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Abstract. Consider a multi-class classification problem. Given is a set
of objects, for which it is known that there is at most one object from
each class. The problem is to identify the missing classes. We propose
to apply the Hungarian assignment algorithm to the logarithms of the
estimated posterior probabilities for the given objects. Each object is
thereby assigned to a class. The unassigned classes are returned as the
solution. Its quality is measured by a consistency index between the
solution and the set of known missing classes. The Hungarian algorithm
was found to be better than the rival greedy algorithm on two data sets:
the UCI letter data set and a bespoke image data set for recognising
scenes with LEGO parts. Both algorithms outperformed a classifier which
treats the objects as iid.

Keywords: Pattern recognition, set classification, Bayes-optimal clas-
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1 Introduction

Who is missing? At your lecture, you are taking a class register from a single
snapshot of the audience. If the number of students in the audience is the same
as the size of your class, and you are satisfied that there are no impostors, then
all your program needs to do is count the faces in the snapshot. However, if the
number of attendees is smaller than the class list, you will need to find out who
the missing students are.

Suppose that you have a trained classifier to recognise the students’ faces.
If the face detection program and the classifier were ideal, all faces would be
correctly detected and recognised, hence the missing students will be identified
instantly. However, if the classifier is imperfect, classifying each face individually
may not be the optimal strategy. First, individual labelling will not prevent
assigning the same label to several objects. Second, individual labelling cannot
take into account any class dependencies. For example, suppose that students X
and Y are friends, and are always present or absent together. Individual labelling
will not be able to take advantage of this piece of knowledge. Therefore, some
form of set classification would be a more prudent strategy.

One of the standard assumptions in classical pattern recognition is that the
data points to be classified come as an independent identically distributed (iid)
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sequence. In many problems this assumption does not hold. For examples of
non-iid classification paradigms are listed below.

1. The multiple-instance Problem. This problem arises in complex machine
learning applications where the information about the instances is incom-
plete or ambiguous [4, 7, 13, 19], e.g., in drug activity prediction [4]. The
training examples come in “bags” labelled either positive or negative. For
a positive bag, it is known that at least one instance in the bag has true
positive label. For a bag labelled negative, all instances are known to be
negative. The problem is to design a classifier that can label as accurately
as possible an unseen bag of instances.

2. Set Classification. In this problem, all the instances in a set are assumed to
have come from the same unknown class [16]. This problem may arise in face
recognition where multiple images of the same person’s face are submitted
as a set.

3. Collective Recognition. In this scenario, a set of instances are labelled to-
gether [14, 18]. The crucial assumption is that the instances within the set
are related, so that the dependencies can be used to improve the classifica-
tion accuracy. For examples, in classifying web pages into topic categories,
hyperlinked web pages are more likely to share common class labels than
non-linked pages [18].

4. Full-Class Set Classification [11]. Here a set of instances has to be classified
together, knowing that the set contains at most one instance from each class.
In other words, the c objects must be matched one-to-one to the c classes. We
can call this problem ‘who-is-who’ to distinguish it from the ‘who-is-missing’
problem. Simultaneous classification of a set of instances has been used in
tracking. For example, a moving object can be regarded as a patchwork
of parts [1] or a set of tracklets [10], which are matched from one image
frame to the next. This fits within the framework considered here because
each part/tracklet on the object can be referred to as a class label, and
the segmented pieces in the image have to be distributed to the different
class labels. However, the instances within the set are not iid, as the parts
are spatially linked within the object, and also follow physical motion laws.
Other potential applications include karyotyping (labelling the chromosomes
in a cell) [9,15] and identifying footballers on the pitch in a live-play video [3].

The who-is-missing problem is a variant of paradigm #4, the full set classifi-
cation [11]. In this study we formulate the who-is-missing problem and propose
a solution based on the Hungarian assignment algorithm.

2 The Who-Is-Missing Problem

2.1 Problem Description

Let Ω = {ω1, . . . , ωc} be the set of class labels. The set of objects presented for
classification is Z = {z1, . . . , zk}, where k < c, and the true labels of the objects
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in Z, denoted {y1, . . . , yk} are all different. The task is to find the set of missing
classes, that is the set

Ω(−) = Ω \Ω(+), (1)

where

Ω(+) =

k⋃

i=1

yi. (2)

Because of the strict inequality k < c, Ω(−) is a non-empty set.
Denote by P (ωj |x) the probability that the true class label for an observed x

is ωj ∈ Ω. We can arrange the posterior probabilities in a k × c matrix

P =

⎡

⎢⎣
P (ω1|z1) . . . P (ωc|z1)

...
...

