets, which had abrupt concept drifts. It is worth pointing out that adob
presented the best overall accuracy considering all tested datasets. In addition,



Speeding Up Recovery from Concept Drifts 193

according to a statistic based on the non-parametric Friedman test, adob pre-
sented statistically superior accuracy, when compared to aue2, and comparable
performance to the other methods in the tested data sets.

Even so, we believe the efficiency of adob can be further improved, both by
optimizations in the algorithms and by using different drift detection methods
in different types of datasets. These might be investigated in the near future.
Another possible future work is a deeper investigation of the relationship between
diversity and accuracy of the methods with the run time and memory usage.

Finally, it is worth pointing out that both adob and ddd were imple-
mented as part of this work. They have been added to the moa framework
and are freely available at https://sites.google.com/site/moamethods.
The implementation of adwinboost was a mere parametrization
of code previously available in moa. dwm was already available at
https://sites.google.com/site/moaextensions.

Acknowledgements. Silas Santos is supported by postgraduate grant number
0837-1.03/12 from FACEPE. We also thank the comments and suggestions from
the anonymous referees which helped to improve this final version of the paper.

References

1. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detec-
tion. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171,
pp. 286–295. Springer, Heidelberg (2004)

2. Baena-Garćıa, M., Del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldá, R.,
Morales-Bueno, R.: Early drift detection method. In: International Workshop on
Knowledge Discovery from Data Streams, IWKDDS 2006, pp. 77–86 (2006)

3. Bifet, A.: Learning from time-changing data with adaptive windowing. In: Proceed-
ings of the Seventh SIAM International Conference on Data Mining, SDM 2007,
Lake Buena Vista, Florida, USA, pp. 443–448. SIAM (2007)

4. Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted mov-
ing average charts for detecting concept drift. Pattern Recognition Letters 33(2),
191–198 (2012)

5. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In:
Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755,
pp. 264–269. Springer, Heidelberg (2007)

6. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

7. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for
drifting concepts. Journal of Machine Learning Research 8, 2755–2790 (2007)

8. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble meth-
ods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 139–148. ACM,
New York (2009)

9. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.
In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010,
Part I. LNCS, vol. 6321, pp. 135–150. Springer, Heidelberg (2010)

https://sites.google.com/site/moamethods
https://sites.google.com/site/moaextensions.


194 S.G.T. de Carvalho Santos et al.

10. Minku, L.L., Yao, X.: DDD: A new ensemble approach for dealing with con-
cept drift. IEEE Transactions on Knowledge and Data Engineering 24(4), 619–633
(2012)

11. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: The
accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and
Learning Systems 25(1), 81–94 (2013)

12. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23(1), 69–101 (1996)

13. Ramamurthy, S., Bhatnagar, R.: Tracking recurrent concept drift in streaming data
using ensemble classifiers. In: Proceedings of the 6th International Conference on
Machine Learning and Applications, ICMLA 2007, pp. 404–409. IEEE Computer
Society, Los Alamitos (2007)

14. Gonçalves, Jr. P.M., Barros, R.S.M.: RCD: A recurring concept drift framework.
Pattern Recognition Letters 34(9), 1018–1025 (2013)

15. Oza, N.C., Russell, S.: Online bagging and boosting. In: Artificial Intelligence and
Statistics 2001, pp. 105–112. Morgan Kaufmann (2001)

16. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis.
Journal of Machine Learning Research 11, 1601–1604 (2010)

17. Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine
Learning 1(3), 317–354 (1986)

18. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2001, pp. 97–106. ACM, New York (2001)

19. Breiman, L.: Bias, variance, and arcing classifiers. Technical report, Statistics De-
partment, University of California, Berkeley, CA, USA (1996)

20. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Inter-
national Conference on Machine Learning, vol. 96, pp. 148–156 (1996)

21. Blum, A.: Empirical support for winnow and weighted-majority algorithms: Results
on a calendar scheduling domain. Machine Learning 26(1), 5–23 (1997)

22. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble
learning in the presence of concept drift. IEEE Transactions on Knowledge and
Data Engineering 22(5), 730–742 (2010)

23. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. In: Wadsworth Statistics / Probability series. Wadsworth International
Group, Belmont (1984)

24. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data
streams. In: Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2003, pp. 523–528. ACM Press, New
York (2003)

25. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree
learning from evolving data streams. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi,
V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 299–310. Springer, Heidelberg (2010)

26. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

27. Dunn, O.J.: Multiple comparisons among means. Journal of the American Statis-
tical Association 56(293), 52–64 (1961)


	Speeding Up Recovery from Concept Drifts
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Artificial Datasets
	3.2 Real Datasets

	4 Adaptable Diversity-Based Online Boosting
	5 Experiments Configuration and Results
	5.1 Drift Configuration in the Artificial Datasets
	5.2 Ensemble Methods Configuration
	5.3 Accuracy Analysis
	5.4 Time Analysis
	5.5 Memory Analysis

	6 Conclusion
	References




