
Efficient Power and Timing Side Channels
for Physical Unclonable Functions

Ulrich Rührmair1,�, Xiaolin Xu1,�, Jan Sölter3, Ahmed Mahmoud1,
Mehrdad Majzoobi4, Farinaz Koushanfar4, and Wayne Burleson2

1 Technische Universität München, 80333 München, Germany
2 University of Massachusetts Amherst, Amherst, MA 01003, USA

3 Freie Universität Berlin, 14195 Berlin, Germany
4 Rice University, Houston, TX 77005, USA

ruehrmair@in.tum.de,xiaolinx@umass.edu,jan_soelter@yahoo.com
ahmed.mahmoud@tum.de,m.majzoobi@gmail.com

fk1@rice.edu,burleson@umass.edu

Abstract. One part of the original PUF promise was their improved resilience
against physical attack methods, such as cloning, invasive techniques, and ar-
guably also side channels. In recent years, however, a number of effective phys-
ical attacks on PUFs have been developed [17,18,20,8,2]. This paper continues
this line of research, and introduces the first power and timing side channels (SCs)
on PUFs, more specifically on Arbiter PUF variants. Concretely, we attack so-
called XOR Arbiter PUFs and Lightweight PUFs, which prior to our work were
considered the most secure members of the Arbiter PUF family [28,30]. We show
that both architectures can be tackled with polynomial complexity by a combined
SC and machine learning approach.

Our strategy is demonstrated in silicon on FPGAs, where we attack the above
two architectures for up to 16 XORs and 512 bits. For comparison, in earlier
works XOR-based Arbiter PUF designs with only up to 5 or 6 XORs and 64 or
128 bits had been tackled successfully. Designs with 8 XORs and 512 bits had
been explicitly recommended as secure for practical use [28,30].

Together with recent modeling attacks [28,30], our work shows that unless
suitable design countermeasures are put in place, no remaining member of the
Arbiter PUF family resists all currently known attacks. Our work thus motivates
research on countermeasures in Arbiter PUFs, or on the development of entirely
new Strong PUF designs with improved resilience.

Keywords: Physical unclonable functions (PUFs), side-channel attacks, power
side channel, timing side channel, modeling attacks, machine learning, hardware
security.

1 Introduction

One part of the original PUF promise was their improved resilience against many clas-
sical attack forms, in particular physical attacks. This included cloning, invasive tech-
niques, and arguably also side channels (SC). Regarding the latter, recall that Strong

� These two authors contributed equally.

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 476–492, 2014.
c© International Association for Cryptologic Research 2014

Power and Timing Side Channels for PUFs 477

PUF based identification schemes [22] do not require a standard key that is processed
bit by bit, a fact that arguably led to hopes about improved SC resilience within the
community.

Recent years have put these assumptions to the test, but sometimes with a negative
outcome. Let us start with non-physical attacks: Firstly, machine learning (ML) based
modeling attacks have proven a more efficient threat than originally assumed. When
the first of these attacks were put forward in 2004 [9], it was supposed that they could
be thwarted by adding simple non-linear elements to Arbiter PUF designs, for example
XOR gates or feed-forward loops. However, by improved ML algorithms, Rührmair et
al. in 2010 and 2013 [28,30] also tackled XOR-based Arbiter PUFs up to 64 or 128
bits and 5 XORs, and Feed-Forward Arbiter PUFs up to essentially arbitrary sizes. As
a second, non-physical attack form, PUF protocol attacks have been devised in recent
years. Since they are not in the focus of this work, we refer interested readers to the
literature on this topic [26,25].

Also dedicated physical attacks on PUFs have been devised lately. For example,
the physical unclonability of PUFs, one of their core properties, has been investigated
more closely. It is obvious that complex three-dimensional objects like PUFs cannot be
cloned atom by atom by current fabrication technology. Generating a perfect clone thus
to date is infeasible. However, functional clones are easier to construct, i.e., PUFs that
merely agree with the original in their challenge-response behavior. In a breakthrough
effort, Helfmeier et al. [8] in 2013 were indeed able to functionally clone SRAM PUFs
by tuning the power-up states of SRAM cells. Soon after, invasive attacks on SRAM
PUFs have been presented by Nedospasov et al. [20] in 2013. The authors apply semi-
invasive, single-trace, backside readout of logic states to to obtain the responses of
SRAM PUFs. This compromises any secret keys that would be derived from these re-
sponses.

Around the same time, first side-channel attacks on PUFs have been investigated. In
2011, Merli et al. [17] demonstrated SC attacks on the error correcting (EC) module of
PUFs. Their attack is indirect in the sense that it does not target the PUF itself, but a
specific EC module of the PUF, working only for certain modules. Furthermore, Merli et
al. reported electromagnetic analyses on ring oscillator PUFs in two consecutive works
in 2011 and 2013 [18,19]. Also in 2013, Delvaux et al. [2] exploited the instabilities
of Arbiter PUF responses as side channel, implementing an idea originally suggested
by Rührmair et al. in [28]. While the work of Delvaux et al. is quite fascinating due
to the fact that it does not use any machine learning algorithms, it must be said that
it performs slightly worse than pure machine-learning based modeling without side
channels [28,30,2].

We continue this line of research, and introduce in this paper the first power and
timing side channel attacks on PUFs. Our approach constitutes one of the first phys-
ical attacks on Strong PUFs [24,27,29] that can notably increase attack performance
in comparison with existing, non-physical methods, specifically with pure modeling
attacks [28,30].

In greater detail, we devise power and timing SCs for XOR Arbiter PUFs and
Lightweight PUFs that provide the adversary with information about the cumulative
number of zeros and ones in the outputs of the k parallel Arbiter PUFs before the XOR

478 U. Rührmair et al.

gate. We then adapt existing machine learning (ML) techniques to efficiently exploit this
information. This “hybrid” attack form can tackle XOR Arbiter PUFs and Lightweight
PUFs with a polynomial complexity in their number of XORs, bitlengths, and number of
required CRPs, while pure modeling attacks on these two PUFs have exponential com-
plexity [28,30]. We provide a full proof of concept on FPGAs, attacking XOR Arbiter
PUFs and Lightweight PUFs for up to 16 XORs and 512 bits. Comparably large sizes
of these two PUFs had hence never been realized before in silicon; in earlier works,
already XOR Arbiter PUFs with 8 XORs and 512 bits had been explicitly suggested as
secure [28,30].

Organization of this Paper Section 2 provides the necessary background and methodol-
ogy. Sections 3 and 4 describe the design and implementation of our power and timing
side channels, respectively. Section 5 details our adaptation of logistic regression to in-
corporate SC information. Section 6 lists silicon results on FPGA implementations and
provides an asymptotic peformance analysis. We conclude the paper in Section 7.

2 Background, Methodology, and Definitions

Background on XOR Arbiter PUFs and Lightweight PUFs. Together with SRAM
PUFs, the Arbiter PUF family [7,31] is arguably the best studied PUF design, and also
the most popular implementation of so-called “Strong PUFs” [24,27]. Nevertheless, a
large number of its members have been attacked successfully by so-called modeling
attacks in recent works [28,30]. The currently only remaining Arbiter PUF variants
which partly resist modeling, since they cause exponential modeling efforts (i.e., expo-
nential training times of the ML algorithm), were so-called XOR Arbiter PUFs [9,31]
and Lightweight PUFs [11].

In an XOR Arbiter PUF, k Arbiter PUFs are used in parallel, and the same, multi-bit
challenge is applied to all of them. The final, one-bit response is defined as the XOR of
all the parallel k outputs [9,31]. In a Lightweight PUF [11,28], again k Arbiter PUFs are
used in parallel, but different challenges C1, . . . , Ck are applied to them, all of which
are generated by some “input mapping” from a single, global challenge C (see [11] for
the details of the mapping). The k outputs of the single Arbiter PUFs are used (without
error correction) as input to a postprocessing function, which XORs subsets of them
together in order to produce an m-bit output string (see again [11] for details). From a
machine learning and modeling perspective, the optimal bit security is achieved if all of
the k outputs are XORed to produce a single bit output [28,30]. Therefore earlier works
[28,30] focused exactly on this case and on this special architecture of the Lightweight
PUF, and so do we in this paper. If nothing else, this evaluates the maximally achievable
bit security in a Lightweight PUF architecture. Using the same Lightweight PUF variant
as [28,30] also allows a fair comparison with our results.

FPGA Implementations. We implemented the above XOR Arbiter PUFs and Light-
weight PUFs on Xilinx Spartan-6 FPGAs. In order to balance FPGA routing
asymmetries, a lookup table (LUT) based programmable delay line (PDL) has been
implemented [13,10,15]. This is the standard approach for realizing Arbiter PUFs on

Power and Timing Side Channels for PUFs 479

FPGAs, and ensures a balanced output between zeros and ones in each single Arbiter
PUF. For each CRP, majority voting over five repeated measurements of the response
to the same challenge was performed in order to determine the final response. The chal-
lenges were generated by an n-bit maximal-length linear feedback shift register (LFSR)
with polynomial f = 1+ x1 + x3 + x4 + x64.

Machine Learning Definitions and Computational Resources. Following [28,30], we
use the following definitions throughout the paper: The prediction error ε is the ratio
of incorrect responses of the trained ML algorithm when evaluated on the test set. The
prediction rate is 1− ε. For all ML experiments throughout this paper, each test set con-
sisted of 10,000 randomly chosen CRPs. The term NCRP (or simply “CRPs”) denotes
the number of CRPs employed in an attack, i.e., the size of the training set. We used
an Intel Xeon X5650 processor at 2.67GHz with 48 GB of RAM in all of our ML ex-
periments, having a value of a few thousand Euros. All computation times (= “training
times”) are calculated for one core of one processor of this hardware.

3 Power Side Channels on XOR-Based Arbiter PUFs

3.1 Basic Idea of the Power Side Channel

Currently known pure modeling attacks on XOR-based Arbiter PUFs require training
times of the ML algorithm that are exponential in the number of XORs [28,30]. This
makes it difficult to tackle XOR-based Arbiter PUFs with more than five or six single
parallel Arbiter PUFs, and with bitlengths longer than 128, by pure modeling attacks
[28,30]. XOR-based Arbiter PUF architectures are therefore the currently most secure
designs from the Arbiter PUF family. Our side-channel attacks now take a novel route:
They gain additional information from the physical implementation of XOR-based Ar-
biter PUFs, and use this information to improve the ML computation times (i.e., training
times) from exponential to polynomial.

