Skip to main content

Electron-Hole Problem

  • Chapter
  • First Online:
Many-Body Approach to Electronic Excitations

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

  • 3362 Accesses

Abstract

In order to specify the Bethe-Salpeter equation of the macroscopic polarization function \(P^M\) to account for the relevant excitonic effects in optical spectra, spin effects are treated within the collinear approximation. The quasiparticle wave functions are used to represent the space dependence of the polarization function. The resulting integral equation can be formally solved by means of the eigenvectors and eigenvalues of a generalized eigenvalue problem for pairs of particles. Together with the matrix elements of the optical transition operator calculated with the single-particle wave functions, the pair eigenvectors determine the optical oscillator strengths whereas the eigenvalues can be interpreted as the oscillator frequencies. The generalized eigenvalue problem is ruled by a matrix in the single-particle pair states, whose diagonal blocks represent the pairs and antipairs while the off-diagonal blocks describe their coupling. The reduction of the complexity within the Tamm-Dancoff approximation leads to a Hermitian electron-hole-pair problem with screened Coulomb attraction and unscreened electron-hole exchange. The resulting Hamiltonian represents a high-rank matrix which asks for efficient strategies to solve the eigenvalue problem or to compute directly the dielectric function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000)

    Google Scholar 

  2. G. Strinati, Applications of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11, 1–86 (1988)

    Article  Google Scholar 

  3. F. Bechstedt, K. Tenelsen, B. Adolph, R. Del Sole, Compensation of dynamical quasiparticle and vertex corrections in optical spectra. Phys. Rev. Lett. 78, 1528–1531 (1997)

    Article  ADS  Google Scholar 

  4. C. Rödl, Elektronische und exzitonische Anregungen in magnetischen Isolatoren. Ph.D. thesis. Friedrich-Schiller-Universität, Jena (2009)

    Google Scholar 

  5. H. Stolz, Einführung in die Vielteilchentheorie der Kristalle (Akademie, Berlin, 1974)

    Google Scholar 

  6. D. Jérome, T.M. Rice, W. Kohn, Excitonic insulator. Phys. Rev. 158, 462–475 (1967)

    Article  ADS  Google Scholar 

  7. W. Jones, N.H. March, Theoretical Solid State Physics, vol. 2 (Dover Publications Inc, New York, 1985)

    Google Scholar 

  8. R. Zimmermann, Influence of the non-Hermitian splitting terms on excitonic spectra. Phys. Status Solidi 41, 23–32 (1970)

    Article  Google Scholar 

  9. L.J. Sham, T.M. Rice, Many-particle derivation of the effective-mass equation for the Wannier exciton. Phys. Rev. 144, 708–714 (1966)

    Article  ADS  Google Scholar 

  10. A. Mostafazadeh, Pseudo-hermiticity versus \(PT\)-symmetry III: equivalence of pseudo-hermiticity and the presence of antilinear symmetries. J. Math. Phys. 43, 3944–3951 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ch. Hamaguchi, Basic Semiconductor Physics (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  12. S. Albrecht, L. Reining, R. Del Sole, G. Onida, Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80, 4510–4513 (1998)

    Article  ADS  Google Scholar 

  13. S. Albrecht, Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects. Ph.D. thesis. Ecole Polytechnique, Palaiseau (1999)

    Google Scholar 

  14. P. Hahn, Berechnung von Vielteilcheneffekten in den Anregungsspektren von Kristallen, Oberflächen und Molekülen. Ph.D. thesis. Friedrich-Schiller-Universität, Jena (2004)

    Google Scholar 

  15. V. Olevano, L. Reining, Excitonic effects on the silicon plasmon resonance. Phys. Rev. Lett. 86, 5962–5965 (2001)

    Article  ADS  Google Scholar 

  16. P. Puschnig, C. Meisenbichler, C. Ambrosch-Draxl, Excited state properties of organic semiconductors: breakdown of the Tamm-Dancoff approximation. arXiv:1306.3790 (2013)

  17. M. Grüning, A. Marini, X. Gonze, Exciton-plasmon states in nanoscale materials. Breakdown of the Tamm-Dancoff approximation. Nano Lett. 9, 2820–2824 (2009)

    Article  ADS  Google Scholar 

  18. A. Fetter, J.D. Walecka, Quantum Theory of Many-Particly Systems (McGraw-Hill, San Francisco, 1971)

    Google Scholar 

  19. M.E. Casida, Time-dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods, and Functionals, in Recent Developments and Applications of Modern Density Functional Theory, ed. by J.M. Seminario (Elsevier Science B.V, Amsterdam, 1996), pp. 391–439

    Chapter  Google Scholar 

  20. C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Ab initio theory of excitons and optical properties for spin-polarized systems. Application to antiferromagnetic MnO. Phys. Rev. B 72, 184408 (2008)

    Article  Google Scholar 

  21. G. Cappellini, J. Furthmüller, E. Cadelano, F. Bechstedt, Electronic and optical properties of cadmium fluoride: the role of many-body effects. Phys. Rev. B 87, 075203 (2013)

    Article  ADS  Google Scholar 

  22. P.H. Hahn, W.G. Schmidt, F. Bechstedt, Bulk excitonic effects in surface optical spectra. Phys. Rev. Lett. 88, 016402 (2002)

    Article  ADS  Google Scholar 

  23. W.G. Schmidt, S. Glutsch, P.H. Hahn, F. Bechstedt, Efficient \(O(N^2)\) method to solve the Bethe-Salpeter equation. Phys. Rev. B 67, 085307 (2003)

    Article  ADS  Google Scholar 

  24. R. Haydock, The recursive solution of the Schrödinger equation. Comput. Phys. Comm. 20, 11–16 (1980)

    Article  ADS  Google Scholar 

  25. M. Marsili, Electronic and optical properties of the (111)2\(\times \)1 diamond surface: an ab-initio study. Ph.D. thesis. Universitá degli Studi di Roma “Tor Vergata”, Rome (2006)

    Google Scholar 

  26. E. Dagotto, Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994)

    Article  ADS  Google Scholar 

  27. L.X. Benedict, E.L. Shirley, Ab initio calculation of \(\varepsilon _2(\omega )\) including the electron-hole interaction: application to GaN and CaF\(_2\). Phys. Rev. B 59, 5441–5451 (1999)

    Article  ADS  Google Scholar 

  28. http://theory.polytechnique.fr/codes/exc/

  29. http://www.abinit.org/helpfiles/

  30. A. Marini, C. Hogan, M. Grüning, D. Varsano, Yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009)

    Article  ADS  Google Scholar 

  31. S. Glutsch, D.S. Chemla, F. Bechstedt, Numerical calculation of the optical absorption in semiconductor quantum structures. Phys. Rev. B 54, 11592–11601 (1996)

    Article  ADS  Google Scholar 

  32. R. Kosloff, Time-dependent quantum-mechanical methods for molecular dynamics. J. Chem. Phys. 92, 2087–2100 (1988)

    Article  Google Scholar 

  33. http://uni-vienna.at/vasp/

  34. S. Glutsch, Excitons in Low-Dimensional Semiconductors (Springer, Berlin, 2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Electron-Hole Problem. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics