
B. Grabot et al. (Eds.): APMS 2014, Part III, IFIP AICT 440, pp. 336–343, 2014.
© IFIP International Federation for Information Processing 2014

Decentralized Approach for Efficient Simulation
of Devs Models

Romain Franceschini and Paul-Antoine Bisgambiglia

University of Corsica, UMR SPE 6134 CNRS, UMS Stella Mare 3460, TIC team, Campus
Grimaldi, 20250 Corti

{r.franceschini,bisgambiglia}@univ-corse.fr

Abstract. This paper proposes to improve simulation efficiency of DEVS mod-
els based on the classical Discrete Event system Specification (DEVS) formalism
by reducing the number of messages exchanged between simulators. We propose
three changes: hierarchical modeling tree flattening based on closure under cou-
pling, direct coupling and decentralized scheduling. The main idea is to relieve
coordinators by giving to simulators more tasks to process.

1 Introduction

The study of production systems necessitates the development of specific tools. Dis-
crete EVent system Specification formalism [Zeigler et al., 2000] is an expressive, open
and flexible formalism that can be extended. Recent studies [Vangheluwe, 2000,
Zei- gler, 2003], have shown that DEVS formalism may be called multi-formalism
because, due to its open nature, it allows the encapsulation of other modeling
formalisms to meet specific applications requirements. From a performance
perspective, the formalism can be improved as it does not scale well with a large
number of models to simulate. At hardware level, it is possible to scale vertically by
increasing power of machines, and horizontally by parallelizing [Chow and Zeigler,
1994] simulations, with a cost [Bal- akrishnan et al., 1997, Chow et al., 1994, Glinsky
and Wainer, 2006]. At software level, we can work on algorithms efficiency by
reducing their complexity.

In the DEVS formalism, the model hierarchy suggests that each evolution of a
model state can produce a message, which traverse all the hierarchy up to the root
of the tree. The number of messages is therefore proportional to the output of the mod-
els, the number of models, and the level of the hierarchy. In certain cases, this can
affect and raise simulation execution time. Previous works already proposed differ-
ent approaches to improves simulation efficiency. We can cite: parallelization approach
[Chow et al., 1994, Balakrishnan et al., 1997, Kim et al., 2000, Glinsky and Wainer,
2006, Zacharewicz and Hamri, 2007, Jafer and Wainer, 2009]; distribution [Kim et al.,
2000, Liu, 2006, Zacharewicz and Hamri, 2007]; and software approaches. These last
approaches improve simulation time by getting rid of the hierarchical structure [Jafer
and Wainer, 2010, Jafer and Wainer, 2009, Lowry et al., 2000, Zacharewicz and Hamri,
2007], and suggests to use direct coupling between models [Chen and Vangheluwe,

 Decentralized Approach for Efficient Simulation of Devs Models 337

2010, Muzy and Nutaro, 2005]. The purpose of this article is to propose modifications
to the simulation algorithms to reduce significantly the number of exchanged messages
between components.

Currently, our approach is based on the classical DEVS formalism. The rest of the
paper is organized as follows: first part, we present the DEVS formalism. In the second
part, we detail the modifications we introduce to the classical DEVS formalism. In the
last part, we present simulation results using our “decentralized” simulation approach.

2 Background

DEVS [Zeigler, 2003] allows representing any system whose input/output behavior can
be described with a sequence of events. It allows defining hierarchical modular mod-
els with two distinct types: atomic (behavioral) and coupled (structural) models. The
first describes the autonomous behavior of a discrete-event system; the last one is com-
posed of sub-models, each of them being an atomic or a coupled model. Formally, an
atomic model is described by: ÜX, Y, S, δint , δext , λ, taá, and a DEVS coupled model
is described by ÜX, Y, D, {Md | d ∈ D}, EI C, EOC, I C, Selectá.

We use the DEVS formalism because of its openness and extensibility. It offers both
a formal framework to define models and a flexible implementation in object-oriented
programming. It allows modeling all types of systems. In some cases, depending on
the system, the simulation can be very time consuming. To explain the excess messages
must detail the simulation part [Jafer and Wainer, 2009]. There are many works that aim
to accelerate the simulation. We can cite [Glinsky and Wainer, 2006, Hu and Zeigler,
2004, Jafer and Wainer, 2009, Jafer et al., 2013, Lee and Kim, 2003, Liu and Wainer,
2012, Muzy and Nutaro, 2005, Wainer and Giambiasi, 2001, Zacharewicz et al., 2010].
Some of these solutions propose to flatten the hierarchy of models in order to reduce
communication overhead between models.

