SVM Venn Machine with k-Means Clustering

Chenzhe Zhou, Ilia Nouretdinov, Zhiyuan Luo, and Alex Gammerman

Computer Learning Research Centre,
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK

Abstract. In this paper, we introduce a new method of designing Venn
Machine taxonomy based on Support Vector Machines and k-means clus-
tering for both binary and multi-class problems. We compare this algo-
rithm to some other multi-probabilistic predictors including SVM Venn
Machine with homogeneous intervals and a recently developed algorithm
called Venn-ABERS predictor. These algorithms were tested on a range
of real-world data sets. Experimental results are presented and discussed.

Keywords: Venn Machine, Support Vector Machine, k-means clustering.

1 Introduction

Classification is one of the major tasks in machine learning. It gives predictions
for the new objects based on known properties learned from the training data set.
However, most algorithms could only give single prediction (i.e. label). Demand
of probabilistic prediction has arisen in view of the fact that sometimes we
appreciate probabilities more than single predictions. A simple example is the
probabilistic weather forecasting.

But in some area, single probabilistic prediction has not yet been enough.
The term multi-probabilities is then brought to mind, namely, we announce sev-
eral probability distributions for the new label rather than a solitary one. Venn
predictor (or Venn Machine) is one of the multi-probabilistic classification sys-
tems [8]. There are many Venn predictors, each taxonomy used in the algorithm
defines a Venn predictor even if the underlying algorithms are the same.

In our previous paper [10], we introduced a Venn predictor with Support Vec-
tor Machines (SVM) as its underlying algorithm, which converts numerical pre-
dictions of SVM into a taxonomy. That approach was applicable to any method
that initially supplied predictions with prediction scores such as the distance to
the hyperplane in SVM. Nonetheless, the process is very simple: all available
scores are firstly sorted and then divided into several groups by equal-length
intervals according to which interval the score lies. Each of these groups is a
category. However, that approach could only be applied in binary cases. In this
paper, we propose a method to generalize binary Venn Machine with SVM to
a method capable for multi-class cases. Then we consider two alternative meth-
ods that may be more accurate: SVM Venn Machine with k-means clustering
and Venn-ABERS predictor. These two algorithms are also applicable to any
machine learning algorithms with prediction scores.

L. Iliadis et al. (Eds.): AIAI 2014 Workshops, IFIP AICT 437, pp. 251-260, 2014.
© IFIP International Federation for Information Processing 2014



252 C. Zhou et al.

2 Methodology

In this section, two kinds of Venn predictors that use SVM as their underly-
ing algorithm will be introduced together with our alternative methods. They
are SVM Venn Machine with homogeneous intervals (VM-SVM-HI) generalized
from the binary-only version of [10] together with our alternative method SVM
Venn Machine with k-means clustering (VM-SVM-KM) and the Venn-ABERS
predictor based on SVM (VA-SVM) proposed by Vladimir Vovk [7]. The former
two algorithms could be implemented in both multi-class cases and binary cases,
while VA-SVM could only deal with binary data sets.

2.1 Venn Machine

Venn Machine is a multi-probabilistic predictor described in [8]. The basic idea of
Venn Machine is to divide every example into its corresponding category based
on certain rules and then the frequencies of labels in the chosen category are
used as probabilities for the new object’s label. Taxonomy is the way how the
examples are divided into categories. The underlying algorithm is the algorithm
used in the taxonomy.

Assuming a standard machine learning classification problem: given a training
set of examples 21, 23, ..., zn—1. Each z; consists of a pair of object x; and label
y;. The possible labels y; (y; € Y) are finite. And we are also given a test
object x,,. Our task is to predict the label y,, for the new object z,, and give the
estimation of the likelihood that our prediction is correct.

Supposing we have a taxonomy A,,, consider a label y € Y for the new object
T,. A, assigns a category 7; to an example z;

Ti :An(zzla"'7Zi—172i+17"'azn57zi) (1)

where n is the number of objects in the bag, 7; € T is one of the finite categories
and z; is the pair (z;,y;), 2, is the pair (z,,y).
Moreover, we assign z; and z; to the same category if and only if

An(lzl, ey Ri—1, Zi+1, ey an, Z,’) = An(Zzl, ey Zj—h 2,’]‘_,_17 ey an, Zj) (2)

The category 7, contains z, = (x,,y). Let p, be the empirical probability
distribution of the labels in category 7.

