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Abstract. This paper discusses the error resilience of Zero-Suppressed
Binary Decision Diagrams (ZDDs), which are a particular family of Or-
dered Binary Decision Diagrams used for representing and manipulating
combination sets. More precisely, we design a new ZDD canonical form,
called index-resilient reduced ZDD, such that a faulty index can be recon-
structed in time O(k), where k is the number of nodes with a corrupted
index.

1 Introduction

Algorithms and data structures resilient to memory faults [11–13] are able to
perform the tasks they were designed for, even in the presence of unreliable or
corrupted information. The design of resilient algorithms and data structures is
a fundamental issue, as fast, large, and cheap memories in computer platforms
are characterized by non-negligible error rates [14].

Several error models have been proposed for designing resilient data struc-
tures [22]. A fault model in which any error is detectable via an error message
when the program tries to reach the faulty object is proposed in [2]. The au-
thors assume that an error denies access to an entire node of the structure. A
model with higher granularity, called faulty-RAM, is presented in [9, 10, 13]. In
faulty-RAM an adversary can corrupt any memory word and it is impossible
to determine a priori if a memory area is corrupted or not. Such a scenario is
realistic since an error can be induced by an external source, perhaps tempo-
rary, which can change any memory location that can not be discovered a priori.
Moreover, faulty-RAM model has an extreme granularity: any memory location
(from a single bit, the single data, or an entire structure) can be affected by a
fault. Another interesting error model is the single-component model described
in [22], which focuses on single attributes of an item at a time and assumes that
each error affects one component of one node of the storage structure, e.g., a
pointer, a count, an identifier field.
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The purpose of this paper is to discuss the error resilience of a data struc-
ture called Zero-Suppressed Binary Decision Diagrams (ZDDs) [17], that are a
particular type of Ordered Binary Decision Diagrams (OBDDs). OBDDs are a
fundamental family of data structures for Boolean function representation and
manipulation [5]. They have been originally studied for circuit design and formal
verification. Recently, the area of application of OBDDs has widened including
representation and manipulation of combination sets in different research fields
as data mining [17–19], bioinformatics [20, 21, 23], data protection [6]. The grow-
ing interest in these data structures is evidenced by the fact that in 2009 Knuth
dedicated the first fascicle in the volume 4 of “The Art of Computer Program-
ming” to OBDDs [15].

OBDDs are DAG representations of Boolean functions, where each internal
node N is labeled by a Boolean variable xi and has exactly two outgoing edges:
0-edge and 1-edge. Terminal nodes (leaves) are labeled 0 or 1. OBDDs can be
constructed by applying some reduction rules to a Binary Decision Tree, and
depending on the set of reduction rules, different representations can be derived.
For example, Figures 1(b), 1(c), and 1(d) are different decision diagrams, derived
by the decision tree in Figure 1(a), representing the same Boolean function. In
particular, Reduced OBDDs (ROBDDs) [5] are typically used for the representa-
tion of general Boolean functions, while Zero-Suppressed BDDs (ZDDs) are used
for representing family of subsets of combination sets [15, 17]. Indeed, ZDDs
can be used to describe and manipulate solutions to combinatorial problems as,
in this framework, they are much more compact than ROBDDs. For instance,
the family of subsets {{x1, x2}, {x3, x4}, {x1}} of the set {x1, x2, . . . , x10} needs
a ROBDD representation with 10 variables, while the ZDD representation uses
only the four variables included in the subsets.

Security aspects of implementation techniques of ROBDDs have been dis-
cussed in [7], and an error resilient version has been proposed in [3, 4]. In this
paper we study error resilience of ZDDs. We exploit the single-component error
model and we assume that errors are reported when the program tries to use
the fault component of a node. We consider, as component of a node N in a
ZDD, the index i of the variable xi associated to the node. In particular, we
design a ZDD, called index-resilient reduced ZDD, such that a faulty index can
be reconstruct in time O(k), where k is the number of nodes with a corrupted
index. Moreover, the proposed index-resilient ZDD is a canonical form.

The paper is organized as follows. Preliminaries on OBDDs and ZDDs are
described in Section 2. In Section 3 we discuss the error resilience of the standard
ZDD structure, and in Section 4 we introduce and study index-resilient ZDDs.
Section 5 concludes the paper.

2 OBDDs and Zero-Suppressed BDDs

A Binary Decision Tree (BDT) on a set of Boolean variables {x0, x1, . . . xn−1}
is a rooted binary tree, where each non-terminal (internal) node N is labeled by
a Boolean variable xi and has exactly two outgoing edges: 0-edge and 1-edge.



Zero-Suppressed Binary Decision Diagrams Resilient to Index Faults 3

(a) BDT

(b) QR-BDD (m-rule) (c) ROBDD (m-rule
and r-rule)

(d) ZDD (m-rule and
z-rule)

Fig. 1. Example of transformations of a BDT using the reduction rules

Terminal nodes (leaves) are labeled 0 or 1 (e.g., see Figure 1(a) where dashed,
rep., solid, lines represent 0-edges, resp., 1-edges). Without loss of generality, we
can assume that each node containing the variable xi (with 0 ≤ i ≤ n− 1) lyes
on the i-th level of the tree. Thus, the variable x0 is the root of the BDT and
the leaves are on level n (see for example the BDT in Figure 1(a)).

BDTs are typically used to represent completely specified Boolean functions
(i.e., any function f : {0, 1}n → {0, 1}). The leaves represent the constants
0 and 1 and the root represents the entire Boolean function f . The value of
f on the input x0, . . . , xn−1 is found by following the path indicated in the
BDT by the values of x0, . . . , xn−1 on the edges: the value of f(x0, . . . , xn−1) is
the label of the reached leaf. For example, the BDT in Figure 1(a) represents
the Boolean function f : {0, 1}3 → {0, 1} such that f(0, 0, 0) = 0, f(0, 0, 1) =
1, . . . , f(1, 1, 1) = 0.

In order to give a more compact description of Boolean functions, a BDT
can be compressed in an acyclic graph (called BDD) that represents the same
function. In particular, a Binary Decision Diagram (BDD) on a set of Boolean
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variables X = {x0, x1, . . . xn−1} is a rooted, connected direct acyclic graph,
where each non-terminal (internal) node N is labeled by a Boolean variable xi,
and has exactly two outgoing edges, 0-edge and 1-edge, pointing to two nodes
called 0-child and 1-child of node N , respectively. Terminal nodes (leaves) are
labeled 0 or 1. A 0-parent (resp., 1-parent) of a node N is a node M such
that N is a 0-child (resp, 1-child) of M . For instance, the decision diagrams in
Figures 1(b), 1(c), and 1(d) are examples of BDDs.

A BDD is ordered (OBDD) if there exists a total order < over the set X of
variables such that if an internal node is labeled by xi, and its 0-child and 1-child
have labels xi0 and xi1 , respectively, then xi < xi0 and xi < xi1 . Hereafter we
will consider ordered BDDs only.

In order to obtain an OBDD starting from a BDT we can apply several re-
duction rules:

– m-rule: (or merge rule) if M and N are two distinct nodes that are roots
of isomorphic subgraphs, then N is deleted, and all the incoming edges of N
are redirected to M (N and M are called mergeable);

– r-rule: (or redundant rule) a node N that has both edges pointing to the
same node M is deleted and all its incoming edges are redirected to M (N
is called redundant node or r-node);

– z-rule: (or zero-suppress rule) a node N that has the 1-edge pointing to the
constant leaf 0 is deleted and all its incoming edges are redirected to the
subgraph pointed by the 0-edge (N is called z-node).

A zr-node is a redundant z-node, i.e., is a node with both edges pointing to the
constant leaf 0.

There are different reduced BDD forms that derive from the use of one or two
reduction rules:

– QR-BDD: (Quasi-Reduced BDD) [16] is the OBDD derived from a BDT re-
peatedly applying the m-rule until it is no longer applicable (see Figure 1(b));

– ROBDD: (Reduced Ordered BDD) [1, 5, 8, 15] is the OBDD derived from
a BDT repeatedly applying the m-rule and r-rule until they are no longer
applicable (see Figure 1(c));

– ZDD: (Zero-suppressed BDD) [15, 17] is the OBDD derived from a BDT
repeatedly applying the m-rule and z-rule until they are no longer applicable
(see Figure 1(d)).

QR-BDDs, ROBDDs and ZDDs are canonical forms. In particular, given a
function f and a variable ordering <, there is exactly one QR-BDD, one OBDD,
and one ZDD with variable ordering < that represent f . Thus, once we have
fixed the variable ordering, we can compute the QR-BDD, the ROBDD and
the ZDD starting from a BDT repeatedly applying the corresponding reduction
rules in any order. Moreover, it is possible to first build a QR-BDD (applying
the m-rule) and then transform it in a ROBDD (resp., ZDD) using the r-rule
(resp., z-rule) on it. In fact, starting from a QR-BDD, the r-rule and the z-
rule cannot create new mergeable nodes (as shown in [4] for the r-rule, and in
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Section 4 for the z-rule). The interpretation of a QR-BDD as a Boolean function
is equivalent to the interpretation of a BDT since the m-rule simply merges
isomorphic subgraphs resulting in an OBDD that has all the paths from the
root to the leaves containing all the variables in X . For ROBDDs and ZDDs we
have to give a correct interpretation of possibly missing nodes (in a path), which
have been deleted using the r-rule or the z-rule. In particular, a missing variable
in a path of a ROBDD means that the variable can have any value (0 or 1). For
example, in Figure 1(c), the path “x0 0-edge x2 1-edge 1”, where x1 is missing,
represents two possible input values (i.e., 001, 011) on which the function takes
the value 1. On the other hand, the interpretation of a missing variable xi in a
path of a ZDD means that if xi = 1 the function outputs 0, otherwise (i.e., if
xi = 0) the function outputs the value obtained following the path. For example,
in Figure 1(d), the path “x0 1-edge x1 1-edge 1”, where x2 is missing, means
that f(1, 1, 1) = 0 and f(1, 1, 0) = 1.

3 Index Reconstruction Cost

In this section we discuss error resilient indexes in ZDDs, we analyze the cost
of the reconstruction of a corrupted index, and study the impact of the ZDD
reduction rules on this cost. This study gives us the knowledge to describe in
Section 4 a new index resilient version of ZDDs.

Monitoring the work on error resilient OBDDs [3, 4], we give some definitions
useful to describe error resilient ZDDs. Without loss of generality, let us assume
that the chosen variable ordering is x0 < x1 < . . . < xn−1, so that the index of
a variable in a node is the level of the node in the corresponding ZDD. In order
to facilitate the index reconstruction of a faulty node N we define the range of
indexes that contains the original index of the node. Let N be an internal node
in a ZDD Z, the node range IN = [iP +1, iC − 1] is the range containing all the
possible levels for N in Z, where iP is the maximum index of N ’s parents in Z,
and iC is the minimum index of its children, where the leaves have “index” n,
and if N is the root, i.e., N has no parent, iP = −1.

Obviously, by definition of ZDD, the index of node N belongs to its range IN .
Thus, in presence of an error in the index i of N we have a lower and an upper
bound for the reconstruction of i given by iP + 1 and iC − 1, respectively. In
particular, if iP + 1 = iC − 1, then i is iC − 1.

Let us now examine which characteristics make a ZDD more suitable to the
reconstruction of a corrupted index. To this aim, we introduce a metric to mea-
sure the cost of the reconstruction of a corrupted index of a ZDD node in the
worst case. The index reconstruction cost C(N) of the faulty index i in the node
N is given by the number of indexes that are candidate to be the correct one in
N .

If we consider the case of one fault only in node N , we have that C(N) is at
most |IN |. In particular, C(N) = |IN | whenever there is no additional knowledge
on the structure of the ZDD. In the rest of this section, we therefore assume
that C(N) = |IN |. Instead, in Section 4 we will study ZDDs with a particular
structure implying that C(N) ≤ |IN |.
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In the best case, for each node N of a ZDD we have that C(N) is 1, meaning
that any index can be reconstructed in constant time (considering one single error).
This condition is obviously satisfied by BDTs. In fact, in a BDT, all paths from the
root to the terminal nodes contain exactly n nodes, where n is the number of input
variables. Thus, for each nodeN , C(N) = |IN | = 1. It is interesting to notice that
the optimal cost C(N) = 1 can also be reached by reduced ZDDs.

Recalling that a reduced ZDD can be constructed from a BDT by iteratively
applying the reduction rules (m-rule and z-rule) and noticing that a BDT has
optimal cost, we can study how the node range can increase using the two re-
duction rules.

We first consider the merge rule, i.e., the rule that is also used for the reduction
of OBDDs. In the OBDD context, Theorem 1 in [3] shows that this rule does
not increase the index reconstruction cost of the nodes. In fact, the merge of
isomorphic subgraphs does not change the node range of the involved nodes. In
other words, each node N in a QR-BDDs is such that C(N) = |IN | = 1.

