Skip to main content

Satellites

  • Chapter
  • First Online:
Many-Body Approach to Electronic Excitations

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

  • 3237 Accesses

Abstract

The dynamics of the reaction, in particular, the screening reaction, of the electron gas to the formation of a single-particle electronic excitation, electron or hole, in different spectroscopies gives rise not only to a reduction of spectral weight of the main quasiparticle peak but also to the generation of satellite structures to fulfill the sum rule for the spectral function. The formation of satellite structures is mainly illustrated in terms of intrinsic losses and the sudden limit. The generation of multiple-plasmon losses is discussed in detail. The relation to the GW approximation is described within the Blomberg-Bergersen-Kus method. Its validity is demonstrated in the limit of dispersionless fermions. As examples core-hole and valence-band photoemission spectroscopies are described and discussed in the light of available experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Pendry, Theory of inverse photoemission. J. Phys. C 14, 1381–1391 (1981)

    Google Scholar 

  2. G.D. Mahan, Theory of photoemission in simple metals. Phys. Rev. B 2, 4334–4350 (1970)

    Article  ADS  Google Scholar 

  3. C.-O. Almbladh, L. Hedin, Beyond the one-electron model: many-body effects in atoms, molecules, and solids, in Handbook of Synchrotron Radiation, vol. 1, ed. by E.E. Koch (North Holland, Amsterdam, 1983), pp. 607–904

    Google Scholar 

  4. C.N. Berglund, W.E. Spicer, Photoemission studies of copper and silver. Theor. Phys. Rev. 136, A1030–A1044 (1964)

    Article  ADS  Google Scholar 

  5. F. Bechstedt, K. Tenelsen, B. Adolph, R. del Sole, Compensation of dynamical quasiparticle and vertex corrections in optical spectra. Phys. Rev. Lett. 78, 1528–1531 (1997)

    Article  ADS  Google Scholar 

  6. L. Hedin, J. Michiels, J. Inglesfield, Transition from the adiabatic to the sudden limit in core-electron photoemission. Phys. Rev. B 58, 15565–15582 (1998)

    Google Scholar 

  7. A. Damascelli, Z. Hussain, Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    Article  ADS  Google Scholar 

  8. A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905)

    Article  Google Scholar 

  9. R. Graupner, M. Hollering, A. Ziegler, J. Ristein, L. Ley, A. Stampfl, Dispersions of surface states on diamond (100) and (111). Phys. Rev. B 55, 10841–10847 (1997)

    Article  ADS  Google Scholar 

  10. H. Carstensen, R. Claessen, R. Manzke, M. Skibowski, Direct determination of III–V semiconductor surface band gaps. Phys. Rev. B 41, 9880–9885 (1990)

    Article  ADS  Google Scholar 

  11. U. Höfer, High resolution photoelectron spectroscopy at surfaces: lineshapes, loss processes and applications. Ph.D. thesis. Technical University Munich (1989)

    Google Scholar 

  12. P. Steiner, H. Höchst, S. Hüfner, XPS investigation of simple metals. Z. Phys. B 30, 129–143 (1978)

    Article  ADS  Google Scholar 

  13. D.C. Langreth, Singularities in the X-ray spectra of metals. Phys. Rev. B 1, 471–477 (1970)

    Article  ADS  Google Scholar 

  14. P. Minnhagen, Exact numerical solutions of a Nozieres-de Dominicis-type model problem. Phys. Lett. A 56, 327–329 (1976)

    Article  ADS  Google Scholar 

  15. E.P. Gross, Transformation theory, in Mathematical Methods in Solid State and Superfluid Theory, ed. by R.C. Clark, G.H. Derrick (Oliver and Boyd Inc, Edinburgh, 1969), pp. 46–120

    Google Scholar 

  16. B.I. Lundqvist, Single-particle spectrum of the degenerate electron gas. I. The structure of the spectral weight function. Phys. Kondens. Mater. 6, 193–205 (1967)

    Google Scholar 

  17. B.I. Lundqvist, Single-particle spectrum of the degenerate electron gas. II. Numerical results for electrons coupled to plasmons. Phys. Kondens. Mater. 6, 206–217 (1967)

    Google Scholar 

  18. B.I. Lundqvist, Single-particle spectrum of the degenerate electron gas. III. Numerical results in the random phase approximation. Phys. Kondens. Mater. 7, 117–123 (1968)

    Google Scholar 

  19. B.I. Lundqvist, Characteristic structure in core electron spectra of metals due to the electron-plasmon coupling. Phys. Kondens. Mater. 9, 236–248 (1969)

    ADS  Google Scholar 

  20. F. Aryasetiawan, L. Hedin, K. Karlsson, Multiple plasmon satellites in Na and Al spectral functions from ab initio cumulant expansion. Phys. Rev. Lett. 77, 2268–2271 (1996)

    Article  ADS  Google Scholar 

  21. B. Holm, U. von Barth, Fully self-consistent GW self-energy of the electron gas. Phys. Rev. B 57, 2108–2117 (1998)

    Article  ADS  Google Scholar 

  22. C. Blomberg, B. Bergersen, Spurious structure from approximations to the Dyson equation. Can. J. Phys. 50, 2286–2293 (1972)

    Article  ADS  Google Scholar 

  23. B. Bergersen, F.W. Kus, C. Blomberg, Single-particle Green’s function in the electron-plasmon approximation. Can. J. Phys. 51, 102–110 (1973)

    Article  ADS  Google Scholar 

  24. F. Bechstedt, M. Fiedler, C. Kress, R. Del Sole, Dynamical screening and quasiparticle spectral functions for nonmetals. Phys. Rev. B 49, 7357–7362 (1994)

    Article  ADS  Google Scholar 

  25. D.C. Langreth, X-ray emission and absorption, in Interaction of Radiation with Condensed Matter, vol. 1 (International Atomic Energy Agency, Vienna, 1977), pp. 295–318

    Google Scholar 

  26. F. Bechstedt, Electronic relaxation effects in core level spectra of solids. Phys. Status Solidi B 112, 9–49 (1982)

    Google Scholar 

  27. R. Kubo, Generalized cumulant expansion method. J. Phys. Soc. Jpn. 17, 1100–1120 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. L. Hedin, Effects of recoil on shake-up spectra in metals. Phys. Scr. 21, 477–480 (1980)

    Article  ADS  Google Scholar 

  29. G.D. Mahan, Excitons in metals: infinite hole mass. Phys. Rev. 163, 612–617 (1967)

    Article  ADS  Google Scholar 

  30. P. Noziéres, C.T. De Dominicis, Singularities in the X-ray absorption and emission of metals. III. One-body theory exact solution. Phys. Rev. 178, 1097–1107 (1969)

    Article  ADS  Google Scholar 

  31. C.J. Vesely, D.L. Kinston, D.W. Langer, X-ray photoemission studies of silicon and germanium. Phys. Status Solidi B 59, 121–132 (1973)

    Google Scholar 

  32. M. Guzzo, G. Lani, F. Sottile, P. Romaniello, M. Gatti, J.J. Kas, J.J. Rehr, M.G. Silly, F. Sirotti, L. Reining, Valence electron photoemission spectrum of semiconductors: ab initio description of multiple satellites. Phys. Rev. Lett. 107, 166401 (2011)

    Article  ADS  Google Scholar 

  33. M. Guzzo, Dynamical correlation in solids: a perspective in photoelectron spectroscopy. Ph.D. thesis. Ecole Polytechnique, Palaiseau (2012)

    Google Scholar 

  34. M. Guzzo, J.J. Kas, F. Sottile, M.G. Silly, F. Sirotti, J.J. Rehr, L. Reining, Plasmon satellites in valence-band photoemission spectroscopy. Eur. Phys. J. B 85, 324–330 (2012)

    Article  ADS  Google Scholar 

  35. J. Lischner, D. Vigil-Fowler, S.G. Louie, Physical origin of satellites in photoemission of doped graphene: an ab initio GW plus cumulant study. Phys. Rev. Lett. 110, 146801 (2013)

    Google Scholar 

  36. P. Steiner, H. Höchst, S. Hüfner, Simple metals, in Photoemission in Solids II, ed. by L. Ley, M. Cardona. Topics of Applied Physics, vol. 27 (Springer, Heidelberg, 1979), pp. 349–372

    Google Scholar 

  37. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, A.H. MacDonald, Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411 (R) (2008)

    Google Scholar 

  38. E.H. Hwang, S. Das Sarma, Quasiparticle spectral function in doped graphene: electron-electron interaction effects in ARPES. Phys. Rev. B 77, 081412 (R) (2008)

    Google Scholar 

  39. E. Rotenberg, A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, K. Horn, Origin of the energy bandgap in epitaxial graphene. Nat. Mater. 7, 258–259 (2008)

    Article  ADS  Google Scholar 

  40. A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgar, A.H. MacDonald, E. Rotenberg, Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Satellites. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics