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Abstract. Evaluation of supply chain or workshop management is often based 
on simulation. This simulation task needs models which are difficult to design. 
The aim of this work is to reduce the complexity of simulation model design 
and to partially automate this task by combining discrete and continuous ap-
proaches in order to construct more efficient and reduced model. Model design 
focuses on bottlenecks with a discrete approach according to the theory of  
constraints. The remaining of the workshop is modeled in a less precise way by 
using continuous model in order to describe only how the bottlenecks are fed. 
This used continuous model is a regression tree algorithm. For validation, this 
approach is applied to the modeling of a sawmill workshop and the results are 
compared with results obtained previously by using a neural network model.  
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1 Introduction 

Planning or scheduling scenario evaluation is an important issue for internal/external 
Supply Chains (SC) control. Simulation is useful to perform this evaluation and allows 
to highlight evolution of the resources states, work in process and queues. This infor-
mation allows to perform a “Predictive scheduling” [10] which concerns MPS which is 
initially established with the Manufacturing Planning and Control System. This first 
approach must not be confused with “Reactive scheduling” which gives new MPS 
solution, established after significant events occur on the shop-floor. The real time 
systems performing production reporting lead to obtain information into the manage-
ment system very quickly [6]. However, it is difficult to use this huge of  
information to take a decision [13, 14]. At this level of planning, load/capacity balanc-
ing is obtained via the “management of critical resource capacity” function or Rough-
Cut Capacity Planning which essentially concerns bottlenecks [19]. Goldratt and Cox 
[4] propose to manage all the supply chain by bottlenecks control and call it Theory of 
Constraints (TOC). For this purpose, the use of dynamic discrete event simulation of 
material flow is helpful [16]. Simulation models of real industrial cases are very com-
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plex and can lead to problems of scale [12] that is why it is interesting to use simplest 
(reduced/aggregated) models of simulation [2, 3, 20]. To design these reduced model, 
different approaches may be used as using continuous flow model to approximate dis-
crete manufacturing environments [5, 15], or using metamodels (linear regression, 
splines, Kriging) in order to perform simulation model [7]. Neural networks are also 
been used to perform this task [17, 18]. Another tool, regression tree, is able to find a 
suitable model useful for the model reduction. Classification and regression trees are 
machine learning methods able to fit a model to data. Models are obtained by partition-
ing data space and thanks to the association of a simple prediction model to each sub-
space [1]. The main goal of this paper is to evaluate the ability of regression trees to be 
used in order to reduce simulation model. In the second part, the proposed approach of 
reduction model and the regression trees are presented. The third part will be devoted 
to the presentation of an industrial application which is a sawmill flow shop case. In 
order to evaluate the pertinence of the proposition, the reduced simulation model of 
sawmill internal SC case is presented and, before to conclude, is compared to the same 
work performed by using neural network in the last part. 

2 The Reduced Model 

2.1 The Algorithm 

Model complexity is relative to the number of elements, connections and model cal-
culations [21]. Different approaches have been proposed to reduce model. To see a 
brief overview, see [18]. The proposed reduction algorithm is a modification of those 
presented by Thomas and Thomas [17]. The proposed approach is based on the asso-
ciation of discrete event models and continuous models (regression tree) in order to 
design a simulation model. Our objective is to maximize the bottleneck utilization rate 
and, at the same time, simplify simulation model design for modelers. Its main steps 
are recalled and explained below: 

1. Identify the structural bottleneck (work center (WC) which for several years has 
been mainly constrained in capacity). 

2. Identify the conjunctural bottleneck for the bundle of Manufacturing Orders (MO) 
of the MPS under consideration. 

3. Among the WC not listed in 1 and 2, identify the one (synchronisation WC) satis-
fying these two conditions:  
(a) present at least in one of the MO using a bottleneck,  
(b) widely used considering the whole MO. 

4. If all MO have been considered go to 5 if not go to 3. 
5. Use regression tree for modelling the intervals between WC that have been found 

during preceding steps (figure 1). 

Work Centers (WC) remaining in the model are either conjunctural or structural 
bottlenecks or WC which are vital to the synchronization of the MO. Other WC are 
incorporated in “aggregated blocks” upstream or downstream of the bottlenecks [18]. 
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Fig. 1. Reduction model algorithm 

2.2 Regression Tree 

Decision trees are sequential models, which logically combine a sequence of simple 
tests. A regression tree looks like a classification tree, except that the output variable 
is a continuous one and a regression model is fitted to each node to give the predicted 
value of the output [9]. The first regression tree (AID) has been proposed by Morgan 
and Sonquist [11]. The principle of this regression tree is to begin to the root node, 
and then, for each node, find the test on the input patterns which minimizes the sum 
of the node impurities in its two child nodes. Classification and Regression Tree 
(CART) algorithm works on the same principle [1]. The main difference between 
AID and CART relies with the pruning and estimation process. CART is based on the 
generalization of the binomial variance called Gini index. The growing procedure of 
the tree is recursive and the process is stopped when [8]: 

─ there is only one observation in each of the child nodes, 
─ all observations within each child node have the identical distribution of predictor 

variables, making splitting impossible, 
─ an external limit on the number of levels in the tree or on impurity decrease level 

threshold is reached. 

The resulting tree presents generally overfiting problem and needs a pruning phase, 
based on the impurity term used during the growing phase (Gini) associated to a pe-
nalty term corresponding to the number of terminal nodes. The final tree selection is 
performed by using a cross-validation procedure [1]. 

3 Overview of the Sawmill 

The proposed approach is applied to build a simulation model of a sawmill workshop. 
In this actual case, managers need a tool to help them in their weekly decision-making 
Master Production schedule (MPS) process. They want: 

─ to evaluate the effectiveness of its MPS,  
─ to maximize its load rate, and so, its global productivity, 
─ to explain some unexplained congestion phenomena of the trimmer WC.  

A first work [16] with a complete model has allowed to represent the congestion 
phenomena and to use this representation in order to improve the load rate. This mod-
el, has showed that a bottleneck load rate too high (higher than 60%) degrades prod-
uctivity of bottleneck, and so, sawmill productivity. The difficulty is that bottleneck is 
the last sawmill WC but all influent factors on bottleneck productivity depend of the 
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to the products are mainly dimensional ones as length (lg) and three values for timber 
diameters (diaPB, diaGB, and diaMOY). The data related to the process are the 
process variables collected at the time of log arrival. In particular, we require the in-
put stock and the utilization rate of the bottleneck, here the trimmer (Q_trim, and 
U_trim, respectively). The number of logs present in the process between the inputs 
and the exit of the Canter line (Q_RQM) and in the input inventories (Q_RQM4, 
Q_RQM5 and Q_RQM7) are needed. 

 

Fig. 5. Complete model 

The data related to the routing correspond here to the information related to the 
cutting plan of the logs which must be cut into main and secondary products. This 
information is given by the type of part (T_piece).  

Consequently, the model input variables are: Lg, diaGB, diaMOY, diaPB, T_piece, 
Q_trim, U_trim, Q_RQM, Q_RQM4, Q_RQM5 and Q_RQM7. In our application, 
12775 products are simulated with the complete model. These data are used to fit the 
behavior of the reduced model to the complete one which serve as reference model. 

The next step is to identify the output variable. Our objective is to estimate the de-
lay (ΔT) corresponding to the duration of the throughput time for the 12775 products. 
ΔT is measured between the process input time and the trimmer queue input time. For 
regression problems, the goal is to reduce the distance between the model and the 
data. Hence, the RMSE criterion is suitable, and is used in this work: 
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where N denotes the number of data, yn is the nth actual data point, and ˆny  is the 

predicted value.  
Figure 6 presents the evolution of the RMSE in function of the number of nodes in 

the tree. This figure shows that classically, even if RMSE always decreases on the 
learning data set, it is not the same on the validation data set. It begins by decreasing 
before to increase. This fact illustrates the overfitting problem and the selection of the 
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best model must be performed by using a cross validation strategy. In our case, the 
selected model comprises 296 nodes.  

 

Fig. 6. Evolution of RMSE in function of nodes number – identification data set in blue dashed 
– validation data set in red  

This best model must be compared with those obtained in preceding work which 
use neural network model [18]. These results are presented table 1. They show that 
regression tree outperforms neural model and allows to improve results of 20%.  

Table 1. Comparison of RMSE for Neural network and regression tree models 

 

5 Conclusion 

The use of regression tree in order to build a reduced simulation model is investigated 
here. The regression tree model is used to model the functioning of a part of the 
process that is not constrained in capacity. This approach has been applied to the 
modeling of a sawmill workshop. The results show that the complete and reduced 
models gave similar results even if the log arrival rule is changed. Moreover, the re-
sults are compared with results obtained with a neural network model and the compar-
ison shows that regression tree outperforms neural network on this application. This 
means that it seems efficient to use a regression tree to model a part of a process in-
stead of constructing the complete model. Assuming that the construction of a regres-
sion tree is a quasi-automated task, in which the modeler only collects and selects the 
input data set. It is faster and easier to design this kind of reduced model. This ap-
proach allows the modeler to focus on the management of bottlenecks. Our intentions 
for future works are the validation of this approach on different applications, particu-
larly on several external supply chains, such that at least one particular enterprise 
belongs to different supply chains. 
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