This is achieved by simplifying the underlying simulator structure, while keeping
the same model definition and preserving the separation between model and simula-
tor. There are two advantages to using a so-called flat structure: reduce exchanges of
messages and simplify the simulation tree. This simplification is often used to allow
parallelize or distributed simulations. These many works have shown that flat simula-
tors outperform hierarchical ones significantly. They have also showed that although
the hierarchical simulator presented in [Glinsky and Wainer, 2006, Zacharewicz et al.,
2010] reduced the number of messages by introducing two specialized DEVS coor-
dinators, the communication overhead was still high in some cases. Others propose
modifications simulation algorithms to parallelize and/or distribute computations (out-
source). We propose to improve the simulator structure to accelerate simulation time.
Our approach to accelerate simulations is not based on outsourcing the computations,
but on three items: flat structure, direct coupling and decentralized scheduling.

3 Our Approach

The objective of this work is not to provide a comparison with other approaches that are
based on parallelization or distribution; we propose algorithms to improve the classical

338 R. Franceschini and P.-A. Bisgambiglia

DEVS formalism. The aim of our modifications is to simplify the DEVS formalism, in
order to make it more effective and faster. To reduce the number of exchanged messages
between DEVS components, we propose three changes while remaining in compliance
with the universal properties of DEVS, such as closure under coupling.

3.1 Local Schedule

In order to avoid message overhead, we propose to avoid dispatching *-messages
when possible, which we will call local or decentralized schedule. The purpose of this
modifi- cation is to make the simulator more autonomous and to simplify the task of
flat coordi- nator. Right after processing an *-message, a simulator checks if it is the
next scheduled simulator by its parent and if there is no other simulator scheduled at
the same time. If so, then the simulator will keep control and process the new fictive *-
message at its tn.

3.2 Direct Coupling

Message generation in the DEVS formalism is caused by message routing, specifically
routing induced by the hierarchical structure of the formalism. For example, a compo-
nent C1 of level H2 cannot communicate directly with a component C2 of the same
level (H2). This is the case for all components. Messages must always be propagated
to the parent, in H1 or H0 level. This hierarchy is a source of communication too. The
fact of not being able to communicate directly with a component of the same level is
a problem. We propose to add a list of couplings in simulators as a state variable. The
simulators know their coupling, that is to say, the components to which they are con-
nected, and with whom they should communicate. This list of decentralized coupling
has been added to simulators.

3.3 Flattening Architecture and Direct Connection

The hierarchy flattening, also called direct connection by [Chen and Vangheluwe, 2010],
is not new and has become a key to improve simulation time. The property of closure
under coupling demonstrated in [Zeigler et al., 2000] implies that any coupled DEVS
model offers the same behavior as a resultant atomic model, which allows to delete all
coupled models in the hierarchy. In the hierarchical structure proposed in the DEVS for-
malism, a root coordinator is placed on top with a coordinator just below (H0 level). To
flatten the simulation architecture, all the coordinators below the H0 level are deleted.
Other works already offer this mechanism [Jafer and Wainer, 2009, Zacharewicz and
Hamri, 2007], usually in order to parallelize and distribute the simulation. Our goal is to
make the simulator standalone by removing redundant communications. We still keep
the top-most coordinator, positioned just below the root. It gives an execution order to
simulators. It has a schedule with an event number equal to the number of simulators.
Now that we flattened the hierarchy, the top-most coordinator still coordinates its com-
ponents. A component that generates an y-message still pass by its parent, which could
be avoided with direct coupling.

 Decentralized Approach for Efficient Simulation of Devs Models 339

3.4 Algorithms

We are now going to present algorithms for the modifications we propose, based on the
classical DEVS simulation algorithms defined in [Zeigler et al., 2000].

Decentralized simulator tend to reduce the number of messages generated during a
simulation in two different ways: (1) by allowing a simulator to communicate directly
another component of its parent whenever possible and (2) by keeping control of *-
messages whenever possible.

Listing 1.1. Decentralized simulator algorithm

We achieve direct coupling by introducing indirect couplings to the simulator vari-

ables. Indirect couplings represent the direct route to another component of the parent.
They are all I C of the parent involving one of the output port of the simulator model,

340 R. Franceschini and P.-A. Bisgambiglia

excluding output ports involved in a EOC of the parent coordinator. As Listing 1.1
shows, when an output is generated by the model, an y-message has to be dispatched
to the parent coordinator only if no indirect coupling exists and that the port is not in-
volved in a EOC. If that is not the case, an x-message is directly sent to each indirect
coupling recipient.

To avoid to return control from *-message, a simulator checks at the end of *-
message processing if it is the next scheduled message by its parent. Then, if it is the
only scheduled model at that time, it is not necessary to the parent to call the Select
method. In that case, the message time is set to the simulator tn and the *-message
processing starts again unless we reached the end of the simulation.

4 Results

The suggested approach allows to reduce the complexity of the simulation algorithms.
We still have to demonstrate through some examples that this is expressed by a
ma- jor reduction of the number of messages exchanged. We propose to present the
results obtained with a [Wainer et al., 2011] benchmark. DEVStone allows to evaluate
the per- formance of DEVS-based simulators. It generates a suite of model with
varied struc- ture and behavior automatically. The test environment is based on a
Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz, 8 GB (2 x DDR3 - 1600 MHz) of
RAM, APPLE SSD SM128E hard drive, running on OSX 10.9.3. Software used for
the benchmarking is DEVS-Ruby [Franceschini et al., 2014] (without C extensions
enabled) running on the Ruby 2.1.2 VM. DEVS-Ruby is a DEVS-based simulation
framework implemented with the Ruby language.

4.1 Simulation Results

Table 1 shows the total number of exchanged messages along with the CPU time of a
simulation for each of the three approaches. The DEVstone model is parameterized with
a depth between 3 and 9, a width from 5 to 15, with HO models type, a δint transition
time of 1ms, and a δext transition time of 0.1ms.

Results show a major drop of scheduled messages between flat simulations and
classic simulations. This is predictable because of all messages no longer sent to sub
coupled models since they have been deleted from the hierarchy. Those results are very
interesting but were already obtained by previous works on hierarchy flattening.
How- ever, decentralized simulation offers very encouraging results since we can
observe an additional message drop. We obtain this by reducing the number of
scheduled *- messages and by avoiding to each atomic model that produces an
y-message to pass by its parent coordinator by dispatching directly an x-message to the
recipient.

 Decentralized Approach for Efficient Simulation of Devs Models 341

Table 1. Number of exchanged messages and CPU time for each approach using DEVStone

Depth Width
Approach

Classic Flat Decentralized
Messages CPU time(s) Messages CPU time(s) Messages CPU time(s)

3

5
10
15

132
359
722

0.027517
0.07453

0.172698

90
260
530

0.027047
0.072432
0.170959

61
161
311

0.027517
0.071881
0.148885

6

5
10
15

333
1043
2183

0.060773
0.177945

0.4381

195
620
1295

0.058662
0.173918
0.375843

133
383
758

0.0571
0.198214
0.370906

9

5
10
15

588
1952
4148

0.09689
0.285154
0.648915

300
980
2060

0.093082
0.296403
0.709434

205
605
1205

0.091734
0.276397
0.609233

Although we significantly reduce the number of messages and that CPU times

shows slightly better results with our approach, the difference is not as impressive as
the number of messages. In our case, this is due to the naiveness of the sorted list-
based scheduler which is used for now in DEVS-Ruby. Indeed, the hierarchy flattening
increase the number of atomic models to handle by the scheduler of the last present co-
ordinator. Moreover, the HO type of coupling in DEVStone involves many collisions,
which is a stress condition for the scheduler.

5 Conclusions

In this article, we presented an approach that aims to reduce the number of exchanged
messages in the classic DEVS formalism. To reduce the number of messages exchanged,
we propose to expand the role of simulators. Indeed, we propose three major changes
compared to classical DEVS formalism: direct coupling, flat structure and local sched-
ule. The goal is the decentralization of a number of tasks in order to make the simulators
more autonomous, and relieve coordinators. Through these modifications the universal
property of DEVS are preserved, and it is possible to couple a classical model with a
decentralized model.

The results obtained with our framework are good; the number of exchanged mes-
sages is reduced by a factor of two. For complex systems with many components such
as production systems, this method seems very interesting. As a future work, we plan
to work on the PDEVS formalism.

Acknowledgements. The present work was supported in part by the French Ministry
of Research, the Corsi- can Region and the CNRS.

References

1. Balakrishnan, V., Frey, P., Abu-Ghazaleh, N.B., Wilsey, P.A.: A framework for
performance analysis of parallel discrete event simulators. In: Pro- ceedings of the 29th
Conference on Winter Simulation, WSC 1997, pp. 429–436. IEEE Computer Society,
Washington, DC (1997)

342 R. Franceschini and P.-A. Bisgambiglia

2. Chen, B., Vangheluwe, H.: Symbolic flattening of DEVS models. In: Proceedings of the
2010 Summer Computer Simulation Conference, SCSC 2010, pp. 209–218. Society for
Computer Simulation International, San Diego (2010)

3. Chow, A., Zeigler, B., Kim, D.H.: Abstract simulator for the par- allel DEVS formalism.
In: Proceedings of the Fifth Annual Conference on AI, Simulation, and Planning in High
Autonomy Systems. Distributed Interactive Simulation Environments, pp. 157–163 (1994)

4. Chow, A.C.H., Zeigler, B.P.: Parallel DEVS: a parallel, hierarchical, modular, modeling
formalism. In: Proceedings of the 26th Conference on Winter Simulation, WSC 1994, pp.
716–722. Society for Computer Simulation International, San Diego (1994)

5. Franceschini, R., Bisgambiglia, P.-A., Bisgambiglia, P.A., Hill, D.R.: DEVS-Ruby: a
Domain Specific Language for DEVS Modeling and Simulation (WIP). In: DEVS 14:
Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative
M&S Symposium, pp. 393–398. Society for Computer Simulation Interna- tional (2014)

6. Glinsky, E., Wainer, G.: New parallel simulation tech- niques of DEVS and cell-DEVS in
CD++. In: Proceedings of the 39th Annual Symposium on Simulation, ANSS 2006, pp.
244–251. IEEE Computer Society, Washington, DC (2006)

7. Hu, X., Zeigler, B.P.: A high performance simulation engine for large-scale cellular DEVS
models. In: High Performance Computing Symposium (HPC 2004), pp. 3–8 (2004)

8. Jafer, S., Liu, Q., Wainer, G.: Synchronization methods in parallel and distributed discrete-
event simulation. Simulation Modelling Practice and Theory 30, 54–73 (2013)

9. Jafer, S., Wainer, G.: Flattened conservative parallel simula- tor for DEVS and
CELL-DEVS. In: International Conference on Computational Science and Engineering,
CSE 2009, vol. 1, pp. 443–448 (2009)

10. Jafer, S., Wainer, G.: Global lookahead management (GLM) protocol for conservative
DEVS simulation. In: 2010 IEEE/ACM 14th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), pp. 141–148 (2010)

11. Kim, K., Kang, W., Sagong, B., Seo, H.: Efficient distributed simu- lation of hierarchical
DEVS models: transforming model structure into a non-hierarchical one. In: Proceedings
of the 33rd Annual Simulation Symposium (SS 2000), pp. 227–233 (2000)

12. Lee, W.B., Kim, T.G.: Simulation speedup for DEVS models by composition-based
compilation. In: SCS, editor, Summer Computer Simulation Conference, SCS, pp. 395–
400 (2003)

13. Liu, Q.: Distributed Optimistic Simulation Of Devs And Cell-Devs Models With Pcd++.
PhD thesis (2006)

14. Liu, Q., Wainer, G.: Multicore acceleration of discrete event system specification systems.
Simulation 88(7), 801–831 (2012)

15. Lowry, M.C., Ashenden, P.J., Hawick, K.A.: Distributed highperformance simulation
using time warp and java. Technical Report DHPC-084 (2000)

16. Muzy, A., Nutaro, J.J.: Algorithms for efficient implementations of the DEVS & DSDEVS
abstract simulators, pp. 273–279 (2005)

17. Vangheluwe, H.: DEVS as a common denominator for multiformalism hybrid systems
modelling. In: IEEE International Symposium on Computer-Aided Control System
Design, CACSD 2000, pp. 129–134 (2000)

18. Wainer, G., Glinsky, E., Gutierrez-Alcaraz, M.: Studying performance of DEVS modeling
and simulation environments using the DEVStone benchmark. Simulation 87(7), 555–580
(2011)

19. Wainer, G.A., Giambiasi, N.: Application of the cell- DEVS paradigm for cell spaces
modelling and simulation. Simulation 76(1), 22–39 (2001)

 Decentralized Approach for Efficient Simulation of Devs Models 343

20. Zacharewicz, G., Hamri, M.E.-A.: Flattening g- DEVS / HLA structure for distributed
simulation of workflows. In: Proceedings of AIS-CMS International Modeling and
Simulation Multi Conference, pp. 11–16. Buenos Aires, Argentine (2007)

21. Zacharewicz, G., Hamri, M.E.-A., Frydman, C., Giambiasi, N.: A generalized discrete
event system (g-DEVS) flattened simulation structure: Application to high-level
architecture (HLA) compliant simulation of workflow. Simulation 86(3), 181–197 (2010)

22. Zeigler, B.: DEVS today: recent advances in discrete event-based information technology.
In: 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems, MASCOTS 2003, pp. 148–161 (2003)

23. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation, 2nd edn.
Academic Press, Inc., Orlando (2000)

	Decentralized Approach for Efficient Simulation of Devs Models
	1 Introduction
	2 Background
	3 Our Approach
	3.1 Local Schedule
	3.2 Direct Coupling
	3.3 Flattening Architecture and Direct Connection
	3.4 Algorithms

	4 Results
	4.1 Simulation Results

	5 Conclusions
	References