One straightforward power side channel is to apply power (i.e., current) tracing to
determine the transition from zero to one of the latches (i.e., the arbiter elements) in the
single Arbiter PUFs. The power tracing is based on measuring the amount of current
drawn from the supply voltage during any latch transition to one. We implemented a
first SPICE simulation to validate this approach, and to verify the power consumption
of an arbiter circuit with different loading outputs. Only one latch (i.e., arbiter circuit) is
used in the simulation, but with three different outputs loading scenarios (i.e., floating
output, output connected to one gate, and output connected to four gates). Figure 1 illus-
trates the results, and shows the different amount of current drawn for the three different
output loading scenarios. The reason for having different values for the different load-
ings is that an additional amount of charges is required to charge the capacitance of each
gate. Hence, the amount of drawn charges, which is the integration of the current curve,
is linearly proportional with the number of loading gates. Taking this phenomenon into
consideration, the amount of charges normally drawn in case of a floating load should
be subtracted.

In XOR-based architectures with k parallel single Arbiter PUFs, the current that is
drawn in sum and altogether in principle tells the (cumulative) number of latches that

480 U. Rührmair et al.

Fig. 1. The power tracking side-channel analysis for a latch that had a transition to 1, with dif-
ferent driving loads, in SPICE simulation. The inset is the amount of drawn charges, which is
calculated from the area under each curve. The amount of charges is linearly proportional with
the number of gates. The amount of charges normally drawn for a floating load should be sub-
tracted.

are zero, and the (cumulative) number that are equal to one. Please note, however, that
it does not tell us which of the k parallel Arbiter PUFs had which output. If it did, CRPs
from every single Arbiter PUF could be collected, and every single Arbiter PUF could
be machine learned separately. As this is not possible, a more complicated strategy
is required, in particular a way to exploit the cumulative number of zeros and ones
beneficially in the ML process, as detailed in Section 5. But before we move on to the
details of the ML process, we discuss the exact implementation of the side channels in
this and the next section.

3.2 Practical Implementation of the Power Side Channel

Measurement Noise. To further validate the practicality of our power SC, we had
to move beyond the simplifications of SPICE simulations, most notably the absence
of supply and measurement noise and real process variations. We extracted the power
trace of 30 sub-response patterns from Lightweight PUFs on FPGA (see Figure 2).
However, we found that the 30 power traces are difficult to be differentiated from each
other (as are their power consumptions). In other words, in practical implementations,
a straightforward identification of the desired power side channel information from the
measured power (current) traces appears infeasible.

Power and Timing Side Channels for PUFs 481

Fig. 2. Power trace of 30 different sub-responses, collected from FPGA, illustrating the difficulty
of differentiating them from each other

There are two reasons for this problem:

1. In real silicon Arbiter and Lightweight PUFs, the final XOR function usually con-
sumes no more than 5% silicon resource of the whole design. Thus, it is difficult to
extract the power consumption of XOR function, which consumes much less power
compared with the whole circuits;

2. Unlike a simulated PUF, measuring real silicon PUF circuit is always impacted by
the noise from supply voltage and measurement, which plays a negative role in
extracting the desired power information.

To overcome this problem and maintain the feasibility of our power side channel, we
developed a new, statistical signal processing strategy.

Our main objective is to extract the subtle power consumption of XOR gates and
transform it into a recognizable format, which is correlated with the cumulative number
of one or zero sub-responses. Even though the extra power consumed by active XOR
gates is not directly extractable, it does really affect the whole power consumption.
Thus, it should change the probability distribution functions (PDF) of the measured
power leakage, if it can extract the probability distribution of leaked power informa-
tion, the cumulative of one sub-responses can be inferred. For this purpose, we apply
a “challenge-dependent responses estimation” method to calculate the PDF of every
power trace collection.

The “challenge-dependent responses estimation” is implemented by comparing the
power trace just before and after the generation of response to distinguish subtle changes.
In the experiment, we measure the power trace of a single PUF response for totally m
times, and record all of them in parallel. If denoting the generation time of the ith PUF
response Ri as ti, we can then filter out the two adjacent sections of power trace (length
of which is T before

i and T after
i) just before and after time ti. Assume that T before

i =
T after
i , then we divide each time slice into n parts with the collected power trace (cur-

rent trace) data. Based on the divided current trace data, we can calculate the power
consumption of each n part before and after the generation of response Ri.

482 U. Rührmair et al.

By denoting power consumption of all the 2 ∗ n parts of the ith PUF response under
the lth measurement (totally m measurements are did as described above, thus, l ∈
(1...m)) as P before

lij and P after
lij respectively (j ∈ (1...n)), two matrices including the

power consumption information of the ith response are obtained as:

M before
i =

⎛
⎜⎜⎝

P before
11 P before

12 P before
13 ... P before

1n

P before
21 P before

22 P before
23 ... P before

2n

...

P before
m1 P before

m2 P before
m3 ... P before

mn

⎞
⎟⎟⎠ (1)

Mafter
i =

⎛
⎜⎜⎝

P after
11 P after

12 P after
13 ... P after

1n

P after
21 P after

22 P after
23 ... P after

2n

...

P after
m1 P after

m2 P after
m3 ... P after

mn

⎞
⎟⎟⎠ (2)

Based on the power trace processing above, we now denote the power information
of a single PUF response with two matrix: M before

i and Mafter
i . Assuming that we

totally collect K response bits, then the power consumption matrix for all responses
can be described as (for brevity, “b” means before and “a” means after):

M before/after =
(
M

b/a
1 M

b/a
2 M

b/a
3 ... M

b/a
K

)
(3)

Due to the existence of environmental and measurement noise, the m parallel seg-
mentations of measured power trace (such as P before

11 , P before
21 ... P before

m1 in Equation
1, and P after

11 , P after
21 ... P after

m1 in Equation 2) consumption would build n PDF re-
spectively. Since we divide power trace slice into 2 parts (before and after), thus totally
2 ∗n PDF are generated for each response. As we discussed, though there is no directly
leaked power information that we can extract for the XOR function, it impacts the prob-
ability distribution of the whole power trace. To convert the PDF information into the
cumulative number of one and zero responses, we applied histograms method to de-
scribe the PDF, and then implement basic calculus computation to get the cumulative
distribution function (CDF):

C
before/after
j (x) =

∑
xj<x

PDF (X = xj) =
∑
xj<x

p(xj)

j ∈ (1..n)

(4)

Based on Equation.4, the original leaked power information can be transformed as
CDF. To filter out the difference between two power trace segments: before and after
time ti, and erase the impact of environmental and measurement noise, we then calcu-
late the mean-squared-error (MSE) following Equation 5:

MSEj = E[(Cbefore
j (x)− Cafter

j (x)2], j ∈ (1..n) (5)

then, all of the n MSEs are summed up for a final sub-response estimation: Ei, which
reflects and amplifies the impact of active XOR gates on leaked power:

Ei =
n∑

j=1

MSEj, j ∈ (1..n) (6)

Power and Timing Side Channels for PUFs 483

With the proposed “challenge-dependent responses estimation” method, the power trace
of different challenge-dependent responses patterns are transformed into an estimated
value: “Ei”. Thus, we can deduce the pattern of CRPs and integrate them within our
proposed ML attacks.

Determining the Generation time of PUF Response. In the previous paragraph, we
applied the “challenge-dependent responses estimation” method to extract the power
side channel information of active XOR gates, assuming that we know the generation
time of the ith PUF response Ri as ti. However, one additional problem is that in
practice, ti is not a direct known parameter. In this last paragraph, we will now detail
how we overcame this final problem.

If we randomly set a ti random as the generation time of response Ri, the power
information of a certain PUF response Ri can be described as:

Pi = P before
i noise + P before

i oc + P before
i XOR + P after

i noise + P after
i oc + P after

i XOR, (7)

where P
b/a
i noise denotes the environmental and measurement noise (as before, “b”

abbreviates before and “a” after ti random here),P b/a
i oc stands for the power consumption

of “other circuitry”, again before and after ti random, while P b/a
i XOR denotes the similar

power information of XOR functional circuitry. Since based on the measurement, we
can roughly tell the range of a PUF response generation time, we would have several
choices of ti random. To determine the exact generation time of each PUF responses,
we move the ti random in the approximate time range, then we will get different power
side channel informative patterns.

Since the PUF circuitry are measured for multiple times, and under the same envi-
ronment, we can assume that for each response, we will have:

P before
i noise ≈ P after

i noise and P before
i oc ≈ P after

i oc (8)

thus, if we measure the power trace of a single PUF response for multiple times, we
get:

∑
P before
i noise −

∑
P after
i noise ≈ 0 and

∑
P before
i oc −

∑
P after
i oc ≈ 0 (9)

Based on this algorithm, it is clear that only when ti is set as the correct generation
time, the Ei in Equation 6 is maximized.

4 Timing Side Channels on XOR-Based Arbiter PUFs

As with our power side channel, the objective of the timing side channel is providing
additional information about the individual response bits (i.e., PUF output bits) even
though the response bits are XOR’ed together for providing the output. Assume that
k response bits {r1, . . . , rk} are XOR’ed to form a single output bit bout. (Note that
a k-input XOR shall consist of several stages of smaller XOR gates. For the sake of
demonstration, assume that the delay of the response bit ri, denoted by tri follows a
certain order, say tr1 ≤ tr2 · · · ≤ trk−1

≤ trk). Our timing side-channel approach
is based on a delay measurement circuit, which can be used to characterize the delay
length of different patterns of k response bits {r1, . . . , rk}.

484 U. Rührmair et al.

4.1 Timing Characterization Method

Every ASIC manufactured chip undergoes a set of structural and functional tests which
measure/ evaluate the IC’s physical and logical properties respectively. Measuring the
delay of certain combinational paths in the circuit is a part of standard structural test-
ing. Since the internal combinational paths are typically inaccessible, the timings are
indirectly inferred from the FF outputs using clock sweeping. The FF values can be set
using a testing scan-chain while all the FFs are connected to the global chip clock. The
pertinent chip is referred to as Circuit Under Test (CUT). The frequency of this clock is
swept in a continuous monotonic fashion from a high to low value while the path under
measurement is toggled using the logic at the input FF. When the frequency is higher
than the path delay, the output FF does not have enough time to settle which is called a
“fail”. Once the frequency approaches the path delay, the output FF sets to the correct
value (from the initial reset dictated by the scan chain) which is the “pass” state. The
frequency at which this transition occurs denotes the path delay and this overall testing
method is called pass/fail timing test.

On our FPGA testbed, the pass/fail timing tests have to be implemented by recon-
figuration. We adopt the measurement circuitry from [14,15] that is demonstrated in
Figure 3. Note that because of the timing uncertainty around the FF metastability point,
the toggle between the pass/fail states appears with a certain property. Thus, error den-
sity estimation followed by smoothing methods are used for inferring the exact toggle
point from a set of stochastic measurements.

To estimate the probability of error at a certain clock frequency, an error histogram
accumulator is realized using two counters. The first one is an error counter whose value
increments by one each time an error occurs. The second one counts the clock cycles;
after 2N clock cycles, this counter clears (resets) the error counter and then restarts
again, where N is the binary counters’ size. The error counter value is stored in the
memory one clock cycle before it is reset. Now, the stored number of fails normalized
to N would yield the error probability value for each target frequency.

Circuit-

under-

test

D

FF

Launch

Flip Flop
Sample

Flip Flops

Capture

Flip Flops

D

FF

D

FF

VDDBinary Challenge

T

Timing

Challenge S D Q

E L

Fig. 3. The timing signature extraction circuit

Next, we linearly and continually sweep the input clock frequency: in Tsweep seconds
from fi =

1
2Ti

to ft =
1

2Tt
, where Tt < tp < Ti. For each frequency sweep, a separate

set of registers count the number of clock pulses. We use this counter as an accurate

Power and Timing Side Channels for PUFs 485

timer which records the frequency of the timing errors. This counter value is retrieved
every time the content of the error counter is written into memory. The system described
above can be configured and utilized for extracting the delays of any CUT implemented
on FPGA. We use this adaptation of pass/fail timing test to measure the delay between
the FF storing the challenge input, to the output of the PUF which shall be stored in
an output register. To prevent attacks, this output is measured after XORing the arbiter
values. Note that the scanning for extracting delay values could also be performed in
parallel to reduce the characterization time [14,15].

4.2 Characterization Accuracy

The resolution of the delay measurement, i.e., the measured delay’s accuracy, is a func-
tion of a few factors: (i) the clock noise and skew, (ii) the sweeping frequency resolu-
tion, and (iii) the number of pulses at each frequency. The output of the characterization
circuit is a binary zero/one (pass/fail) value. A real-valued output can be measured by
repeating several (same width) clock pulses to the circuitry and accumulating the num-
ber of ones at the output. The resulting value, when normalized, shows the probability
at which the timing errors occur for each input clock’s pulse width. The more the input
clock pulse is repeated, a higher sampling resolution and accuracy can be achieved.

For now assume that the clock pulse (of width T) is sent to the CUT for M times.
Because of clock skew and phase noise, the characterization circuitry receives a clock
pulse with width Teff = T + Tj , where Tj is the additive jitter. Suppose that Tj is
a random variable with a zero mean and symmetric distribution around its mean. The
output probability is a continuous and smooth function of Teff ; thus, approximating
the probability by averaging shall be an asymptotically unbiased estimator as M → ∞.
Lastly, the minimum measurable timing is a function of the maximum clock speed at
which the FFs can be run (maximum clock frequency). During a linear frequency sweep,
a longer sweep time increases both items (ii) and (iii) and thus the characterization
accuracy.

4.3 Parameter Extraction

Thus far, we have described a system that measures the probability of timing errors
for various clock pulse widths. The error probability can be fully represented by a set
of few parameters; the parameters are directly related to the CUT delay and FF setup
and hold times. It can be shown that the probability of timing errors shall be written
as the sum of shifted Gaussian CDFs [14,15]. The central limit theorem can determine
the Gaussian nature of the error probabilities which can be explained by Equation 10
showing the parameterized error probability function.

fD,Σ(t) = 1 + 0.5

|Σ|−1∑
i=1

−1�i/2�
[
Q(

t− di
σi

)

]
(10)

where Q(x)= 1√
2π

∫∞
x

exp
(
−u2

2

)
and di+1 > di. To estimate the timing parameters, f

is fit to the set of measured data points (ti,ei), where ei is the error value recorded when
the pulse width is ti.

486 U. Rührmair et al.

4.4 Side Channel Timing Analysis of XOR’ed Outputs

The pass/fail timing measurement above is able to estimate the delay of the overall PUF
path (after XOR’ing). As we sweep the clock, we eventually get to a stable regime, i.e.,
the regime where the overall output does not change any more. However, before getting
to this stable regime, there are clock periods for which only a few XOR inputs (i.e.,
response bits) change. Sweeping the clock frequency could yield the information about
the approximate timing of the XOR inputs: every time one of the inputs to the XOR
network, i.e., an arbiter output, changes, there will be a toggle. Even though it is not
possible to distinguish the response bit that has changed, it is possible to estimate the
number of flipping XOR inputs with a good probability. This number shall be vague if
the timings of two or more response bits coincide. Since the probability of such a co-
incidence is rather low, in most instances clock sweeping shall yield an approximation
of the number of flipped XOR inputs, i.e., the cumulative number of zeros and ones
among the single Arbiter PUF responses r1, . . . , rk.

5 Adapting Machine Learning Algorithms to Side Channel
Information

The question how (and if at all) SC information on the cumulative number of zeros and
ones can be efficiently exploited in PUF modeling turned out to be highly non-trivial.
Eventually, we found a gradient based optimization similar to the logistic regression
(LR) algorithm of [28,30]. The following treatment assumes some familiarity with this
algorithm and with the work in [28,30].

Let ri(C) ∈ {0, 1} be the output of the ith Arbiter PUF within a k-XOR Arbiter PUF
(or within a Lightweight PUF with k parallel Arbiter PUFs) to a challenge C. The side-
channel information then yields the number n of individual Arbiter PUFs with output
one: n =

∑
i ri(C). It lies in contrast to the general setting of binary outputs in LR on

an interval scale. Therefore, instead of optimizing the binary class probabilities [28,30],
we rely on minimizing the squared error between a side-channel model f(w, C) and
the actual outputs n:

l(M,w) =
∑

(C, t)∈M
(f(w, C)− n)2.

The corresponding gradient

∇l(M,w) =
∑

(C, r)∈M
2 (f (w)− n)∇f(w) (11)

is highly similar to the gradient in LR. We again applied the RProp update scheme (as
in [28,30]) to find a solution ŵ with minimal error l.

Assuming the standard linear additive delay model [9,6,28,30], one obtains the fol-
lowing model of the side-channel information:

f(w, C) =
∑
i

Θ(wT
i Φi).

Power and Timing Side Channels for PUFs 487

Note that the model only depends on the direction, but not on the length ‖wi‖ of the
weight vectors. That is, any two solutions wi and αwi, α ∈ R

+ are equivalent. There-
fore we might substitute the Heaviside function by the differentiable logistic sigmoid
σ(x) = (1 + e−x)−1 to enable gradient based optimization. This is a reasonable sub-
stitution as lim‖w‖→∞ σ(wTΦ) = Θ(wTΦ) and, as noted above, a valid solution is
unaffected by scaling of w.

As this substitution makes the model differentiable, we obtain the following gradient
to insert in Equation 11:

∇f(wj) = σ(wT
j Φj)(1 − σ(wT

j Φj))Φj . (12)

This gradient of an individual Arbiter PUF’s weight vector wj depends only on the
value of the weight vector itself, being in strong contrast to the case without side-
channel information [28,30]. The decoupling of individual Arbiter PUF updates thus
drastically simplifies the ML problem, provided that side-channel information is avail-
able.

In addition to the above new regression, we applied a two step optimization method-
ology: First we optimized the PUF model based on the above process and gradient, us-
ing the side-channel information, until a fraction of f = 0.95 percent of the final XOR
Arbiter output was correctly reproduced. Secondly, we further refined and optimized
the model with the “standard” LR algorithm applied in [28,30] for 1000 iterations. This
led to very low error rates around 2% or below. For all experiments, we used hundred
times more CRPs than free parameters in the model, i.e.,

NCRP ≈ 100× bitlength × no. of XORs.

Note that the above equation merely describes a linear CRP consumption in the problem
parameters. This is in stark contrast to the exponentially growing complexities of pure
ML attacks on XOR Arbiter and Lightweight PUFs [28,30].

While our approach in the first step of the above methodology mostly converged
to the global minimum, in a few cases it got stuck (i.e., the performance after 5000
iterations was worse than 5% remaining missclassifications). In this case, we restarted
the algorithm with a different random initialization of w.

6 Results and Asymptotic Performance Analysis

We applied our adapted ML methods (see Section 5) to CRP data and SC information
gathered from FPGAs (see Sections 2, 3, and 4), both for power and timing SCs. The
results are presented in Tables 1 and 2. The attacks perform extremely efficiently, as we
were able to successfully attack XOR Arbiter PUFs and Lightweight PUFs for up to 16
XORs and for bitlengths of up to 512 (timing SCs) and 128 (power SCs). No imple-
mentations of comparable sizes of these two PUFs in silicon had ever been considered
or reported before. Furthermore, pure modeling attacks thus far had only been able to
tackle the two PUFs for up 5 or 6 XORs and bitlength 64 [28,30]. Both facts illustrate
the impact and reach of our new method.

Tables 1 and 2 already indicate that the CRP requirments and computation times
grow very mildly, with the same holding for the prediction errors. In order to quantify

488 U. Rührmair et al.

Table 1. Effectiveness of timing side-channel attacks on the XOR Arbiter PUF and Lightweight
PUF (LW PUF), all carried out on FPGA implementations

No. of Bit CRPs Prediction Rate Training Time Predict. Rate Training Time
XORs Length (×103) XOR Arb. PUF XOR Arb. PUF LW PUF LW PUF

8

64 26 98.5% 2 min 98.5% 1 min
128 51.6 97.5% 12 min 98.2% 9 min
256 103 97.7% 1:35 hrs 97.8% 1:00 hrs
512 205 97.4% 16:50 hrs 97.5% 3:30 hrs

12

64 39 98.1% 16.5 min 98.5% 2 min
128 77.4 97.4% 38.5 min 97.9% 24.1 min
256 154.5 97.1% 3.8 hrs 97.3% 1.75 hrs
512 308 96.92% 56.25 hrs 97.11% 9.55 hrs

16

64 52 98% 37 min 98% 7 min
128 103.2 97.5% 2 hrs 97.5% 51.7 min
256 206 97.3% 15.1 hrs 96.9% 4.8 hrs
512 410 96.5% 102 hrs 96.7% 20.2 hrs

Table 2. Effectiveness of power side-channel attacks on the XOR Arbiter PUF and Lightweight
PUF (LW PUF), all carried out on FPGA implementations

No. of Bit CRPs Prediction Rate Training Time Predict. Rate Training Time
XORs Length (×103) XOR Arb. PUF XOR Arb. PUF LW PUF LW PUF

8
64 26 98.1% 3 min 98.4% 1.25 min

128 51.6 98% 13 min 98.1% 9.25 min

12
64 39 98.3% 11 min 98.2% 3.5 min

128 77.4 97.3% 47 min 97.8% 25 min

16
64 52 98% 38 min 98% 6.5 min

128 103.2 97.5% 2:28 hrs 97.5% 46.5 min

this with yet more data points, we conducted comprehensive ML experiments on sim-
ulated CRPs and simulated SC data. The CRPs were generated by the linear additive
delay model (LADM), similarly as in earlier ML experiments [28,30]. We executed
these simulated attacks on XOR Arbiter PUFs and Lightweight PUFs for 2, 3, . . . , 16
XORs, and with 64, 128, 256 and 512 bits. This means that we treated 2 · 15 · 4 = 120
different architectures in sum, investing hundreds of hours of computation time. The
generated data points are shown in Figure 4, and fully confirm the suspected mild, ac-
tually cubic growth. For those cases where we also had silicon data for comparison (see
Tables 1 and 2), the silicon and the simulated attacks performed very similarly, confirm-
ing both earlier conjectures [6,28,30] on the validity of the additive linear delay model,
as well as the accuracy of our side-channel measurements. The empirically estimated
computational complexity of our attacks is hence O(n3), or, in other words, low-degree
polynomial, in the problem size. Furthermore, as indicated already in Section 5, the
number of used/required CRPs is merely linear in the same parameter.

Two important aspect should not go unnoticed. Firstly, our power side channel is
more noisy than the timing side channel. This had the effect that we could only handle

Power and Timing Side Channels for PUFs 489

Fig. 4. The training times for our ML-algorithm on Lightweight PUFs (LW PUFs) and XOR
Arbiter PUFs on a logarithmic scale. They show that the computational complexity regarding
training times is cubic, i.e., O(x3).

bit lengths of up to 128 by use of the power SC. Improved, less noisy versions seem
possible, but also non-trivial, and are left to future work.

Secondly, in the presence of side-channel information, our ML algorithms perform
slightly faster on Lightweight PUFs than on XOR Arbiter PUF. Without side channels,
the converse effect has been observed [28,30]. Intuitively, the challenge input mapping
of the Lightweight PUF creates a more diverse and stable information basis for the ML
algorithm, which leads to faster convergence. A full, rigorous mathematical analysis of
this effect will be conducted in future work.

7 Summary and Conclusions

In this paper, we introduced and implemented the first power and timing side channels
(SCs) on PUFs, more precisely on XOR Arbiter PUFs and Lightweight PUFs. These
two PUF designs were chosen by us due to their particular relevance: The Arbiter PUF
family is arguably the most studied electrical Strong PUF design, and said two PUFs
are the most secure representatives of this family according to recent work [28,30]. Our
two SCs consisted of (i) power tracing of the arbiter element (i.e., the latch) in Arbiter
PUFs, and (ii) marking different response patterns with corresponding timing signatures.
Both SCs tell us the cumulative number of zeros and ones in the outputs of the k parallel
Arbiter PUFs within XOR-based Arbiter PUF variants, such as the XOR Arbiter PUF

490 U. Rührmair et al.

or the Lightweight PUF. One main obstacle in exploiting the above SCs efficiently was
that the attacker does not learn which of the single Arbiter PUF outputs is zero or one.
This makes the cumulative information worthless at first sight. However, we were able
to devise adapted, tailor-made ML algorithms, which can exploit the information very
efficiently.

We carried out a full silicon proof of concept on FPGAs, attacking the two above
PUFs for up to 16 XORs and bitlengths of 512 bits (by timing SCs) and 128 bits (by
power SCs). Their smaller noise levels made timing SCs the yet more efficient tool,
even though improved future versions of the power side channels seem possible. Inter-
estingly, XOR-based Arbiter PUF variants had never even been implemented (left alone
attacked) for comparable sizes in the literature, since already versions with 8 XORs and
512 bits had been recommended as practically secure against known attacks in earlier
works [28,30]. This may illustrate the relevance and strength of our results. A close
asymptotic analysis on simulated CRP data furthemore showed that our attacks have
only cubic complexity. This is a drastic improvement over the exponential complexity
of state-of-the-art, pure modeling attacks [28,30].

Our methods are the first physical attacks on Strong PUFs, i.e., on PUFs with many
CRPs, that can notably increase attack performance. Overall, they imply that as long as
no suitable design countermeasures are put in place, no currently existing architecture
from the Arbiter PUF family can withstand all known attacks: “Standard” Arbiter PUFs
as well as Feed-Forward Arbiter PUFs have been attacked by pure modeling attacks
with polynomial complexity [28,30]; and XOR-based variants such as the XOR Arbiter
PUF and the Lightweight PUF are susceptible to the methods presented in this paper,
which have polynomial complexity, too.

We did not explicitly deal with design countermeasures in this paper for space rea-
sons. However, one conceivable strategy against power SCs could consist of using two
symmetric, inverted output signals with two latches. This construction could neutral-
ize and balance power consumption, regardless of the PUF’s output. Interestingly, this
could even be used to detect and stabilize output errors in Arbiter PUF variants, even
though we did not follow this route in in this paper. Countermeasure against our tim-
ing SCs would probably have to focus on the construction of an isochronous hardware.
Implementing such strategies is left to future, follow-up works.

We believe that the PUF attacks presented in this and other papers should be interpreted
in a balanced fashion. None of them “kills” the field in its entirety. In our opinion, they
are part of a natural consolidation process in the PUF area, similar to the consolidation
that classical security primitives have undergone already some time ago. The occurence
of this process could be seen as indication that the field is becoming increasingly mature.
One typical byproduct is the insight that certain aspects are not as simple as originally
believed, which may be disappointing at first sight. Overall, however, a sound consolida-
tion will be beneficial to the field, eventually creating more research opportunities than
it destroys. This paper could be seen as one (of many) steps within this process.

Acknowledgements. The work at the University of Massachusetts Amherst was sup-
ported in part by SRC task 1836.074, US NSF grants 0923313 and 0964641, and US
DHHS grant 90TR0003/01. The work at Rice University was supported in part by NSF

Power and Timing Side Channels for PUFs 491

CCF-1116858:SHR:Small, NSF CNS-1059416:CI-ADDO-NEW: Trust-Hub, and ONR
ONR N00014-11-1-0885 grants.

