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Abstract. This paper presents a method for object matching that uses
local graphs called keygraphs instead of simple keypoints. A novel method
to compare keygraphs was proposed in order to exploit their local struc-
tural information, producing better local matches. This speeds up an
object matching pipeline, particularly using RANSAC, because each key-
graph match contains enough information to produce a pose hypothesis,
significantly reducing the number of local matches required for object
matching and pose estimation. The experimental results show that a
higher accuracy was achieved with this approach.
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1 Introduction

An important problem in computer vision is object recognition through match-
ing, which consists in localising objects in test images and estimating their 3D
pose. Solutions to this problem are useful in different application domains, such
as robotics, medical images analysis and augmented reality. One of the most suc-
cesful approaches for this problem involves establishing correspondences between
interest points (keypoints) in test and training images; next, a pose estimation
algorithm is used, e.g. based on RANSAC, which operates by removing outliers
that do not conform with global pose parameters. In this paper, we present a
novel method that is capable of providing more accurate solutions besides being
computationally cheaper. Our method is generic, in the sense that it can be used
with any keypoint extractor method; we validate it using SIFT features [1].

In keypoint-based object recognition, point-to-point correspondences are ob-
tained by matching discriminative features and reducing the set of matches in a
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post-processing step. For instance, the ratio test [1] compares the distances to
the first and the second nearest neighbor and only establishes a match if the for-
mer is significantly smaller than the latter. However, usually there are locations
on manmade objects that have similar local appearances, thus discriminative
matching may prevent features with similar descriptors from being matched,
which becomes a problem particularly when matching keypoints coming from
different images.

In our work, initially, we also produce matches solely based on photometric
information, but we allow a large number of matches to be established. Then,
aiming to eliminate most of the incorrect matches, we use structural information
within the images; this is done by establishing matches between small sets of
keypoints, which we treat as graphs. In this way, our method produces a better
set of keypoint matches, even when there are locations on the objects with similar
appearances. Not only those matches have a high probability of being correct,
but this also benefits the next stage, based on RANSAC, which ends up using a
small set of graph correspondences.

Differently from previous approaches that model an image as a global graph
and then proceed by employing graph matching methods, such as the work of Sir-
macek and Unsalan [2] which uses SIFT keypoints as graph vertices or the work
of McAuley and Caetano [3], our approach is local: we decompose the scene and
pattern into collections of local graphs and perform only local graph matching,
leaving the global matching to the RANSAC procedure. We built upon insights
from the work of Morimitsu et al. [4], which focused on fast object detection
using a single training image. For that, they used a graph edge descriptor based
on Fourier transform and explicitly stored several structures obtained from the
training image, which are matched to similar structures found in the test image.
In the present paper, we focus on an object recognition task in which there are
several images per training object and also many objects stored. We use a more
discriminative keypoint extractor (SIFT), and since it is not computationally
feasible to explicitly store structures found in the (many) training images, we
develop a strategy based on quickly evaluating, during execution time, different
aspects of strucures within test and training images.

2 Methodology

The first step of our object recognition process involves extracting SIFT key-
points from all the training images. We use the ground-truth segmentation to
eliminate keypoints that are not on the object. We store all the training keypoints
in a global indexing structure, which allows to quickly find the approximate near-
est neighbors of a query (test) keypoint. We chose to use the hierarchical k-means
tree proposed by Muja and Lowe [5] due to its efficiency. For each SIFT keypoint
extracted from a training image we store its normalized descriptor (a 128-D fea-
ture vector), its scale, its orientation, an identifier of its source image and its z,
y position in that image.

Matching of a test object is done following a pipeline of three stages. First,
photometric information is used: each SIFT descriptor of the test image runs
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through the hierarchical k-means tree, producing many matches to the key-
points of the training images. In the second stage, most of the incorrect keypoint
matches are eliminated using structural information within images. The strategy
consists in substituting the matches previously established between one-to-one
keypoints by matches established between small sets of keypoints, i.e., graphs,
called keygraphs [4]. A keygraph is a graph whose vertices are keypoints, and
whose edges carry structural information about its keypoints. The third stage of
the matching process consists in using a modified RANSAC (Random Sample
Consensus) algorithm, which employs matches established between keygraphs.

2.1 Keypoint Matching

SIFT keypoints are often located very close to each other and this can lead to
poor pose estimation results with minimal sets. We select a maximal subset S
of keypoints in the test image such that the distance, in pixels, between any two
keypoints in S is above a threshold dy;,; we use dp;; = 10 pixels.

After selecting the set S of keypoints in the test image, we match them to
the keypoints of the training images, which are stored in a hierarchical k-means
tree. We let each test keypoint establish a match with at most two keypoints of
each training image. In order to establish a match between keypoints, it is nec-
essary that the Euclidean distance between their (normalized) SIFT descriptors
is below a threshold t; we set ¢t with a relatively high value, as the next stage
eliminates possibly incorrect matches. If a test keypoint can establish more than
two matches with a same training image, only the two closest matches are kept.

2.2 Keygraph Matching

A keygraph is defined as a graph G = (V| E), where the vertex set V is com-
posed of keypoints, and E is the set of graph edges. All the keypoints in a
keygraph are present in the same image. Every keygraph has the same number
of vertices, k, and it consists in an oriented circuit in the clockwise direction,
G = (v1,v2,...,V5).

Each keygraph in the test image can establish matches with keygraphs in
every training image. Let G = (v1,va,...,v,) and H = (w1, ws,...,w) be
keygraphs in a test and in a training image, respectively. The existence of a
match between G and H, denoted as M = (G, H), implies x matches between
the keypoints (vertices) of G and H. For instance, (G, H) may imply the set
of keypoints matches M = {(v1,w1), (v2, w2), ..., (Vk, ws)}, i.€., it implies the
occurrence of k matches between pairs of keypoints.

Obtaining Keygraphs in the Test Image. We begin with the subset S of
keypoints in the test image and execute the Delaunay Triangulation, generating
a set of triangles, i.e. we use keygraphs with k = 3 vertices, G = (v1, v2,v3),
represented as triangles whose edges are oriented in the clockwise direction.
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Obtaining Keygraphs in the Training Images The keygraphs in the train-
ing images are not obtained using the Delaunay Triangulation. Instead, we first
calculate the potential keygraph matches that may occur from the test image to
each training image. Then we analyse which of those potential keygraph matches
imply a valid keygraph in the training image.

Let G = (v1,v2,v3) be a keygraph in a test image, obtained using the Delauney
Triangulation. For each training image, we verify whether G establishes keygraph
matches with that image. As an illustration, consider the case in which every
keypoint of G, vy, v and vs, establishes two matches with keypoints of a same
training image; then there are eight different possible matches between G and
keygraphs of that training image: choose one of the two matches of v; and choose
one of the two matches of v and choose one of the two matches of v3. Considering
that the keypoint matches are (v1,w1), (v1,w2), (v2,ws), (v2,wy), (v, ws) and
(vs,ws), at most eight sets of keypoint matches (i.e. keygraph matches) can be
established:

My = {(v1, wr), (v2, w3), (vs, ws)}, Mz = {(v1,w1), (v2,ws3), (v3, we)},
Ms = {(vlawl)v (anw4)v (’1)3,11)5)}, My = {(vlawl)v (anw4)v (’1)3,11)6)},
Ms = {(v1, w2), (v2, w3), (v3, w5)}, Mg = {(v1,w2), (v2, w3), (v, we)},
Mz = {(v1, w2), (v2, wa), (v3,w5)} and Mg = {(vi,w2), (va, ws), (v3, we)}.

Each one of those keygraph matches requires the existence of a specific keygraph
in the training image; for instance, My = {(v1,w1), (v2,ws), (vs, ws)} requires
H;, = (w1, w3, ws) in the training image. As we assume that mirroring is not a
possible distortion of the test image, the circuit of a keygraph H in a training
image must be oriented in the clockwise direction; if it is oriented in the counter-
clockwise direction then H and the tentative keygraph match involving H are not
accepted!.The set of possible keygraph matches M;, Ma, ..., Mg established
by a test keygraph G = (v1, v, v3) with a training image can also be reduced
if v1, vy or vs establish fewer keypoint matches with that image; naturally, this
set becomes empty if vy, vo or v does not establish any match or none of the
implied circuits is in the clockwise direction.

Discarding Keygraph Matches Using Structural Relations. After ob-
taining a set of (at most eight) tentative keygraph matches between a test key-
graph G and keygraphs in a training image, we use five additional tests aiming
to eliminate incorrect keygraph matches. This is very effective: the total number
of keygraph matches is reduced in orders of magnitude. The tests are based on
photometric and structural information within the keygraphs.

To illustrate the tests, let G = (v1,v2,v3) be a keygraph in the test image
and M = {(vi,wy), (v2,w2), (v3,w3)} be a tentative keygraph match implied
by G in a training image, such that M requires the existence of the keygraph
H = (w1, ws,ws) in that training image.

! We assume that training objects are convex or that there is, in the training set, at
least one viewpoint of the object where this assumption is valid.
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The first test is based on the edges of a training keygraph. In H = (w1, wa, ws),
there are three edges: efl, = (w1, ws), ey = (w2, ws) and ef} = (ws, w1), whose
lengths in pixels in the training image are denoted as, respectively, |ef’,|, |e5’s]
and |ef|| (an edge is a straight line connecting two vertices). This first test
verifies whether the edges length respect a minimum and a maximum value: we
use 10 and 100 pixels, i.e. this test verifies whether 10 < |ef{j\ < 100. As the
keygraphs in the test image in general have edges with a length equal to or
slightly greater than dp;, = 10 pixels, this test allows the objects to appear in
the test image considerably smaller than the (large) object in the training image.

The second test is based on the ratio of edges length in corresponding
keygraphs. Considering the tentative match M between the keygraphs G =
(v1,v2,v3) and H = (w1, w2, ws), the three ratios between the length of corre-
sponding edges are 1;; = \egj\ /lef’;]. This test verifies whether the larger ratio,
Tij, is at most twice the smaller one, 74, i.e. r;; < 2ry;. This test still allows the
occurrence of a large variation between the viewpoints of the object in the test
and the training images, but since many training images are taken around an
object, a very drastic viewpoint change is not allowed to occur.

The third test is based on the ratio of the scale of corresponding SIFT key-
points. The motivation of this third test is similar to that of the second one. In
the test keygraph G = (v1,v9,v3), consider that the scale of the SIFT keypoint
vy is s and similarly we have the scales s§ for v2 and s§. In a similar way, for
the training keygraph H = (w1, w2, w3) we have the scales s, sif and sif. Thus
the three ratios between the scale of corresponding keypoints are r; = s§ /s,
ro = 8§ /s¥ and r3 = s§/sE . Similarly to the second test, this third test verifies
whether the larger ratio is at most twice the smaller one.

The fourth test is based on both edges and scales. It uses results calculated in
the second and the third tests: the ratios between edges length r12, ro3 and r3;
and the ratios between scales 71, ro and rs. Ideally, the value E = r15 4+ 123+ 131
would be similar to the value S = r; + ro + r3, as the change in the object size
and viewpoint from the training image to the test image should impact similarly
the edges length and the SIFT scale. However, as imprecisions can occur, we let
the values F and S differ: this fourth test verifies whether the larger value is at
most 50% greater than the smaller value, i.e., if E > S this test verifies whether
E <158 and if S > E it verifies whether S < 1.5F.

The fifth test uses the orientation (angle) of SIFT keypoints. One of the three
pairs of matched keypoints is selected, and the variation of angle between the test
and the training keypoints is calculated; then, for the other two keypoint pairs,
this variation is applied and it is verified whether the resulting angle is within a
margin of error of 45 degrees from the original SIFT orientation. The test suceeds
if both keypoint pairs agree with the angle variation implied by the first keypoint
pair. If the test fails using a keypoint pair to calcule the angle variation, it can
be evaluated again using the other two keypoint pairs to calculate the angle
variation: it must suceed for at least one of the three pairs. For example, in the
tentative match M of keygraphs G = (v1,v2,v3) and H = (w1, w2, ws), the pair
(v1,w1) is used to calculate the angle variation. The angle of v; is 0° and the
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angle of wy is 30°, i.e. from vy to w; occurs an increasing of 30°. Now, this angle
variation (+30°) is verified with the other two pairs of keypoints. The angles
of vy and wy are, respectively, 40° and 80°; applying the variation of +30°, we
obtain that the angle of ws should be 70° (40° plus 30°), which is within the
margin of error of 45°, as the true orientation of ws, 80°, is just 10° above the
70° implied by the first keypoint pair. A similar verification is made by applying
the variation of +30° to the pair (vs,ws). The whole evaluation can also be
made using the angle variation from vs to we or the angle variation from v to
ws. We use a large margin of error of 45 degrees which allows the occurrence of
imprecisions but still avoids the establishment of absurd keygraph matches.
Figure 2.2 illustrates the establishment of keygraph correspondences.

2.3 Third Stage: RANSAC on Keygraphs

One keygraph match generates xk = 3 keypoint matches. In the experiments in
this paper, we use an affine transformation to instantiate an object, thus one
keygraph match is necessary to instantiate an affine transformation. Compared
to the tradicional RANSAC approach, which would require the random selec-
tion of three independent keypoint matches, the keygraph method requires the
verification of a smaller number of poses.

Let G be the set of all keygraph matches between the test image and a training
image, G = {M1, Ma,..., Mg}, in which M, is a set of three keypoint matches;
thus the set P of keypoint matches between those images is P = M;UMoU. ..U
Mig|- To evaluate the quality of an affine transformation which instantiates, in
the test image, the object present in that training image, we count the number of
keypoint matches that agree with it: for each keypoint in the training image, let
x,y be its position in the test image as established by the keypoint match, and let
2,1y’ be its position in the test image as predicted by the affine transformation
under evaluation. If the distance between x,y and z’,7’ is below three pixels,
we consider that this keypoint match agrees with the transformation. If at least
six keypoint matches agree with a transformation (i.e. the three matches used
to instantiate it plus three other matches), we consider that a correct pose of
the object is found, and the algorithm returns this affine transformation. If more
than one solution is found for a test image, the algorithm returns the one with
more matches agreeing with it.

3 Experiments and Results

In our experiments we use a challenging object recognition dataset which con-
tains ten different types of common household objects. For each object type,
there are 25 training images taken around the object and 50 test images in
which the object appears in a cluttered, realistic scene (in half of them there is
one object instance, in the other half, two instances). This dataset was produced
and made available by Hsiao et al. [6]. The authors evaluated it in a 3D ob-
ject recognition task, in which a 3D model was created for each training object.
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Fig. 1. Keygraph matches established between training (left side) and test (right side)
images. Top: “clam chowder can” object: after using the five structural tests, three
keygraph matches remain, where two of them are correct. Middle: for the same pair
of images of the previous example, we show the keygraph matches that remain after
using only four of the five tests; the fifth test, which uses SIFT angle, is not used.
It can be seen that the number of (wrong) keygraph matches increases significantly.
Bottom: “orange juice carton” object: after using the five tests, we obtain more correct
keygraph matches than incorrect ones.
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In the present paper, we follow a simpler approach, in which we recognize objects
by using an affine transformation between a test and a training image.

We compare the keygraph method proposed in this paper to the ratio test
approach [1]. We run each SIFT descriptor v of the test image through the
hierarchical k-means tree [5] and obtain the nearest neighbor of v, which is at a
distance d; from v, and the second nearest neighbor of v that is of a different
object type than the first nearest neighbor, which is at a distance ds from v; a
match is established between v and its nearest neighbor if dy /da < 0.8 [1]. Then,
for every training image for which there are at least four keypoint matches to the
test image, we use an exhaustive version of RANSAC, evaluating every possible
combination of three keypoint matches to instantiate an affine transformation
and then count the number of keypoint matches that agree with this pose. We
consider that an instance of an object is found when at least four keypoint
matches agree with a transformation (i.e. the three matches used to instantiate
it plus one match). We use only four matches for the ratio test method, while for
the keygraph method we use six matches (as explained in section 2.3), because
the former usually produces fewer keypoints matches than the latter.

We use the same hierarchical k-means tree (with & = 16) for both methods,
keygraph and ratio test. A query (test) keypoint is compared to a total of 4000
training keypoints stored in the tree leaves; the use of a smaller number of
comparisons lowers the accurary of both methods. On average, a training image
is described by 1080 SIFT keypoints (using the ground-truth segmentation) and
a test image is described by 1070 keypoints (selected to compose the maximal
subset S of keypoints). SIFT descriptors are normalized for zero mean and unit
standard deviation; this normalization is useful because we use a threshold t = 14
for establishing keypoint matches in the first stage of the keygraph method.

We also compare our keygraph approach to the modified ratio test proposed
by Hsiao et al. [6]. Aiming to establish more keypoint matches, the authors
proposed to use the regular ratio test in conjunction with a modified ratio test
which establishes discriminative matches with clusters of keypoints, such that
establishing a match with a cluster produces matches to all the training keypoints
in that cluster. For that, we create two additional hierarchical k-means trees
(with £ = 16 and k& = 32). For each test keypoint, for each additional tree
we verify whether that test keypoint establishes a discriminative match with a
cluster composed of original training keypoints (i.e. a cluster that stores tree
leaves); a discriminative match is established if dy/ds < 0.8, in which d; is
the distance to the closest cluster and ds is the distance to the second nearest
cluster. We also use the traditional ratio test (using the original tree with k =
16), and employ all the established keypoint matches. Since the modified ratio
test generates more keypoint matches then the ratio test, we consider that an
instance of an object is found when at least six keypoint matches agree with a
transformation, similarly to the keygraph method (for the ratio test, we consider
that a pose is found when four keypoint matches agree it).