...
P (ω1|zk) . . . P (ωc|zk)

⎤

⎥⎦ . (3)

The task is to determine the c−k missing classes based on P and the knowledge
that labels y1, . . . , yk are different. The probability that the class label for a given
x is not ωj is 1−P (ωj|x). If Z contained k iid objects, the probability that class
ωi is not represented in Z would be

Piid(∼ ωi|Z) =
k∏

j=1

(1 − P (ωi|zj)) . (4)

The c−k classes with the largest Piid should be returned as Ω(−). This approach,
however, is based on the false iid assumption and hence does not take advantage
of the fact that the elements of Z have different class labels.

Accurate identification of the missing classes is equivalent to accurate as-
signment of the present classes. Therefore the solution can be found using the
Hungarian assignment algorithm1. Proposed originally for c × c matrices, the
algorithm was extended for rectangular matrices [2].

It has been shown [11] that the Bayes-optimal solution of the who-is-who
problem (k = c) is the permutation of labels 〈s1, s2, . . . sc〉 which maximises the
criterion

c∑

i=1

logP (ωsi |zi) . (5)

The underlying assumption is that the object from each class is picked indepen-
dently of the objects from the other classes.

2.2 An Example

As an example, consider three objects, z1, z2 and z3, coming from three classes,
ω1, ω2 and ω3. The class assignment of the three objects is not known, apart
from the fact that there is one object from each class. Let P be

1 Further developed by Kuhn and Munkres, also known as Kuhn-Munkres algorithm.
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P =

⎡

⎣
0.65 0.07 0.28
0.43 0.50 0.07
0.24 0.57 0.19

⎤

⎦ . (6)

Table 1 shows all possible label permutations, the corresponding posterior
probabilities and the sum-log criterion value (5) for each permutation. In addi-
tion, the sum of the posterior probabilities is also shown.

Table 1. An example of the class assignment problem

Class Posteriors
z1 z2 z3

∑
log() sum

3 2 1 0.28 0.50 0.24 -3.3932 1.02

3 1 2 0.28 0.43 0.57 -2.6791 1.28
2 3 1 0.07 0.07 0.24 -6.7456 0.38
2 1 3 0.07 0.43 0.19 -5.1640 0.69
1 2 3 0.65 0.50 0.19 -2.7847 1.34
1 3 2 0.65 0.07 0.57 -3.6522 1.29

According to the table, the best solution is z1 ∈ ω3, z2 ∈ ω1 and z3 ∈ ω2.
Interestingly, this is not the solution which maximises the sum of the posterior
probabilities.

A greedy approach would assign class ω1 to z1 (0.65), next assign class ω2

to z3 (0.57), and finally assign class ω3 to the remaining object z1 (0.07). This
permutation, (1,3,2), is ranked 4th of 6 on the sum-log criterion.

2.3 Proposed Solution

We propose to use the Hungarian assignment algorithm to a full c−by−c matrix
where c−k objects will be “dummy” objects. Their respective rows with posterior
probabilities are filled with values 1

c , indicating a complete lack of preference of
a class label. The class labels assigned by the algorithm to the dummy objects
will be the missing classes.

The hypothesis is that the Hungarian algorithm will provide better solution
to the who-is-missing problem compared to a greedy algorithm or independent
classification that assumes iid data.

2.4 Evaluation of the Solution

To find out how successful the proposed strategy is, we need a measure of match
between the true missing classes and the obtained missing classes. Simple mea-
sures based on the intersection between the two sets will not be adequate because
such measures will depend on the number of the missing classes and are not cor-
rected for chance. Therefore, we propose to use a consistency index [12].
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The Consistency Index IC(A,B) for two subsets A ⊂ X and B ⊂ X , such
that |A| = |B| = k, where 0 < k < |X | = n, is defined as

IC(A,B) =
r − k2

n

k − k2

n

=
rn− k2

k(n− k)
. (7)

where r = |A ∩B|. The maximum value of the index, IC(A,B) = 1, is achieved
when r = k. The minimum value of the index is bound from below by −1. The
limit value is attained for k = n

2 and r = 0. Note that IC(A,B) is not defined
for the trivial cases k = 0 and k = n. They are not interesting from the point of
view of comparing subsets, so the lack of values for IC(A,B) in these cases is not
important. Finally, IC(A,B) will assume values close to zero for independently
drawn A and B.

The hypothesis will be supported if the consistency index for the results from
the Hungarian algorithm is higher than the indices for the rival methods.

3 Experiments

The purpose of this experiment is rather a proof of concept than comparison
of possible alternatives. Both the Hungarian and the greedy algorithms were
applied with criterion (5).2

Suitable data sets for the who-is-missing problem should have a large number
of classes.

3.1 Letter Data Set

We chose the Letter data set from the UCI Machine Learning Repository [5].
The number of classes is 26 (letters from the Latin alphabet), and the number
of objects is 20,000. The experimental protocol was as follows.

1. The data set was first standardised, and subsequently divided into a training
part (the first 10,000 objects) and a testing part (the latter 10,000 objects).

2. A linear discriminant classifier was trained on the training part.3 This classi-
fier was chosen on purpose so that there is sufficient scope for improvement.
Both the training and the testing errors are approximately 30%.

3. A level of noise η was chosen from the set {0.0, 0.1, 0.2, . . . , 0.8}. Gaussian
noise with mean zero and standard deviation η was added independently to
each value in the testing data set. The perturbed testing data was classi-
fied using the classifier trained on the original training data. The posterior
probabilities for all objects were stored.

4. The number of present classes k was chosen from the set {2, 3, . . . , 25}.
2 Since the logarithm is a monotonic transformation, the greedy algorithm would give
exactly the same result if applied straight on the posterior probabilities.

3 We used the classify function from the Statistics Toolbox of MATLAB.
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5. 1000 runs were carried out with the chosen η and k. In each run, a random
subset of k classes was sampled. One object was picked randomly from each
of the present classes. The posterior probabilities for the selected objects
(given by the classifier in Step 3) were retrieved and collated in matrix
P̂ . The matrix was augmented to 26 × 26 by adding 26 − k dummy rows
with values 1

26 . The Hungarian and the Greedy algorithms were applied and
the respective sets of missing classes (assigned to the dummy rows) were
recorded. Let HM be the set of missing classes according to the Hungarian
algorithm, GM , for the Greedy algorithm, and TM be the TRUE set of
missing classes. We applied the original classifier assuming iid data. Let CM
be the set of non-assigned classes. The respective values of the consistency
index were calculated as

IHungarian(k, η) = IC(TM,HM), IGreedy(k, η) = IC(TM,GM)

and

IClassifier(k, η) =

{
IC(TM,CM), if |CM | = |TM |,
0, otherwise.

The values of the consistency indices, averaged across the 1000 runs, for noise
levels η = 0 and η = 0.8, are shown in Figure 1. The graphs for the remaining
noise levels followed similar patterns. Plotted are also error bars spanning the
95% confidence intervals calculated from the 1000 values of the respective run.

The upward trend of the curves can be explained with the following argument.
When only a few objects are missing, their correct labelling depends on the
correct labelling of all the remaining objects. The scope for error is high. On
the other hand, when only a few classes are present, there is less room for error
in classifying all these objects correctly. Finally, when there is only one object
present (c− 1 absent), all methods converge to the original classifier.

 

 

(a) No noise (b) Noise 0.8

Fig. 1. Consistency indices for the sets of missing classes using the three algorithms
on the Letter data set. The error bars indicate the 95% confidence intervals.
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Clearly, the classifier alone is a poor choice according to the chosen measure.
The Hungarian and the Greedy algorithms behave similarly but the Hungarian
algorithm had an edge, giving support to our hypothesis. To demonstrate this
finding, Figure 2 shows the results from a statistical test between the results of
the two methods. We carried out a paired, two-sided test of the hypothesis that
the difference between the matched 1000 samples of consistency indices comes
from a distribution whose median is zero (Wilcoxon signed rank test). We chose
to show the results as a heat map. The grey level intensity corresponds to the p-
value. White indicates p = 1 and black, p = 0. Each square is the result from one
comparison across the 1000 iterations for the respective number of missing classes
c−k and noise level η. The comparisons where there was significant difference at
α = 0.5 are marked with dots. As the Hungarian method was always superior or
equivalent to the Greedy method, the dots mark the combinations of parameters
where the Hungarian method wins.