@™ y") €7 y" =y}
py(y/) = |7_n‘ (3)
n
Dy is a probability distribution on Y.

Having tried every possible label for x,,, we get a Venn predictor. The predictor
P, :={p, : y € Y} is a multi-probabilistic predictor consists of K distributions,
where K = |Y|. Then we could calculate a K x K frequency matrix P. The
quality of a column is the minimum entry of the column. Let the best column
which has the highest quality be jpes:- Then our predicted label is jpes: and the
interval of possibility that our prediction is correct is

[zzrlnan Piguese P Pisear) @



SVM Venn Machine with k-Means Clustering 253

Underlying Algorithm for Taxonomy. Any algorithm that generates or pre-
dicts a numeric score for the example could be implemented in our taxonomy.
However, we mainly focus on Venn predictors with SVM as the underlying algo-
rithm in this paper. The decision function in SVM is a kind of scoring functions.
Therefore, we use the values derived from the decision function of SVM (i.e. the
values prior to applying a sign function) as part of our design.

Homogenous Intervals. One of the simplest ways to design taxonomies is
stated as follows. Firstly we use the training set to train an SVM and calculate
the decision values (d(z) = (w, x;) +d) of all examples in the training set and the
new object. Secondly the whole range of decision values obtained will be divided
into several intervals of equal length. Each interval is a category and objects of
which the decision values fall into the same interval are of the same category.
This design was introduced in [10] and could only used in binary case. Now we
will discuss the generalization and alternative to it.

Combined Decision Function. In multi-class cases, we will have several bi-
nary SVM classifiers regardless of whether One-vs-One or One-vs-All approach
is used. A scheme for multi-class SVM using One-vs-All approach was devel-
oped by Lambrou et al. in [5], which uses the largest decision value as the score.
Generally, One-vs-One SVM is more efficient in accuracy than One-vs-All SVM.
Therefore, we need to develop a new function to combine the outputs of all One-
vs-One SVM classifiers and transform them into a single prediction score which
could be used by Venn Machine. We call such function a Combined Decision
Function.

For a data set with k possible labels: {0,1,...,k — 1}, there are k(k — 1)/2
binary SVM if we use One-vs-One approach. For each possible label, there are
k—1 related SVM decision functions. Then we use (5) to calculate the combined
decision function D(z) for the new example z,

k—1
D) =g+, > Nifu) (5)

1=0,1#g

where ¢ is the overall predicted label done by max-wins voting strategy in One-
vs-One SVM, fgi(x) is the decision function of SVM classifier on g-vs-i, N is
a function that does the normalized transformation to [0, 1]. Another point we
need to declare here is that in fg;(x) we always put § before ¢ which means we
need to apply an opposite operation when  is greater than 4. Since the examples
of label ¢ are treated as negative examples in i-vs-y classifier of a binary SVM.
This function firstly selects all £ — 1 related SVM and applies an opposite
operation if ¢ is not treated as the positive class in the binary SVM classifier.
Then it does the normalisation to transform the values into [0,1]. Finally, we
output the arithmetic mean of them added with § as the combined decision value
of new example x. The reason that adding ¢ to the arithmetic mean is that it
could prevent the decision values of different classes stack at the same area.



254 C. Zhou et al.

Dividing Intervals by k-Means Clustering. Instead of dividing the intervals
homogeneously, we came up with a new dividing scheme, which uses k-means
clustering [4, 6] to divide all decision values.

k-means clustering is a cluster analysis method which aims to divide n objects
into k clusters in which each object belongs to the cluster with the nearest
mean. Given a set of objects (x1,z2,...,2,), where each object z; € R is a
d-dimensional real vector, k-means clustering aims to partition the n objects
into k sets (k < n) S = {51,52,...,5;} so as to minimise the within-cluster
sum of squares (WCSS):

k
argsminz >l — (6)

i=1 acjesi

where p; is the mean value of points in S;.

In our design, dimension d is fixed to “1”, while the number of clusters is
equal to the number of possible labels. So the heuristic algorithm we used could
be described as below.

1. k initial means values are randomly generated within the data domain.

2. k clusters are created (or reassigned) by associating every object with the

nearest mean value.

The centroid of each of the k clusters becomes the new mean value.

4. Steps 2 and 3 are repeated until the change of WCSS (6) between two states
declines to be less than € = 1074,

w

Having applied k-means clustering, we divided the decision values into cate-
gories which could be used to calculate the matrix for new examples and make
the probabilistic predictions as the standard Venn Machine does.

2.2 Venn-ABERS Predictor

Venn-ABERS predictor is a recently developed algorithm for multi-probabilistic
prediction. It is modified from Zadrozny and Elkan’s procedure of probability
forecasting [9], which cannot be well calibrated. The modification introduced
Venn predictors into the procedure to overcome the problem of potentially weak
calibration as a result of the fact that Venn predictors are always well calibrated
and guaranteed to be well calibrated under the exchangeability assumption.
The basic idea of pre-trained Venn-ABERS predictor is that the training set is
split into two parts: the proper training set and the calibration set. The proper
training set is used to train the learning machine and predict the label for new
examples, while the calibration set is used to calculate the probabilistic outputs
for the predicted labels. The calibration set will be turned into a monotonically
increasing set in this algorithm according to [1].

Before we discuss Venn-ABERS predictor, there are some notions to be in-
troduced yet. First notion is the term “scoring algorithm”. Scoring algorithm is
an algorithm that trains a classifier on the training set and uses the classifier to



SVM Venn Machine with k-Means Clustering 255

output a prediction score s(z) for the new example z and predicts the label of x
to be “1” if and only if s(z) > ¢ (c is a fixed threshold). So s is hereby called the
scoring function. Many machine learning algorithms for classification are scoring
algorithms. In our case, as what SVM defines, the decision function of SVM is
a scoring function, since we assign a new example the positive label “+1” if and
only if its decision value is greater than zero and vice versa for the negative label.
The second notion is “isotonic calibrator”, which is a monotonically increasing
function on the set {s(x1),...,s(z;)} that maximizes the likelihood

!
Hpi, where p; :=

=1

{9(5(1‘1)) ify; =1 %

1 gls(x) ity =0

this function ¢ is unique and can be found by using the “pool-adjacent violators
algorithm” (PAVA) introduced in [1].

The workflow of Venn-ABERS predictor is as follows. Assuming a standard
binary machine learning problem: a training set of examples z1, 23, .. ., z;. Each
z; consists of a pair of object xz;, and label y;. The possible labels are binary,
that is, y € {0,1}. And we are also given a test object z. Our task is to predict
the label y for the new object x and give the estimation of the likelihood that
our prediction is correct.

Let us split the training set (21, 22, ..., 2 into two parts: the proper training
set 121,22, ..., 2m ] of size m (m < [) and the calibration set {241, Zm+2, - - -, 215
And s : X — R is the scoring function of training set {z1, 22,..., 2z, . Given a
new example x, we have two calibrators. Let gy be the isotonic calibrator for

L(s(Zm+1), Ym+1)s ($(Tma2), Ym+2)s - - -5 (s(21), y1), (s(x),0)F, g1 be the calibrator
for 1(3($m+1)7 ym-‘rl)’ (S($m+2), ym-‘r?)’ RE) (S(xl)v yl)v (S(l‘), 1)5

To achieve the isotonic calibrator, we do the followings according to the def-
inition of PAVA. First we arrange the pairs (s(z;),y;) in the increasing order
according to the values of score function s(x;). Having obtained a binary se-
quence consisting of labels y;, we applied PAVA to find the increasing sequence
of them. The final isotonic calibrator g is a function mapping the increasing
scores to the increasing sequence (i.e. probabilities). As the score increases, the
object is more likely to be “1” in correlation with the increasing sequence.

Then the multi-probability prediction outputs for that the predicted label
should be “1” is {po,p1}, where po := go(s(x)) and p; := g1(s(x)). And for the
reason that we need to predict the probability for the prediction label is correct,
we should transform the bounds {po,p1} to {1 —p1,1 — po} when the predicted
label is “0”.

3 Experimental Results

To compare our algorithm to SVM Venn Machine with homogeneous intervals and
Venn-ABERS predictor, we used eight data sets from the real world which could
be easily obtained from UCI Repository (http://archive.ics.uci.edu/ml/)ex-
cept that SVMguidel is obtained from the website of LibSVM [3]. The data sets we


http://archive.ics.uci.edu/ml/

256 C. Zhou et al.

Table 1. Main characteristics for each data set

Data Set # of # of # of Training Testing
Objects Features Classes Set Size Set Size
WBC 683 10 2 400 283
SVMguidel 7089 4 2 3089 4000
Splice 3175 60 2 1000 2175
Satimage 6435 36 6 4435 2000
Segment 2310 19 7 1500 810
DNA 3186 180 3 2000 1186
Wine 178 13 3 100 78
Vehicle 846 18 4 500 346

used in this paper could be divided into two parts based on their number of classes.
The details of these data sets are summarised in Table 1.

3.1 Experimental Settings

For VM-SVM-KM, the number of clusters and the initial means, which are the
two key features of k-means clustering, are often regarded as its biggest draw-
backs. The number of clusters is an input parameter: an inappropriate choice
of k may yield poor results. That is why, when performing k-means clustering,
it is important to run diagnostic checks for determining the number of clusters
in the data set. The choice of initial means might lead the convergence to a
local minimum which may produce counterintuitive results. A good design of a
combined decision function could make it easier to avoid these two drawbacks.

To have a more intuitive view of our combined decision function described in
(5), we applied the algorithm to Satimage data set and plotted the histogram in
Fig. 1, roughly representing the distribution of the decision values.

100

90 A
80 A
70 A
60 A
50 A

frequency

40 A
30 A
20 A
10 1

0 B
0 1 2 3 4 5 6
decision values

Fig. 1. Histogram of combined decision values for the Satimage data set



SVM Venn Machine with k-Means Clustering 257

It can be seen obviously from the figure that there were 6 clusters in the
data set, the exact number of the possible labels. The reason for this is that the
decision function spreads out the values into (0, k) by adding the most possible
labels. Furthermore, each cluster i (i = 1,2,...,k) is approximately within the
range of (i — 1,4), which means we could choose the initial means from each
range to avoid the local minimum trap as much as possible and speed up the
convergence process. We conducted k-means clustering to these decision values
and calculated the 6 centroids: 0.63,1.91,2.64, 3.33,4.57,5.59. The result seems
to be a reasonable reflection of the histogram.

Then we could come to our decision that we set the number of clusters
the same as the number of possible labels and we choose the initial means as
0.5,1.5,...,k — 0.5 if the possible labels are 0,1,...,k — 1.

Additionally, we need to notice that k-means clustering uses Euclidean dis-
tance as a metric and variance as a measure of cluster scatter, which makes it
tend to produce equal-sized clusters. Since data is split halfway between cluster
means, this can lead to suboptimal splits as some objects will be attributed to
the incorrect cluster, especially for unbalanced data set as Satimage data set.

Except all the settings for the underlying algorithm, we need another setting
for VA-SVM. It is the size of the calibration set. Having given careful considera-
tion to both accuracy and narrowness of the bounds, we decided to take 30% of
the whole data set as the calibration set, And the calibration set was stratified
selected from the whole training set, which means the distribution of classes in
the calibration set was the same as in the training set.

Although the size of proper training set in VA-SVM is smaller comparing to
the size of training set in our algorithms, this is still a fair comparison because we
use the same original training set for all algorithms, otherwise VA-SVM will need
extra examples for probabilistic predictions. We also noticed that Venn-ABERS
predictor is an inductive Venn predictor while Venn Machine is a transductive
Venn predictor. The gap between inductive and transductive learning algorithms
are not distinguishable in our offline setting. Because in offline setting, we use
the fixed predictors to make predictions for testing set. Furthermore, in VA-SVM
we repeat the computations of isotonic calibrators for each testing object which
still involve all examples in calibration set.

3.2 Comparisons and Results

For binary cases, we applied VM-SVM-KM, VM-SVM-HI and VA-SVM to the
data sets in the offline setting. While for multi-class cases, we only applied VM-
SVM-KM and VM-SVM-HI to the data sets in both offline setting and online
setting. Hence, there were three comparisons described as below. All the SVMs
in these algorithms were using RBF kernel. Additionally, the parameters of SVM
for each data set, including cost C and ¢ in RBF kernel, were determined by grid



258 C. Zhou et al.

search on the training set and retained the same over corresponding algorithms
respectively. The algorithms were compared in terms of their accuracies and
probabilistic outputs in these data sets. In addition, we calculated the Brier
scores (introduced in [2]) of the mean of the probabilistic bounds as evaluation
for binary data sets.

The experimental results of VM-SVM-KM compared with VM-SVM-HI and
VA-SVM are shown in Table 2.

Table 2. The offline accuracy and probability results on the binary data set

Data Set Taxonomy Accuracy Prob. Outputs Brier Score
WBC VM-SVM-KM 97.53% [86.34%,98.94%) 0.0325
VM-SVM-HI 97.22% [83.63%,98.70%] 0.0369
VA-SVM 97.17% [85.67%,95.97%] 0.0315
SVMguidel = VM-SVM-KM 96.93% [91.27%,98.42%] 0.0362
VM-SVM-HI 95.79% [89.59%,98.97%] 0.0406
VA-SVM 95.95% [93.67%,96.29%) 0.0370
Splice VM-SVM-KM 90.21% [82.44%,96.07%] 0.0884
VM-SVM-HI 89.52% [80.15%,97.35%) 0.0939
VA-SVM 89.15% [83.40%,88.32%] 0.0878

The comparison results of our algorithm against VM-SVM-HI for all multi-
class data sets in the offline setting are shown in Table 3.

Table 3. The offline accuracy and probability results on the multi-class data set

Data Set Algorithm Accuracy Probabilistic Outputs

Satimage ~ VM-SVM-HI 84.18% [75.48%,96.92%)
VM-SVM-KM 86.56% [81.18%,93.33%]

Segment VM-SVM-HI 90.88% [74.61%,96.68%)
VM-SVM-KM 91.65% [75.64%,95.60%)]

DNA VM-SVM-HI 94.34% [81.39%,98.07%]
VM-SVM-KM 96.65% [87.25%,99.48%]

Wine VM-SVM-HI 92.30% [81.19%,97.11%)
VM-SVM-KM 96.11% [86.53%,98.47%]

Vehicle VM-SVM-HI 67.63% [56.42%,77.48%)
VM-SVM-KM 69.15% [60.65%,79.20%)]

And the results for the online setting are shown in Table 4.
In order to giving a more intuitive comparison, we also give figures on online
performance for Wine data set in Fig. 2.



SVM Venn Machine with k-Means Clustering 259

Table 4. The online accuracy and probability results on the multi-class data set

Data Set Algorithm Accuracy Probabilistic Outputs

Satimage ~ VM-SVM-HI 80.94% [80.20%,81.69%)
VM-SVM-KM 83.40% [83.24%,83.86%)]
Segment VM-SVM-HI 88.40% 88.92%,93.20%]
VM-SVM-KM 89.96% [90.11%,91.50%)
DNA VM-SVM-HI 89.12% [88.46%,89.86%)
VM-SVM-KM 89.70% [89.25%,90.48%]
Wine VM-SVM-HI 91.53% [87.57%,94.35%)
VM-SVM-KM 93.22% [91.67%,96.87%)]
Vehicle VM-SVM-HI 66.04% [70.24%,72.17%)
VM-SVM-KM 67.83% [69.48%,71.02%)

25 25

cumulative errors
cumulative lower bound
cumulative upper bound

cumulative errors
cumulative errors

5 5F |
cumulative errors I/
cumulative lower bound
o cumulative upper bound 0
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
examples examples
(a) VM-SVM-HI (b) VM-SVM-KM

Fig. 2. Comparison of online performances for the Wine data set

4 Discussion and Conclusion

From the results shown in Table 2 which comparing our method to VM-SVM-HI
and VA-SVM, we could draw the following conclusions.

First, VM-SVM-KM performed better in accuracy among these three data
sets nevertheless the increases were small. Furthermore, VA-SVM used 30% of
the training set as the calibration set which did not participate in the training
of classifiers; hence it may lead to worse results. Second, the accuracies of VA-
SVM slightly outnumbered the upper bound in WBC and Splice data sets, which
could be due to the offline setting. Third, the probability bounds of VA-SVM
were the narrowest while VM-SVM-HI had the widest bounds and VM-SVM-
KM was in-between. This is the advantage of VA-SVM in view of our preference
for narrow bounds. It is also backed by the Brier scores results: VA-SVM and
VM-SVM-KM had close Brier scores while VM-SVM-HI had the worst results.

Another point is that VA-SVM does not calibrate their predicted label ac-
cording to the probability, more specifically it is an algorithm that generates the
probabilities from the scores only, while our algorithm gives predictions based
on the highest likelihood. Except the improvement in accuracy, VM-SVM-KM
is easy to configure because the number of clusters is the only input parameter
of this algorithm which is equal to the number of classes.



260 C. Zhou et al.

From the results presented in Table 3 and Table 4 where the performance of
VM-SVM-KM is compared with VM-SVM-HI in both offline and online setting,
we can discover the following points.

First, it can be observed that all accuracies were within the probabilistic
outputs in the offline setting, while in the online setting the accuracies exceeded
the bounds in Segment and Vehicle data sets. Second, after implementing the
k-means clustering, the accuracies are improved in both settings. However, in
the offline setting, the improvements ranged from 0.8% to 3.8% depending on
the data sets. In the online setting, the difference between these two algorithms
became smaller, only 0.6% to 2.5%. Third, probability bounds become narrower
after applying the k-means clustering, mostly benefiting from the rise of lower
bounds. An intuitive comparison is shown in Fig. 2. The cumulative errors and
cumulative error bounds in the figures all decreased after implementing k-means
clustering, and the bounds became narrower in the meantime.

In summary, the improvement in each of the eight data sets was not significant
which is due to the consistency of these data sets. Nevertheless, we still believe
that SVM Venn Machine with k-means clustering is better when compared with
homogeneous intervals since it could yield better accuracy and narrower bounds.
However, in comparison with Venn-ABERS predictor, our algorithm is good on
accuracy and weak on narrowness of the bounds. Despite that, our algorithm
is easier to set up, and it predicts the most likely label while Venn-ABERS
predictor only generates the probabilities.

References

1. Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., Silverman, E.: An empiri-
cal distribution function for sampling with incomplete information. Ann. Math.
Statist. 26(4), 641-647 (1955)

2. Brier, G.W.: Verification of forecasts expressed in terms of probability. Monthly
Weather Review 78(1), 1-3 (1950)

3. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

4. Forgy, E.W.: Cluster analysis of multivariate data: Efficiency vs interpretability of
classifications. Biometrics 21, 768-769 (1965)

5. Lambrou, A., Papadopoulos, H., Nouretdinov, I., Gammerman, A.: Reliable prob-
ability estimates based on support vector machines for large multiclass datasets.
In: Tliadis, L., Maglogiannis, 1., Papadopoulos, H., Karatzas, K., Sioutas, S. (eds.)
ATAI 2012, Part IL. TFTP AICT, vol. 382, pp. 182-191. Springer, Heidelberg (2012)

6. Lloyd, S.P.: Least squares quantization in pcm. IEEE Transactions on Information

Theory 28, 129-137 (1982)

Vovk, V.: Venn predictors and isotonic regression. CoRR abs/1211.0025 (2012)

Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.

Springer-Verlag New York, Inc., Secaucus (2005)

9. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass
probability estimates. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 694-699. ACM (2002)

10. Zhou, C., Nouretdinov, I., Luo, Z., Adamskiy, D., Randell, L., Coldham, N., Gam-

merman, A.: A comparison of venn machine with platt’s method in probabilistic
outputs. In: Iliadis, L., Maglogiannis, 1., Papadopoulos, H. (eds.) EANN/ATAI
2011, Part II. IFIP AICT, vol. 364, pp. 483-490. Springer, Heidelberg (2011)

© N



	SVM Venn Machine with k-Means Clustering

	1 Introduction
	2 Methodology
	2.1 Venn Machine
	2.2 Venn-ABERS Predictor

	3 Experimental Results
	3.1 Experimental Settings
	3.2 Comparisons and Results

	4 Discussion and Conclusion
	References




