Skip to main content

Bethe-Salpeter Equations for Response Functions

  • Chapter
  • First Online:
Many-Body Approach to Electronic Excitations

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

  • 3376 Accesses

Abstract

Based on the Hedin fundamental equations Bethe-Salpeter equations are derived for generalized four-point functions, the polarization function \(P\) and the density correlation function \(L\). Their integral kernels are characterized by the effective interaction between two particles or even modified by the Hartree response. Their inhomogeneities are given in random phase and independent-quasiparticle approximation, respectively. The kernels are further approximated within the GW approximation by the screened Coulomb potential \(W\). It leads to a summation over all ladder diagrams. The application of \(P\) to frequency-dependent optical properties is described. Only the spin-averaged function is needed. The inclusion of optical local-field effects yields a Bethe-Salpeter equation for the macroscopic polarization function \(P^M\) with an integral kernel that contains a short-range Coulomb interaction. The corresponding two-point quantity of \(P^M\) determines the macroscopic dielectric function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Strinati, Applications of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11, 1–86 (1988)

    Article  Google Scholar 

  2. C. Csanak, H.S. Taylor, R. Yaris, Green’s function technique in atomic and molecular physics. Adv. At. Mol. Phys. 7, 287–361 (1971)

    Article  ADS  Google Scholar 

  3. A.M. Zagoskin, Quantum Theory of Many-Body Systems. Techniques and Applications (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  4. H. Stolz, R. Zimmermann, Correlated pairs and mass action law in two-component Fermi systems. Excitons in an electron-hole plasma. Phys. Status Solidi B 94, 135–146 (1979)

    Article  ADS  Google Scholar 

  5. G. Baym, L.P. Kadanoff, Conservation laws and correlation functions. Phys. Rev. 124, 287–299 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. A. Schindlmayr, R.W. Godby, Systematic vertex corrections through iterative solution of Hedin’s equations beyond the GW approximation. Phys. Rev. Lett. 80, 1702–1705 (1998)

    Article  ADS  Google Scholar 

  7. F. Bechstedt, C. Rödl, L.E. Ramos, F. Fuchs, P.H. Hahn, J. Furthmüller, Parameterfree calculations of optical properties for systems with magnetic ordering or three-dimensional confinement, in Epioptics-9, Proceedings of 39th International School on Solid State Physics, Erice (Italy), 2006. ed. by A. Cricenti (World Scientific Publishing Co., New Jersey, 2008), pp. 26–40

    Google Scholar 

  8. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover Publications Inc, Mineola, 2003)

    Google Scholar 

  9. N.E. Bickers, D.J. Scalapino, Conserving approximations for strongly fluctuating electron systems. I. Formalism and calculational approach. Ann. Phys. 193, 206–251 (1989)

    Article  ADS  Google Scholar 

  10. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantenmechanik, vol. 2 (Walter de Gruyter, Berlin, 1999)

    Google Scholar 

  11. H. Stolz, Einführung in die Vielelektronentheorie der Kristalle (Akademie-Verlag, Berlin, 1974)

    Google Scholar 

  12. C. Rödl, Spinabhängige GW-approximation. Diploma thesis, Friedrich-Schiller-Universität Jena (2005)

    Google Scholar 

  13. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962)

    Google Scholar 

  14. L. Rosenfeld, Theory of Electrons (North-Holland, Amsterdam, 1951)

    MATH  Google Scholar 

  15. R. Del Sole, E. Fiorino, Macroscopic dielectric tensor at crystal surfaces. Phys. Rev. B 29, 4631–4645 (1984)

    Article  ADS  Google Scholar 

  16. S.L. Adler, Quantum theory of the dielectric constant in real solids. Phys. Rev. 126, 413–420 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. N. Wiser, Dielectric constant with local field effects included. Phys. Rev. 129, 62–69 (1963)

    Article  ADS  MATH  Google Scholar 

  18. W. Hanke, Dielectric theory of elementary excitations in crystals. Adv. Phys. 27, 287–341 (1978)

    Article  ADS  Google Scholar 

  19. V.M. Agranovich, V. Ginzburg, Crystal Optics with Spatial Dispersion, Springer Ser. Solid State Sci. (Springer, Berlin, 1984)

    Book  Google Scholar 

  20. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  21. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005)

    Google Scholar 

  22. W. Hanke, L.J. Sham, Many-particle effects in the optical spectrum of a semiconductor. Phys. Rev. B 21, 4656–4673 (1980)

    Article  ADS  Google Scholar 

  23. H.R. Phillip, H. Ehrenreich, Optical properties of semiconductors. Phys. Rev. 129, 1550–1560 (1963)

    Article  ADS  Google Scholar 

  24. V.I. Gavrilenko, F. Bechstedt, Local-field and exchange-correlation effects in optical spectra of semiconductors. Phys. Rev. B 54, 13416–13419 (1996)

    Article  ADS  Google Scholar 

  25. P.A. Cherenkov, Visible emission of clean liquids by action of \(\gamma \) radiation. Dokl. Akad. Nauk 2, 451–454 (1934) [English translation: Usp. Fiz. Nauk 93, 385–388 (1967)]

    Google Scholar 

  26. R.M. Pick, M.H. Cohen, R.M. Martin, Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1, 910–920 (1970)

    Article  ADS  Google Scholar 

  27. M.S. Hybertsen, S.G. Louie, Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators. Phys. Rev. B 35, 5585–5601 (1987)

    Article  ADS  Google Scholar 

  28. W. Hanke, L.J. Sham, Many-particle effects in the optical excitations of a semiconductor. Phys. Rev. Lett. 43, 387–390 (1970)

    Article  ADS  Google Scholar 

  29. L.J. Sham, T.M. Rice, Many-particle derivation of the effective-mass equation for the Wannier exciton. Phys. Rev. 144, 708–714 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Bethe-Salpeter Equations for Response Functions. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics