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Abstract. A number of Computer Vision and Artificial Intelligence applications 
are based on descriptors that are extracted from imaged objects. One widely used 
class of such descriptors are the invariant moments, with Zernike moments being 
reported as some of the most efficient descriptors. The calculation of image mo-
ments requires the definition of distance and angle of any pixel from the centroid 
pixel. While this is straightforward in images acquired by projective cameras, it is 
complicated and time consuming for omni-directional images obtained by fish-eye 
cameras. In this work, we provide an efficient way of calculating moment invari-
ants in time domain from omni-directional images, using the calibration of the ac-
quiring camera. The proposed implementation of the descriptors is assessed in the 
case of indoor video in terms of classification accuracy of the segmented human 
silhouettes. Numerical results are presented for different poses of human silhou-
ettes and comparisons between the traditional and the proposed implementation of 
the Zernike moments are presented. The computational complexity for the pro-
posed implementation is also provided.  

Keywords: Pattern recognition, computer vision, image descriptors, moment 
invariants, Omni-directional image/video, fish-eye camera, silhouette pose  
recognition. 

1 Introduction 

Pattern recognition in images is a very common task in artificial intelligence. Among 
other methods [1], invariant moments have been used extensively for providing re-
gional descriptors to be used in pattern recognition problems [2] – [6]. The calculation 
of invariant moments of a region of an image requires a valid distance metric defined 
in the image domain (e.g. [3]). In omnidirectional images, the distance between two 
pixels cannot be defined in terms of their coordinates in the image frame, since the 
image is acquired not through a simple projection, but using a spherical element with 
180 degrees field of view.  
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This need has been recently addressed in a few publications. In [7] the implementa-
tion of the SIFT algorithm ([8]) is presented for omni-directional images, using the 
convolution operators on a sphere in the Fourier domain, whereas it has also been 
studied for wide angle images [9]. In other approaches, the SIFT algorithm has been 
applied to the unwrapped omni-directional images [10]. Pixel distance was redefined 
in conic sensor images [11]. 

The contribution of this work focuses on an efficient way of computing Zernike 
moment invariant (or any other invariant moments) for calibrated omni-directional 
images in the time domain. We propose the measurement of geodesic distance and 
angles between image pixels, based on the calibrated model of the acquiring fish-eye 
camera. The geodesically corrected implementation of Zernike moments presents 
reduced variability when applied to known geometric shapes and it achieves increased 
accuracy when applied to pose classification of segmented human silhouettes. The 
proposed implementation is computationally quite efficient, since it allows the proc-
essing of a high number of frames per second.  

2 Proposed Methodology 

2.1 Zernike Moment Invariant 

Zernike moments of order m, n are defined by a set of radial polynomials Rnm(r), 
which are orthogonal inside the unit circle: 
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Zernike polynomials are defined as  
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The Zernike moments of a bivariate function f(x,y) are defined as: 
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The above Eq. is easily adapted to be used in discrete images. 

2.2 Omni-Directional Image Formation and Camera Calibration 

The formation of omnidirectional image using a spherical camera, as presented  
in detail in [12], is shown in Fig. 1, using only two dimensions to facilitate under-
standing. In Fig. 2, neighbouring pixels are shown in different positions on the image 
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sensor. It is clear that the distance of two pixels is different when measured on the 
sensor and on the position of the images points on the spherical optical element. 
Therefore, in order to produce accurate results, image processing algorithms that use 
pixel distances have to be re-implemented for omni-directional images. In this work, 
we utilize the calibration of the specific fish-eye camera, proposed in [12], according 
to which, for each pixel (i, j) of the image, the corresponding vector (θ, φ) on the 
spherical element is precalculated 

 ( ) ( ), ,M j iθ ϕ =  (4) 

Spherical 
optical element

Image sensor

 

Fig. 1. Model of image formation for spherical omni-directional camera 

P0

P1

 
(a) (b) 

Fig. 2. A typical omni-directional image (a) and the segmented human silhouette (b). The 
strong deformation imposed by the fish-eye spherical lens is evident.  
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2.3 Calculation of Zernike Moment Invariants for Calibrated Omni-
Directional Images – Geodesic Correction 

The calculation of Zernike moments requires the distance and orientation with respect 
to the centre of mass for each pixel of the segmented object / pattern to be classified. 
Let us assume that we need to calculate Zernike moments in the case of the seg-
mented human silhouette of Fig. 2(b). If P0 is the centroid pixel, the distance and  
angle to any other pixel P1 needs to be calculated. Let us use the calibration of the 
camera to obtain the spherical coordinates ( )0 0,θ ϕ and ( )1 1,θ ϕ  on the unit sphere, of 

points P0 and P1, respectively. Now, the distance and relative angle of P1 with respect 
to P0 can be measured on the unit sphere. 

 

Parallel circle
γ

t1

t2

 

Fig. 3. The mapping of pixels P0 and P1 on the unit sphere and the calculation of their geodesic 
distance and angle. The great circle and the parallel circles through P0 and P1 are also shown. 

It is well known that the geodesic curve of a sphere is a great circle. Thus, the dis-
tance between any two points on a sphere is the length of the arc that is defined by the 
two points and belongs to a circle that passes through the two points and has the same 
centre with the sphere. We will call this circle “great circle”. Let v0 and v1 be the posi-
tion vectors pointing to P0 and P1. The distance r01 of points P0 and P1 on the unit 
sphere is easily calculated, (assuming that cos-1 returns the result in radians): 
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 ( )1
01 0 1cosr −= ⋅v v . (6) 

Zernike moments, like any other definition of moment invariants, require the distance 
between any two pixels as well as their angle γ. If we assume the parallel circle  
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passing through P0 and the great circle passing through P0 and P1, then angle γ is cal-
culated as the angle between the tangent vectors t0, t1 of the two circles at P0. The 
great circle through P0, P1 is calculated as following:  

 0 0 1 1,  with 1λ λ= + =v v v v . (7) 

After some algebraic operations we obtain: 

 ( )2 2
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After solving the above equation and requiring 0 1,λ λ  to be real number we obtain: 
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Since execution speed is essential and taking into consideration that the circle is a 
very smooth curve (with constant curvature), the tangent vector is calculated by finite 
differences, as following. It is obvious that for 0 1 01, 0,  λ λ= = =v v . We set 

0 0.9λ =  and use Eq. (9) to calculate λ1. Then, [ ]
0
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tangent vector of the parallel circle at P0 is trivially calculated: ( )2 1 1, ,0y xP P= −t . The 

angle γ is now easily obtained as  
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The sign of angle γ will be set equal to the sign of (θ1 – θ0). Thus, the distance and 
angle (r, θ) in Eq. (3) are replaced by r01 defined in (6) and γ defined in Eq. (10). This 
correction will call “geodesic” in the rest of the paper. 

3 Experimental Results 

3.1 Experiments with a Geometric Shape  

A rectangular shape of known constant RGB values was captured in a video sequence 
of approximately 500 frames with different distances and positions from the fish-eye 
camera. Fig. 4(a) shows portions from 5 such frames of the original RGB video and 
the corresponding segmented ones are shown in Fig. 4(b). Segmentation was per-
formed by thresholding, based on the known RGB values of the test pattern. The 
Zernike moments of the binary image were calculated, using the traditional definition 
and the geodesic corrections. Fig. 4(c) plots the Zernike for n=2, m=0. It is evident 
that the geodesic correction Zernike is less noisy than the traditional implementation. 
The negative peak is caused by a drastic change in scale. Fig. 4(d) and 4(e) show the 
fraction of Z60/Z30 and the fraction Z40/Z20 (see Eq. (3)). It can be observed that these 
fractions are immune to the sudden scale change. Furthermore, the fractions of the 
geodesically corrected Zernike are less noisy than the traditional ones.   
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(a) 

 
(b) 

(c) 

(d) 

Fig. 4. Zernike moments before and after geodesic correction for the rectangular geometric 
shape (see text for details) 
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(e) 

Fig. 4. (Continued.) 

3.2 Classification of the Human Silhouette Pose 

In this experiment, we acquired 2 different videos of a human with two different 
classes of poses: walking/standing and sitting. In each video the subjects sits in 2 or 3 
different places. The human silhouette is segmented using an unsupervised segmenta-
tion algorithm presented in [12] and the Zernike moments are calculated twice:  
without and with the geodesic correction. The simple k-Nearest Neighbour (k-NN) 
classifier with k=3 was employed to classify each frame into the two classes, using 
the Euclidean distance metric between the Zernike features. 

The classical Zernike moments have been used to classify the human action of 
each frame, utilizing moments of the first n orders, where n = 3, 4, 5. In Table 1 the 
results for each video are presented. The classification results for both videos are 
quite similar for moments of the same order. More specifically, in video 1 the classi-
fication accuracy increases for higher order Zernike moments. On the other hand, in 
the more complex video 2, the best results are obtained using N = 4. It is evident that 
higher order Zernike moments, results in an increase in computational complexity, as 
well as the CPU time needed to process each frame. The average number of frames 
per second (FPS) processed by applying the Zernike moments and the k-NN classifier 
is also reported. 

Table 1. The resulting classification accuracy of the segmented silhouette pose for different 
orders of the traditional Zernike implementation. The frame processing rate is also provided. 

Zernike 
 order 

Classification Accuracy (%)  
FPS Video 1 Video 2 

n = 3, m=-1,+1 84.22 85.77 16 fps 
n = 4, m=-2,0,+2 92.11 92.08 15 fps 
n = 5, m=-3,-1,+1,+3 94.88 91.82 12 fps 
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To improve the classification results, the subset of the Zernike moments with radial 
symmetry were used. Table 2 exhibits the classification results for n up to 30, while 
m=0 for the classical and the geodesically corrected Zernike moments, respectively. 
The rate of frames processed is also provided. It can be observed that the classifica-
tion results are improved by the introduction of geodesic correction, with minimal 
increase to the measured execution time. 

Table 2. The resulting classification accuracy of the segmented silhouette pose for different 
orders of the traditional radial Zernike implementation. The rate of frame processing is also 
provided. 

Zernike  
order 

Geodesic 
correction 

Classification Accuracy (%) Execution 
speed  Video 1 Video 2 

n = 2,4,6,8,10, m=0 
NO 93.39  94.53  17 fps 
YES 94.09 96.13  17 fps 

n = 2,4,6,8,…,20, m=0 
NO 91.68  94.14  11 fps 
YES 94.24 95.94 12 fps 

n = 2,4,6,8,…,30, m=0 
NO 92.11  94.01  8 fps 
YES 92.24 95.75 9 fps 

 
Fig. 5 graphically exhibits the classification results, using n≤20, m=0, without and 

with geodesic correction. Class 0 corresponds to sitting silhouette and class 1 corre-
sponds to standing/walking silhouette. The algorithmic results are shown in blue and 
the ground truth in red. It can be seen that the geodesic correction improves the 
Zernike based classification accuracy.  

(a) 

Fig. 5. Graphical representation of the results for pose estimation. Class 0: “sitting”, Class 1: 
“standing/walking”, using Central Zernike with n≤10, without geodesic correction (a) and with 
geodesic correction (b). 
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(b) 

Fig. 5. (Continued.) 

4 Discussion and Conclusions 

As shown in the previous section the geodesic correction enhances the descriptive 
properties of Zernike moments, when applied to omni-directional images. The 
Zernike descriptors appear to be more stable (less variability for the same pattern). 
The accuracy of a classifier in terms of classifying two human postures was also in-
creased when using Zernike moments with the proposed geodesic correction. Finally, 
the execution time was only marginally increased. The proposed methodology can 
significantly improve the accuracy of more complex activity recognition algorithms 
usually found in ambient assisted living environments 
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