On the other hand, the second reduction rule (z-rule), that distinguishes ZDDs
from OBDDs, can increase the index reconstruction costs. For example, consider
the ZDD in Figure 1(d), that can be obtained applying the z-rule to the QR-
BDD in Figure 1(b). While each node of the QR-BDD has cost 1, node x1 on
the right of the ZDD has cost 2, since its range is increased by the z-rule. We
finally note that not always the z-rule increases the node cost.

4 Index-Resilient Reduced ZDDs

The analysis of the previous section shows that, while the merge rule never
increases the overall index reconstruction cost, the application of the z-rule could
increase it. In this section, we describe a new reduced ZDD model where we
maintain some z-nodes in the diagram, in order to guarantee a constant index
reconstruction cost for each node. In particular we will define a ZDD, called
index-resilient reduced ZDD, satisfying the following properties:

1. the index reconstruction cost of each node N is C(N) = 1;
2. in presence of k nodes with a corrupted index in an index-resilient ZDD, the

cost needed to reconstruct a faulty index is O(k);
3. starting from a QR-BDD, the construction of the corresponding index-

resilient reduced ZDD is linear in time;
4. the index-resilient reduced ZDD is canonical.

Due to space limitations, formal proofs are omitted and will be discussed in the
extended version of this paper.

We note that, since the z-rule can increase the index reconstruction cost, we
could decide not to apply this rule during the reduction of a ZDD. In this way,
we only use the m-rule and obtain a QR-BDD that has a cost C(N) = 1 for each
node N . Recall that an important property of QR-BDD is that each node at
level i has all parents at level i− 1 and all children on level i+1. QR-BDDs are
still a compact representation and could represent a convenient and canonical
trade-off between memory saving, reduction time and error reconstruction time.
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However, the use of the z-rule does not always increase the index reconstruc-
tion cost. In other words, it is still possible to delete some z-nodes in a QR-BDD
guaranteeing that, in the final OBDD, the index reconstruction cost of each node
N is still C(N) = 1. Most importantly, as we will show in this section, it is pos-
sible to apply the z-rule to some z-nodes, and derive a canonical OBDD, more
compact than a quasi-reduced one, and with a cost C(N) = 1 for each node N .
We will call these OBDDs index-resilient ZDDs.

Definition 1 (Index-Resilient ZDD). An Index-Resilient ZDD is an OBDD
obtained from a QR-BDD applying several times, possibly never, the z-rule guar-
anteeing that each internal node N on level i has at least one child on level i+1,
for any level of the OBDD.

In particular, a QR-BDD is an index-resilient ZDD where each node on level
i has all parents on level i− 1 and all children on level i+ 1.

Observe that the index reconstruction cost for any nodeN in an index-resilient
ZDD is C(N) = 1, since the variable index of a node N is directly given by
i = min{i0, i1} − 1, where i0 and i1 are the indexes of the 0- and 1-child of N .
Note that, for any internal node N in a ZDD, the number of children of N is 2,
but the number of parents of N can be O(m), where m is the total number of
nodes in the ZDD, and, in the worst case, m ∈ Θ(2n/n) [16]. Note also that for
the reconstruction of the index of N we do not need to know the indexes of its
parents (whose number can be exponential in the number of variables), but only
the indexes of its children. In fact, as shown below, we can define a structure
where any node containing a variable xi must have at least one child containing
the variable xi+1.

To compute a compact index-resilient ZDD, we start from a QR-BDD deleting
some z-nodes while preserving the index-resilient property. For this purpose we
first observe that in a QR-BDD there are at most one zr-node and one non-
redundant z-node. These nodes are on level n−1. See, for example, the QR-BDD
depicted in Figure 1(b).

We first consider the zr-node Nzr, if existing, in the QR-BDD. We can note
that the removal of Nzr can generate new z-nodes, i.e., the 1-parents of Nzr (see
Proposition 1). In particular, if Nzr has an r-node parent M , the removal of
Nzr transforms M in a zr-node but the ZDD is not index-resilient since M is at
level n − 2 and has both children (the 0 constant) at level n. If we remove the
zr-node M , we can generate again new z-nodes and one possible zr-node that
has reconstruction cost greater than 1. We can, therefore, consider the entire
chain of r-nodes that ends with a zr-node defined as follows:

Definition 2 (zr-chain). A zr-chain in an index-resilient ZDD is a chain C =
N1, N2, . . . , Nk (with k ≥ 1) of nodes such that:

1. N1 has no redundant parents,
2. Ni, with i ∈ [1, . . . , k − 1], is an r-node and its unique child is Ni+1,
3. Nk is a zr-node.

The node N1 is called head of the chain, and the leaf 0 is the child of the chain.
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(a) A zr-chain (b) Two z-chains

Fig. 2. Examples of zr-chain and z-chains. The value PC(N) is depicted over each node
N in the z-chains. The z-chain on the left is removable.

When k = 1 the chain corresponds to the zr-node N1. As already observed, the
deletion of a zr-chain generates new z-nodes in the obtained index-resilient ZDD:

Proposition 1. Let C be a zr-chain in an index-resilient ZDD Z. If C is re-
moved from Z, then any node in Z that is a 1-parent of a node in C becomes a
z-node.

For example, consider the QR-BDD in Figure 2(a) that contains a zr-chain of
three nodes. The removal of the zr-chain will produce two new z-nodes (the
nodes with indexes x2 that are not part of the chain).

If we remove the entire zr-chain, the resulting OBDD is still an index-resilient
ZDD, as proved in the following proposition. Moreover, in a QR-BDD the zr-
chain is unique and, once deleted, the resulting index-resilient ZDD does not
contain a new zr-chain.

Proposition 2. Let B be a QR-BDD containing a zr-chain C. We have that:

1. C is the unique zr-chain in B,
2. the OBDD B′ derived by deleting C from B is an index-resilient ZDD,
3. B′ does not contain any zr-chain,
4. B′ does not contain any mergeable node.

We can observe that, after the deletion of a zr-chain in a QR-BDD, each
node N at level i in the resulting index-resilient ZDD has both children at level
i + 1, or one child at level n (the 0 leaf) and a child at level i + 1. Moreover,
at level n − 1 there exists at most one single z-node (i.e., the node that have
the terminal 0 as 1-child and the terminal 1 as 0-child). The index-resilient ZDD
obtained after the deletion of the zr-chain, can still contain z-nodes that can be
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removable. In order to efficiently test whether we can delete a z-node N , we first
need the following parameter that counts the number of parents of N whose
index reconstruction cost is affected by the deletion of N .

Definition 3 (PC). Let N be a z-node in an index-resilient ZDD resulting by
the deletion of the zr-chain from a QR-BDD. PC(N) is the number of parents
P of N satisfying at least one of the following properties:

1. Both children of P are z-nodes (possibly, the same z-node if P is redundant)
and N is the 1-child of P ;

2. P has another child N ′ �= N on a level strictly greater than i+1, where i is
the level of P (i.e., N ′ is the terminal node 0).

Note that if N is the root, then PC(N) = 0. We can observe that Definition 3
derives from the fact that the cost C(P ) = 1, of a node P at level i, is not
increased by the deletion of its z-node child N if P has the other child N ′ �= N ,
on level i + 1 and N ′ cannot be removed. The child N ′ is not removed in two
possible cases: 1) N ′ is not a z-node; 2) N ′ is a z-node (like N) but is the
1-child of P . This second criterion is an arbitrary choice due to the necessity
of deleting one of the two z-nodes that are children of P while maintaining
the index reconstruction cost and the canonicity of the representation. More
precisely, when a node P has two children that are z-nodes, one of them can
be removed without increasing the cost of P . In this paper we always remove
the 0-child of P in order to guarantee that the resulting index-resilient ZDD is
canonical (see Theorem 2). The choice of removing the 1-children is similar.

For example, see the index-resilient ZDD in Figure 2(b). Each z-node N in
the figure has a value that corresponds to PC(N). We note that PC(N) can be
efficiently computed with a simple visit of a index-resilient ZDD obtained after
the deletion of the zr-chain from the QR-BDD.

When the QR-OBDD is constructed, the zr-chain (if existing) deleted, and PC

is computed, we can define chains of z-nodes (z-chains) and we can characterize
the z-chains that can be removed, maintaining equal to 1 the index reconstruction
cost of each remaining node. We therefore introduce the concept of removable
z-chain.

Definition 4 (Removable z-chain). A removable z- chain in an index-resilient
ZDD, which does not contain zr-chains, is a chain C = N1, N2, . . . , Nk (with
k ≥ 1) of z-nodes such that:

1. Ni, with i ∈ [2, . . . , k], is the 0-child of Ni−1,
2. PC(N1) = 0,
3. ∀i ∈ [2, . . . , k] , PC(Ni) = 1,
4. if M is a z-node then PC(M) > 1, where M is the the 0-child of Nk.

The node N1 is called head of the chain, and M is called child of the chain.

The second requirement states that the head of the chain N1 can be removed
without affecting the reconstruction cost of its parents, as detailed in Proposi-
tion 4. Note that this requirement implies that all parents of N1 are not z-nodes
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or r-nodes. The third requirement states that any other node Ni (1 < i ≤ k)
of the chain affects only the reconstruction cost of its parent in the chain. The
last requirement guarantees that the removable z-chain is maximal. When the
chain is composed by a single z-node node N , we have that N is removable
when PC(N) = 0. Consider, for example, see the index-resilient ZDD in Fig-
ure 2(b). While, the z-chain on the left is removable, the z-chain on the left is
not removable since the first node N1 has PC(N1) = 1.

In an index-resilient ZDD there are no “crossing” z-chains, i.e., a node cannot
be part of two different z-chains. This is a direct consequence of the following
property.

Proposition 3. In an index-resilient ZDDs there are no nodes with two or more
z-nodes as parents.

The following proposition shows that the deletion of all removable z-chains in
an index-resilient ZDD Z does not change the overall index reconstruction cost,
i.e., after the removal of the chains, each internal node on level i still has at least
a child on level i+ 1, for any level i in Z.

Proposition 4. Let C = N1, N2, . . . , Nk, k ≥ 1, be a removable z-chain in an
index-resilient ZDD, which does not contain a zr-chain. The OBDD resulting
from the deletion of C is still an index-resilient ZDD.

Observe that once removable z-chains have been deleted, we are left with an
index-resilient ZDD that can still contain some z-nodes: those that do not form
a removable chains.

We can now propose a new OBDD reduction algorithm that, starting from
a QR-BDD, deletes first the zr-chain and then all the removable z-chains. The
following Theorem 1 shows that the deletion of removable z-chains does not
construct new removable z-chains. Therefore, after the removal of the zr-chain,
we can detect (and than delete) all the removable chains at the same time.

The reduction algorithm is based on a constant number of visits starting from
a quasi-reduced OBDD. The first visit is a breadth first search used to detect and
remove the zr-chain, if exists. Another visit is used to compute the parameter
PC for each z-node; then with a breadth first visit, all removable z-chains are
identified and their nodes are removed with a final visit of the OBDD, executed
by a simple recursive depth first visit that deletes from the OBDD all nodes
identified as removable.

The correctness of the new reduction algorithm is proved in the following
theorem.

Theorem 1. Let B be a quasi-reduced OBDD. The reduction algorithm com-
putes an index-resilient ZDD Z equivalent to B that contains neither removable
z-chains nor a zr-chain.

The cost of the algorithm is linear in the size of the quasi-reduced OBDD in
input, as it consists in a constant number of visits of the data structure.

We now formally introduce the concept of Index-Resilient Reduced ZDD.



Zero-Suppressed Binary Decision Diagrams Resilient to Index Faults 11

Definition 5 (Index-Resilient Reduced ZDD). An index-resilient ZDD is
reduced if it contains neither a zr-chain nor removable z-chains.

Theorem 2. Let Z be an index-resilient reduced ZDD obtained with the reduc-
tion algorithm. Then

1. for each node N in Z, C(N) = 1;
2. Z does not contain mergeable nodes;
3. Z is canonical, i.e., given a function f and a variable ordering <, Z is the

only index-resilient reduced ZDD with variable ordering < that represents f .

The index reconstruction cost remains limited even in presence of more than
one error on the indexes, as stated and proved in the following theorem, that
shows a result similar to the one obtained for OBDDs in [4].

Theorem 3. The reconstruction cost of a node N on level i in an index-resilient
reduced ZDD Z affected by k errors on the indexes is O(min(k, 2n−i)).

Finally observe that, even if in our analysis we have implicitly assumed that
a ZDD is constructed correctly, and that memory faults occur when the data
structure is in use, this assumption can be completely removed for index-resilient
reduced ZDDs. Indeed, their construction starts from a binary decision tree that
is transformed into a QR-BDD, and in both models each node has all children
on the level immediately below. Moreover, during the execution of the reduction
algorithm, we always guarantee that each node has at least one child on the level
below, thus a faulty index can be immediately detected and restored.

5 Conclusion

This paper has proposed a new ZDD canonical form that is resilient to errors in
indexes. This form can be derived in linear time starting from a quasi-reduced
OBDD. Future work on this subject includes the analysis of error in edges.
Indeed, this problem is part of the more general problem of designing an error
resilient DAG structure. Furthermore, it could be interesting to design error
resilient algorithms for standard operations on ZDDs, like union, intersection,
and set difference.
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