

S. Behnke et al. (Eds.): RoboCup 2013, LNAI 8371, pp. 316–325, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Routing with Dijkstra in Mobile Ad-Hoc Networks

Khudaydad Mahmoodi, Muhammet Balcılar, M. Fatih Amasyalı, Sırma Yavuz,
Yücel Uzun, and Feruz Davletov

Yıldız Technical University, Computer Science Department, Istanbul
{khudaydad.mahmoodi,fdavletov}@gmail.com,
{muhammet,mfatih,sirma}@ce.yildiz.edu.tr,

yuceluzun@windowslive.com

Abstract. It is important that robot teams have an effective communication in-
frastructure, especially for robots making rescue operations in debris areas. The
robots making rescue operation in a large area of disaster are not always direct-
ly connected with central operator. In such large areas robots can move around
without losing communication with each other only by passing messages from
one to another up to the central operator. Routing methods determine from
which node to which node the messages are conveyed. In this work blind flood-
ing and table-based routing methods are tested for three different scenarios to
measure their effectiveness using the simulation environment USARSIM and its
wireless simulation server WSS. Message delay times and maximum data pack-
et streaming rates are considered for measuring the effectiveness. Although
it has some deficiencies, it was observed that table-based approach is more
advantageous than blind flooding.

Keywords: Mobile ad-hoc networks, Routing protocols, USARSim, WSS.

1 Introduction

In recent years, the importance of the teleoperation of mobile robots and teams of mo-
bile robots increased. Recently, more and more mobile robots are developed which are
capable of operating in impassable or hazardous environments with little or no commu-
nication infrastructure [2]. Along with technological advances robots became much
more intelligent and much more capable. It means that they must be developed to pos-
sess the capability of constructing a network and performing cooperative works [1].

A key driving force in the development of cooperative mobile robotic systems are
their potential for reducing the need for human presence in dangerous applications.
Such applications as the disposal of toxic waste, nuclear power processing, fire-
fighting, civilian search and rescue missions, planetary exploration, security, surveil-
lance and reconnaissance tasks have elements of danger. In these cases, wireless
communication provides the low-cost for mobile robot networks to cooperate
efficiently [1].

There is increasing demand for connectivity in places where there is no base sta-
tion or infrastructure available. This is where ad-hoc networks came into existence.

 Routing with Dijkstra in Mobile Ad-Hoc Networks 317

Wireless networks can be classified into infrastructure networks and infrastructure-
less networks or mobile ad-hoc networks (MANETs) [3].

MANETs are autonomously self-organized and self-configuring networks without
infrastructure support. To create a temporary network there is no need for any central-
ized administration or infrastructure. In such networks, due to the absence of dedicat-
ed routers, each member node is also responsible for routing messages to other nodes.
If mobility is very high, then the network may experience frequent and unpredictable
topology changes [3], [5], [8].

Recently, mobile ad-hoc networks became a hot research topic among researchers
due to their flexibility and independence of network infrastructures such as base sta-
tions. The infrastructure-less and the dynamic nature of these networks demand a new
set of networking strategies to be implemented in order to provide efficient end-to-
end communication. MANETs can be deployed quickly at a very low-cost and can be
easily managed [3].

There have been a number of ad-hoc routing protocols developed for MANETs,
each with benefits relating to specific usage scenarios. The majority of routing proto-
cols for MANET try to reduce bandwidth usage, minimum energy consumption,
throughput, packet delay time, etc. Different routing protocols use different measures
to determine the optimal route between the sender and receiver. Each protocol has its
own advantages and disadvantages. In this application, we try to reduce packet delay
time by minimizing hop count for better and faster communication between robots.

In this study, we implement Dijkstra's algorithm with minimum hop in order to
minimize packet transmission time and tested our method on USARSim simulation
software. This paper proceeds as follows. Section 2 shows the classification of mobile
ad-hoc routing protocols. USARSim and WSS are briefly introduced in section 3.
Section 4 explains implemented the Dijkstra's algorithm. Experimental results of
algorithms are analyzed in section 5. Finally, Section 6 concludes the paper.

2 Routing Protocols

Routing protocols in MANETs can be classified into two categories based on routing
strategies and network structure [5]:

1. Proactive Protocols (Table-Driven)
2. Reactive Protocols (On-Demand)

2.1 Proactive Routing Protocols

Proactive or table-driven routing protocols maintain the routing information even
before it is needed. Each and every node in the network maintains routing information
to every other node in the network. Routes information is generally kept in the routing
tables and is periodically updated as the network topology changes. The proactive
protocols are not suitable for larger networks, as they need to maintain node entries
for each and every node in the routing table of every node. This causes more overhead
in the routing table leading to consumption of more bandwidth [6], [7].

318 K. Mahmoodi et al.

2.2 Reactive Routing Protocols

Reactive or on-demand routing protocols create routes only when required by a node.
If a node requires a path to a destination, it starts a route discovery process in the
network. It can be either source initiated or destination-initiated. Once a route has
been established, the route discovery process ends and the route will be valid until it
breaks down or is no longer desired [4]. Packets are sent through this route. If there is
no communication between two nodes then it is not necessary to maintain routing
information at these nodes [3]. Such protocols often perform better than proactive
protocols when implemented in a large network due to a smaller overhead. However a
large amount of network traffic can cause the performance to deteriorate sharply as
most such protocols flood the network while looking for a route, and this can lead to
clogging of links. Another major disadvantage is the delay required to find a route
which in some applications might be unacceptable [5], [7].

Fig. 1. Classification of routing protocols in MANETs

3 USARSim and WSS

The Urban Search and Rescue Simulator (USARSim) is built on top of the Unreal
Engine, and uses the Unreal Engine to simulate the environment and the robots [5]. It
is designed as a simulation companion to the National Institute of Standards (NIST)
reference test facility for autonomous mobile robots for urban search and rescue [9].

Creating robots and preparing test environments are very costly and difficult tasks
in real world. USARSim helped us to create robots easily in desired positions and
prepare test environment with minimal cost. Maps in RoboCup competition contain
specific disaster environment, victims, routes with different types of obstacles, etc.
Robots have some certain missions due to competition rules. The main goal of robots
are accomplishing mission as a desired manner in a given disaster environment.

The Wireless Simulation Server (WSS) is developed by Jacobs University which is
used to simulate wireless communications between all robots and the operator that are

 Routing with Dijkstra in Mobile Ad-Hoc Networks 319

created in USARSim simulation program. According to RoboCup virtual robot com-
petitions rules, all communications between robots should be through WSS software.
WSS allows us to get the signal strength of any pairs of robots whenever it is re-
quired. In order to know status of link between two nodes we have to compare the
signal strength value with predefined threshold value. If the signal strength value is
equal or bigger than threshold value (-93 dBm) then connection available, otherwise
connection between nodes breaks down [10].

Registering is required to a specific port of WSS before starting communication.
Once the connection has been opened, the WSS allows sending of messages and clos-
ing the connection. Each time a message is sent, the path loss between the end points
is checked. If it is better than the threshold then the message is forwarded, otherwise
message will be discarded and connection will be closed [5].

4 Routing with Blind Flooding Algorithm

The blind flooding approach is most widely employed strategy to perform and distrib-
ute messages to all robots in the networks [11]. Implementation of this algorithm is
very simple. Because of exploring every possible nodes in the network, it increases the
possibility of delivering packet to destination. On the other hand, flooding algorithm
has some drawbacks like implosion, overlap and resource blindness. For instance,
many unneeded packets on the network leads to use more bandwidth. Flooding
exhibits a desirable behavior when adopted in wired networks.

Algorithm: Routing with Blind Flooding Algorithm
Inputs: ݎௗ௘௦௧, ,௖௨௥ݎ ݉, ௜ܵ,௝, ℎݐ
when packet m is received do

if ݎௗ௘௦௧ = ௖௨௥ݎ
Take packet and process it

else
if ܵ ௥೎ೠೝ,௥೏೐ೞ೟ ≥ ℎݐ

Send the packet m directly to ݎௗ௘௦௧
else

Send the packet to all neighbors of ݎ௖௨௥ except
itself and the robot which packet came from.

endif
endif

endDo

5 Routing with Dijkstra Algorithm

Dijkstra’s algorithm was created in 1959 by Dutch computer scientist Edsger Dijkstra.
Dijkstra’s Algorithm is a graph search algorithm that solves the single-source shortest
path problem for a graph with non-negative edge path costs, producing a shortest path
tree. This algorithm is often used in routing and other network related protocols [12].

320 K. Mahmoodi et al.

Dijkstra's algorithm finds the shortest path from a given starting node to all of the
other nodes in the graph. It requires that the weights of all edges are non-negative. It
operates by maintaining a set of visited nodes and continually updating the tentative
distance to all of the unvisited nodes. At each iteration, the closest unvisited node is
added to the visited set and the distances to its unvisited neighbors are updated.

Algorithm: Finding optimum route from comstation to other robots
Inputs: ܰ = {1,2, . . ,{ݏݐ݋ܾ݋ܴ# ௜ܵ,௝ ݅ = 1. . ,ݏݐ݋ܾ݋ܴ# ݆ = 1. . ݏݐ݋ܾ݋ܴ#
Output: ܲ ݊ (݊)ℎݐܽ = {2. . ܴ {ݏݐ݋ܾ݋ܴ# = {1} // Currently only robot1 (comstation) can be reach
from robot1
Calculate ݐݏ݋ܥ(݅, ݆) using with equation (1)
for each robot n in ܰ − {1} do //initialization step ܶݐݏ݋ܥ(݊) = ,1)ݐݏ݋ܥ (݊)ℎݐܽܲ (݊ = {݊}
endfor
while ܴ ≠ ܰ do // actual algorithm steps

Find the robot m in {ܰ − ܴ} that has minimum value for ܶݐݏ݋ܥ(݉) ܴ = ܴ ∪ {݉}
for each robot n in {ܰ − ܴ} do ܶ1)ݐݏ݋ܥ, ݊) = ,(݊)ݐݏ݋ܥܶ)݊݅݉ (݉)ݐݏ݋ܥܶ + ,݉)ݐݏ݋ܥ ݊))

if ܶ (݉)ݐݏ݋ܥ + ,݉)ݐݏ݋ܥ ݊) < (݊)ℎݐܽܲ (݊)ݐݏ݋ܥܶ = (݉)ℎݐܽܲ ∪ ݊
endif

endfor
endwhile

Dijkstra’s algorithm works for graphs with non-negative edges, but in our application
robot signal strengths take zero or negative values. According to these values, if the sig-
nal strength is between 0 and -93, then the robot is in the coverage area. If the signal
strength is below -93, then the robot is out of coverage area. In order to apply Dijkstra’s
algorithm in our application we normalized the robot signal strengths as in equation (1).

,݅)ݐݏ݋ܥ ݆) = ቊ−93 ≤ ௜ܵ,௝ ≤ 0 1 − ൫ ௜ܵ,௝/1000൯௜ܵ,௝ < −93 ∞ (1)

In the above mathematical equation, ௜ܵ,௝ is used to represent the signal strength
value between ith robot and jth robot. ݐݏ݋ܥ(݅, ݆) is used to represent link cost value
between ith robot and jth robot which is used by the algorithm.

Let’s consider #ܴݏݐ݋ܾ݋ is number of total robots, ܴ is set of reachable robots, ܲܽݐℎ(݊) is routing path between comstation and nth robot. ܶݐݏ݋ܥ(݊) is total cost of
routing path between comstation and nth robot. According to these definitions, the
steps in the algorithm are as follows [13].

In our application optimum route calculation is performed once by comstation in
every 5 second. Then comstation sends updated path information to all robots periodi-
cally. Robots are using these paths for sending messages. Table-based algorithm
which is used by robots in order to send messages in the network is as follow.

 Routing with Dijkstra in Mobile Ad-Hoc Networks 321

Algorithm: Routing with Table-Based Approach
Inputs: ݎௗ௘௦௧, ,௖௨௥ݎ ݉, ℎݐܽܲ
when packet m is received do

if ݎௗ௘௦௧ = ௖௨௥ݎ
Take packet and process it

else
Get ܲ ℎ from packet mݐܽ
Get next robot node from ܲ ℎݐܽ
Forward the packet m to the next robot node

endif
endDo

6 Experimental Results

In this section, implemented routing algorithms are tested on two different propaga-
tion models of WSS. For all tests USARSIM and WSS software run on a PC that used
as a server, test code ran on another PC that was used as a client. Client connected to
the server through a router which has maximum 100Mps link speed.

6.1 Noop Propagation Model

For an increasing number of robots, the average message delays are tested for the
situation that all the robots are directly connected with comstation, before testing the
rates the routing algorithms transmitted messages to destination. By doing this the
average message delays could be seen for different number of robots in the most ideal
situation, independent of routing approaches. For test scenarios, except from
comstation respectively 1 robot and 2, 4, 8, 15 robots are created. All the robots are
keep in touch with comstation. Each robot continuously sends a 2048 byte message to

Fig. 2. Boxplot of message delay versus robots number in Noop Propagation Model

Number of robot

 T

im
e

D
el

ay
 (m

ill
is

ec
on

ds
)

 5

0%

50
%

75
%

322 K. Mahmoodi et al.

the comstation and once it sends a message, robot logs its id along with sending time.
In addition, comstation logs the id of the message and its receiving time. Test contin-
ues till each robot sends 20000 messages to the comstation.

Fig.2 shows the boxplot diagram indicating the densities of the distribution of mes-
sage delay times for varying the number of robots between 50% and 75% confidence
interval, according to test results. When the test results are analyzed it can be said that
in the situation that no routing method is needed, mainly when the Noop Propagation
model is used, message delays are increased linearly with the number of robots. How-
ever, even with 15 robots no bad condition occurs while controlling the robots be-
cause the message delays have 11.04 average and 22.4 ms standard deviation at this
situation.

6.2 Distance and Obstacle Propagation Model

In the Distance and Obstacle Propagation Model, robots are not in communication if
their signal strength value is smaller than the threshold value. In this case, the robots'
sensor information and comstation’s controls commands are sent via other robots.
Route selection process is very important for sending message packets to destination.
In Blind Flooding method, each node sends the message packet received from other
nodes to its neighbor. This method is known as baseline method in the literature. It is
compared with table-based method which finds shortest path between robots dynami-
cally and sends it to other robots periodically. At runtime, robots can be anywhere on
the map and robots communication graph changes dynamically. It's obvious that
whenever the graph structure changes, test results changes as well. In order to do a
fair test 4, 8 and 15 robots are created except comstation and positioned on map as
Fig.3. Graphs in Fig.3 are bidirectional and colored nodes represent the comstation.
This test is done by calculating the number of packets sent by robots to the comstation
per unit of time and packet delay. During the test comstation does not send any mes-
sage to robots in blind flooding method. On the other hand, the table-based method,
the comstation sends dynamically calculated route information to robots at specified
intervals.

Fig. 3. Test scenarios

Scenario I Scenario II Scenario III

 Routing with Dijkstra in Mobile Ad-Hoc Networks 323

In a disaster area, researcher robot teams must send sensor information to the cen-
tral operator as fast as possible. In this test optimum data transmission (packet num-
ber) is researched to prevent systematic network delay and packet losses caused by
buffer overflows for both routing algorithm. Different delay time is set between se-
quential message packets to examine buffers in the network. For each of the three
scenarios, packet success rates versus data transmission rates obtained with blind
flooding algorithm are shown in Fig.4.

Fig. 4. Packet success rate versus packet/second rate for blind flooding algorithm

For all three scenarios even with maximum packet rates the system allows, any
systematic delay or packet loss does not occur in the table-based routing method.
Each tests carried on until each robot sends 5000 messages to the comstation. Total
packet rate and packet rate per robot is shown as below.

Table 1. Results of maximum packet transmission speed

Scenario Method

Total Packet
Speed

(pck/sec)

Packet Speed for
each robot
(pck/sec)

I BF 132.45 33.11
I TB 398.32* 99.58
II BF 43.52 5.44
II TB 312.76* 39.09
III BF 15.16 1.01
III TB 229.11* 15.27

In the table above, (*) represents the maximum packet rate allowed by the system.

When table-based method is used neither packet losses nor systematic delay
is observed. Therefore, rates with (*) signs are not actual rates; these rates may in-
crease if faster data generated. The high number of unnecessary internal messaging in
the network causes unnecessary bandwidth usage in Blind Flooding method. When
Blind Flooding is used for routing, to avoid network buffer overflow each robot must

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scenario I

Scenario II
Scenario III

Transmission speed (packet/second)

 P

ac
ke

t s
uc

ce
ss

 r
at

e

324 K. Mahmoodi et al.

generate no more than 1.01 packets/sec. This number is approximately 15 times
greater in Table-Based routing.

In order to measure the delays of packets sent from robots to the comstation for
each scenario, it’s ensured that robots generate packets at rates obtained from previ-
ous analysis. Each test is carried on until each robot sends 5000 messages to the
comstation and the delay of each message packet is calculated.

Table 2. Results of packet delay

Scenario Method

Worst Robot
mean delay

(ms)

Best Robot
mean

Delay(ms)

Mean
Delay (ms)

Standard
Deviation of
delay (ms)

I BF 29.75 10.03 18.46 16.80
I TB 10.10 5.27 7.67 6.58
II BF 91.39 11.07 52.41 42.45
II TB 20.56 7.27 15.32 10.46
III BF 361.87 15.25 218.74 155.77
III TB 42.10 13.16 30.40 17.36

Test results are shown in Table 2. According to the table it’s seen that blind flood-

ing (BF) gives similar results to table-based routing (TB) for lower number of nodes.
But for bigger network structures (the more connection between nodes) the delay of
BF method is increased exponentially. However for TB method this increase occurs
linearly. The histogram of packet delays occurred with blind flooding and table-based
method for Scenario III is as in Fig.5.

Fig. 5. Histogram of packet delay in scenario III using with Blind flooding and Table-based
method

7 Conclusion

Ad hoc mobile robot communications are a promising networking technology for
multi-robot communication in debris areas. Yet ad hoc robot communication repre-

Delay (ms)

D

en
si

ty

Blind flooding
Table Based

 Routing with Dijkstra in Mobile Ad-Hoc Networks 325

sents a relatively underdeveloped application field. Blind Flooding approach can be
preferred at situations with relatively few nodes, due to the simplicity of its applica-
tion, its ensuring packets to reach target in any architecture (if there is no overflow in
buffer). One of the advantage of this approach is does not need extra configuration
messages. However, it must be cautioned that message delay increases with the
square of number of connections and the slowdown in packet transmission speed.
Message delay increase linearly with the number of connections between nodes and
high packet transmission speeds are important advantages of table-based routing.
However, as a requirement of its method, the messages including dynamic routing
tables having to be sent to other nodes periodically consume extra bandwidth. When
the frequency of these messages are decreased, the packet loss is increase because the
robots find out routing table late or even does not. A good ad-hoc network routing
algorithm can be developed with a table based approach by balancing this value in
real or simulation debris areas.

References

1. Wang, Z., Zhou, M., Ansari, N.: Ad-hoc robot wireless communication. In: IEEE Interna-
tional Conference on Systems, Man and Cybernetics 2003, vol. 4. IEEE (2003)

2. Zeiger, F., Kraemer, N., Schilling, K.: Commanding mobile robots via wireless ad-hoc
networks—A comparison of four ad-hoc routing protocol implementations. In: IEEE In-
ternational Conference on Robotics and Automation, ICRA 2008. IEEE (2008)

3. Wahi, C., Sonbhadra, S.K.: Mobile Ad Hoc Network Routing Protocols: A Comparative
Study. International Journal of Ad Hoc, Sensor & Ubiquitous Computing 3(2) (2012)

4. Wang, Z., Liu, L., Zhou, M.: Protocols and applications of ad-hoc robot wireless commu-
nication networks: An overview. Future 10, 20 (2005)

5. Nevatia, Y.: Ad-Hoc Routing for USARSim (2007)
6. Gorantala, K.: Routing protocols in mobile ad-hoc Networks. Master’s Thesis in Compu-

ting Science (June 15, 2006)
7. de Morais Cordeiro, C., Agrawal, D.P.: Mobile ad hoc networking. Center for Distributed

and Mobile Computing, ECECS. University of Cincinnati (2002)
8. Shrivastava, A., et al.: Overview of Routing Protocols in MANET’s and Enhancements in

Reactive Protocols (2005)
9. Carpin, S., et al.: USARSim: a robot simulator for research and education. In: 2007 IEEE

International Conference on Robotics and Automation. IEEE (2007)
10. Pfingsthorn, M.: RoboCup Rescue Virtual Robots: Wireless Simulation Server Documen-

tation, pp. 1–8 (October 2008)
11. Giudici, F.: Broadcasting in Opportunistic Networks, Universita Degli Studi di Milano,

thesis (2008)
12. Dijkstra, E.: Dijkstra’s algorithm. Dutch scientist Dr. Edsger Dijkstra network algorithm

(1959), http://en.wikipedia.org/wiki/Dijkstra’s_algorithm
13. Dijkstra’s Algorithm (2013), http://www.mathcs.emory.edu/~cheung/

Courses/455/Syllabus/5a-routing/dijkstra.html
(accessed May 21, 2013)

	Routing with Dijkstra in Mobile Ad-Hoc Networks
	1 Introduction
	2 Routing Protocols
	2.1 Proactive Routing Protocols
	2.2 Reactive Routing Protocols

	3 USARSim and WSS
	4 Routing with Blind Flooding Algorithm
	5 Routing with Dijkstra Algorithm
	6 Experimental Results
	6.1 Noop Propagation Model
	6.2 Distance and Obstacle Propagation Model

	7 Conclusion
	References