Table 1 summarizes the results obtained. When a pose is found, we manually
verified it by checking if the correct viewpoint of the object was projected in
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Table 1. Percentage of test images for which a correct object was found (and for which
a wrong object was found), i.e. true positives (and false positives), for the original ratio
test [1], the modified ratio test [6] and the keygraph method.

Object type Ratio test Modified ratio test Keygraph method
(Lowe [1]) (Hsiao et al. [6]) (this paper)

Clam chowder can 14% (4%) 22% (4%) 46% (2%)

Soy milk can 2% (12%) 2% (10%) 8% (6%)

Tomato soup can  14% 10% (4%) 36%

Orange juice carton 54% (4%) 58% (2%) 72%

Soy milk carton 44% (8%) 46% (4%) 54% (4%)

Diet coke can 0% (2%) 2% (6%) 2%

Pot roast soup 10% (2%) 6% (4%) 36%

Juice box 26% (10%) 32% (12%) 42% (6%)

Rice pilaf box 64% 62% (2%) 74% (2%)

Rice tuscan box 68% (4%) 58% 62% (2%)

the test image. For the test images with two object instances, we consider that
finding just one of them is a correct solution.

Our method performs significantly better than the ratio test and the modi-
fied ratio test. In the matching stage (before RANSAC), the keygraph method
established an average of 2.8 keygraph matches (7.4 keypoint matches) between
a test image and each training image, while the modified ratio test, on average,
established only 1.7 keypoint matches between a test and each training image;
this number could be increased by using additional k-means trees in the modified
ratio test, but we observed that this also increased the false positive rate.

Before the RANSAC stage, the computational time demanded by the ratio
test method and the keygraph method is similar, as the time spent to establish
keypoint matches through the hierarchical k-means tree is largely dominant in
comparison to the next stage of keygraph matching.

4 Conclusion

In this paper we described a method for object matching based on keygraphs,
rather than keypoints, i.e., objects are matched using sets of triangles, where
each vertex is a keypoint detected and described using SIFT. In the first step,
keypoints are matched using a hierarchical k-means tree. Delaunay triangula-
tion generates keygraphs in the test image and the matched keypoints generate
keygraphs in the training images. We proposed to use five triangle features in
order to evaluate the match between keygraphs, removing a significant number
of false matches before running RANSAC to select inliers to compute an affine
transformation between training and test images. Our method achieved a sig-
nificantly higher accuracy than two state-of-the-art methods, the ratio test [1]
and the modified ratio test [6]. Furthermore, the number of keygraph matches
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is small. On average, 2.8 keygraph matches are established between a test im-
age and each training image. The quality of these matches is high, i.e., a small
number of false matches occur. Besides, each keygraph match carries enough
information to instantiate a pose hypothesis using an affine transformation. On
the other hand, the ratio test method requires at least three keypoint matches.

As future work, we plan to use our method for 3D object recognition and pose
estimation as in [6], which uses a structure-from-motion algorithm to create a
3D model of each training object. We believe that our approach is especially
suited for this 3D setting. Only two keygraph matches between a test image and
(possibly different) training images generate six keypoint matches, which is a
good minimal set to generate a 3D pose [7]. This is an important advantage in
comparison to a method that solely uses keypoints, which requires the selection
of six keypoint matches to instantiate a 3D pose [7] or the selection of four
keypoints matches with the use of an algorithm such as EPnP [8]. We expect
that the keygraph method will demand a smaller number of 3D pose evaluations.

Another future work involves the use of Domain Adaptation (D.A.) tech-
niques, which are useful when the training data is different from the test data
(e.g. [9]). Such a domain change can occur due to variations in the object view-
point, camera parameters, illumination change, motion etc. We expect that the
use of D.A. will improve the first stage of our method (keypoint matching), as
this stage is, essentially, a classification task through the hierarchical k-means
tree. We also suggest the use of structured learning methods in order to optimize
the weight of features used for graph matching, as done in [10].
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