References

1. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning. Springer, New
York (2006)

2. Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65nm arbiter PUFs exploit-
ing CMOS device noise. In: HOST (2013)

3. Delvaux, J., Verbauwhede, I.: Attacking PUF-Based Pattern Matching Key Generators via
Helper Data Manipulation. IACR Cryptology ePrint Archive, Report 2013/566

4. Delvaux, J., Verbauwhede, I.: Key-recovery Attacks on Various RO PUF Constructions via
Helper Data Manipulation. IACR Cryptology ePrint Archive, Report 2013/610

5. Delvaux, J., Verbauwhede, I.: Fault Injection Modeling Attacks on 65nm Arbiter and RO
Sum PUFs via Environmental Changes. IACR Cryptology ePrint Archive, Report 2013/619

6. Devadas, S.: Physical unclonable functions and secure processors. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 65–65. Springer, Heidelberg (2009)

7. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In:
ACM Conference on Computer and Communications Security, pp. 148–160 (2002)

8. Helfmeier, C., Nedospasov, D., Boit, C., Seifert, J.-P.: Cloning Physically Unclonable Func-
tions. In: HOST 2013 (2013)

9. Lim, D.: Extracting Secret Keys from Integrated Circuits. MSc Thesis, MIT (2004)
10. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF using programmable delay lines. In:

IEEE Workshop Information Forensics and Security, WIFS (2010)
11. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight Secure PUFs. In: ICCAD,

pp. 607–673 (2008)
12. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware security. In:

Proceedings of the International Test Conference (ITC), pp. 1–10 (2008)
13. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for Design and Implementation

of Secure Reconfigurable PUFs. ACM Trans. Reconfigurable Technology and Systems 2(1)
(2009)

14. Majzoobi, M., Dyer, E., Elnably, A., Koushanfar, F.: Rapid FPGA Characterization using
Clock Synthesis and Signal Sparsity. In: International Test Conference (ITC), pp. 1–10
(2010)

15. Majzoobi, M., Koushanfar, F.: Time-Bounded Authentication of FPGAs. IEEE Transactions
on Information Forensics and Security (TIFS) 6(3), 1123–1135 (2011)

16. Rostami, M., Majzoobi, M., Koushanfar, F., Wallach, D., Devadas, S.: Robust and Reverse-
Engineering Resilient PUF Authentication and Key-Exchange by Substring Matching. IEEE
Transactions on Emerging Topics in Computing (2014)

17. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-Channel Analysis of PUFs and Fuzzy
Extractors. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y.
(eds.) Trust 2011. LNCS, vol. 6740, pp. 33–47. Springer, Heidelberg (2011)

18. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FPGA RO PUFs and
countermeasures. In: ACM Workshop on Embedded Systems Security, WESS 2011 (2011)

19. Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of RO PUFs. In: HOST 2013 (2013)

20. Nedospasov, D., Helfmeier, C., Seifert, J.-P., Boit, C.: Invasive PUF Analysis. In: Fault Di-
agnonsis and Tolerance in Cryptography, FDTC 2013 (2013)

492 U. Rührmair et al.

21. Pappu, R.: Physical One-Way Functions. PhD Thesis, Massachusetts Institute of Technology
(2001)

22. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way Functions. Science 297,
2026–2030 (2002)

23. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learn-
ing: The RPROP algorithm. In: IEEE International Conference on Neural Networks,
pp. 586–591 (1993)

24. Rührmair, U., Devadas, S., Koushanfar, F.: Security based on Physical Unclonability and
Disorder. In: Tehranipoor, M., Wang, C. (eds.) Introduction to Hardware Security and Trust,
Springer, Heidelberg (2011)

25. Rührmair, U., van Dijk, M.: Practical security analysis of PUF-based two-player protocols.
In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 251–267. Springer,
Heidelberg (2012)

26. Rührmair, U., van Dijk, M.: PUFs in Security Protocols: Attack Models and Security Evalu-
ations. In: IEEE Symposium on Security and Privacy, Oakland 2013 (2013)

27. Rührmair, U., Holcomb, D.E.: PUFs at a glance. In: DATE 2014, pp. 1–6 (2014)
28. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling Attacks

on Physical Unclonable Functions. In: ACM Conference on Computer and Communications
Security (2010)

29. Rührmair, U., Sölter, J., Sehnke, F.: On the Foundations of Physical Unclonable Functions.
Cryptology e-Print Archive (June 2009)

30. Rührmair, U., Sölter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V., Dror, G., Schmid-
huber, J., Burleson, W., Devadas, S.: PUF Modeling Attacks on Simulated and Silicon Data.
IEEE Transactions on Information Forensics and Security, IEEE T-IFS (2013)

31. Edward Suh, G.: Physical Unclonable Functions for Device Authentication and Secret Key
Generation. In: DAC 2007, pp. 9–14 (2007)

	Efficient Power and Timing Side Channels for Physical Unclonable Functions
	1 Introduction
	2 Background, Methodology, and Definitions
	3 Power Side Channels on XOR-Based Arbiter PUFs
	3.1 Basic Idea of the Power Side Channel
	3.2 Practical Implementation of the Power Side Channel

	4 Timing Side Channels on XOR-Based Arbiter PUFs
	4.1 Timing Characterization Method
	4.2 Characterization Accuracy
	4.3 Parameter Extraction
	4.4 Side Channel Timing Analysis of XOR’ed Outputs

	5 Adapting Machine Learning Algorithms to Side Channel Information
	6 Results and Asymptotic Performance Analysis
	7 Summary and Conclusions
	References