As expected, larger noise level showcase the proposed method. This is shown
by the larger number of dots in the top rows. For noise-free data (bottom row),
the algorithms tie for a smaller number of missing classes. For large number of
missing classes (rightmost column), the algorithms are similar.

Fig. 2. Heat map of the p-value of the Wilcoxon signed rank test for equal medians
of the consistency indices for the Hungarian and the Greedy algorithms. Dots signify
statistically significant difference at α = 0.05.

3.2 Who-Is-Missing: Objects in an Image

To illustrate the proposed solution in a real-life scenario, we took images of
a set of 22 parts from a LEGO Mindstorms NXT kit (Figure 3). Each of the
28 images contained all 22 LEGO parts. After segmentation, 706 objects were
detected, labelled, and saved as the training data. Five position-invariant and
rotation-invariant features were extracted: eccentricity, solidity,4, and the RGB
colour of the object.

Each feature was standardised to mean 0 and standard deviation 1. To eval-
uate the potential of the data set, we applied Principal Component Analysis
(PCA) to the data set and plotted the 23 classes in the space of the first two

4 The regionprops MATLAB function was used.
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(a) (b)

Fig. 3. (a) An image with all 22 LEGO pieces; (b) types of LEGO pieces with their
class labels. Class 1 corresponds to “other”.

principal components (Figure 4). The plot indicates that the classes are highly
overlapping, which will prevent the a classifier of iid objects from achieving a
high consistency for the who-is-missing problem.

Next we ran 10-fold cross-validation experiments with a small selection of
classifiers from WEKA [8], using the default parameter settings. The classifica-
tion accuracy ranged from 16.28% for AdaBoost.M1 [6] to 82.72% for Rotation
Forest [17], revealing that the data set is not too easy and, at the same time, high
classification accuracy is possible. This suits our purposes, as an ideal classifier
will not need an assignment algorithm to solve the who-is-missing problem.

We trained and tested the nearest mean classifier for the set, obtaining a
rather mediocre testing classification accuracy of 38.63%.

A new set of 100 images was collected, 25 with two random missing class,
25 with three random missing classes, 25 with four missing classes and the last
25 with five missing classes. Each image was segmented and the features of the
objects were extracted. To eliminate the effect of inaccurate segmentation on the
comparison of the Hungarian and the greedy algorithms, we accepted for this
analysis only images where the number of segmented objects tied with the true
number of non-missing classes. The averaged consistency indices for the different
number of classes are shown in Table 2.

Table 2. Average values of the consistency indices for the LEGO data and the p-value
of the Wilcoxon signed rank test

Number of missing classes
2 3 4 5 Mean p-value

# images 15 22 10 11

IHungarian 0.2667 0.3333 0.1444 0.2706 0.2716 0.0452
IGreedy 0.1200 0.2632 0.1750 0.1529 0.1900
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Fig. 4. A scatterplot of the 23 classes in the space of the first two principal components
of the training data

While the recognition of the missing classes has not been very accurate, the
results with the Hungarian Algorithm are markedly better for 2, 3 and 5 classes.
We ran the Wilcoxon signed rank test for the zero median of the pairwise dif-
ferences of the two consistency indices for all numbers of missing classes. The
p-value, also shown in the table, indicates that the Hungarian algorithm out-
performs significantly (α = 0.5) the greedy algorithm for the who-is-missing
problem.

4 Conclusions

This study formulates the who-is-missing problem and proposes a solution, com-
pleted with a measure of its quality. The Hungarian assignment algorithm, ap-
plied on the logarithms of the posterior probabilities of the objects in the set was
found to dominate the intuitive alternative, called here the Greedy algorithm.

Many extensions and variants of the who-is-missing problem are yet to be
formulated, for example, recognising one or more impostors in the given set,
dealing with known, larger than 1, numbers of objects from each class classes,
taking into the solution possible dependencies between the classes. Last but not
least, important application niches for these new pattern recognition puzzles are
yet to be discovered.
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