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Abstract. In this paper we present a framework to unify information
theoretic feature selection criteria for multi-label data. Our framework
combines two different ideas; expressing multi-label decomposition meth-
ods as composite likelihoods and then showing how feature selection cri-
teria can be derived by maximizing these likelihood expressions. Many
existing criteria, until now proposed as heuristics, can be reproduced
from a single basis under the proposed framework. Furthermore we can
derive new problem-specific criteria by making different independence as-
sumptions over the feature and label spaces. One such derived criterion
is shown experimentally to outperform other approaches proposed in the
literature on real-world datasets.

1 Introduction

The problem of learning from multi-label data becomes increasingly interest-
ing because of the large number of applications in many different areas [15]. In
computer vision [2], multi-label data are used in automated image and video
annotation, in situations where images can be associated with a number of se-
mantic concepts. In bioinformatics [5], multi-label learning is used in functional
genomics, where a gene or protein is associated with multiple functional labels,
as an individual gene or protein usually performs a number of functions. In text
mining [8], multi-label data are used in text categorization, as a news webpage
can be associated with more than one category.

All of these areas have a common characteristic, a large number of features.
High dimensional feature spaces are associated with a number of problems, such
as over-fitting to irrelevant features and high computational complexity. The
features can be divided in three categories: features that are ‘relevant’ to our task,
features that are ‘irrelevant’ and features that are ‘redundant’ in the context of
other features. The objective of feature selection is to find a minimal subset of
features that provide us with maximal useful information about the data. In our
work we focus on filter methods for feature selection, which operate under the
assumption that the prediction and feature selection steps are independent [7].

More particularly the present work focuses on information theoretic feature
selection techniques in multi-label datasets, a problem that has recently received
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a lot of attention [4,10,9]. The starting point of our work is a recently proposed
framework for single label data by Brown et al. [3], which shows that many exist-
ing criteria can be seen as iterative maximizers of a common objective function:
the conditional likelihood of the true label given the selected features. We ex-
tend this work by incorporating the idea of expressing multi-label decomposition
methods via composite likelihood, as presented by Zhang & Schneider [16]; we
show that this leads naturally to the derivation of different feature selection cri-
teria appropriate for multi-label data. By introducing this framework we provide
insights into multi-label feature selection.

There are two main contributions in our work. First, we provide a theoreti-
cal foundation that unifies various multi-label criteria proposed in the literature
by maximizing full and composite likelihood expressions that describe different
independence assumptions over the feature and label spaces (Sections 3-4). Sec-
ond, we derive and evaluate new multi-label criteria which we compare with the
state-of-the-art in real-world datasets (Section 5).

2 Reviewing Likelihood Maximization Framework

In this section we review the single-label feature selection framework presented
by Brown et al. [3]. We assume that we have an underlying independent and
identically distributed (i.i.d.) process p : X — ), and N samples of this process
are observed. The observations are pairs {x,y*} |, where the features are d-
dimensional vectors x* = [z}...z%]. The features are drawn from the random
variables X7, ..., X4, with their joint distribution being X = X; X5... X4 and the
labels are drawn from the random variable Y. Following Brown et al. [3], in
the feature selection procedure we define 6 to be a d-dimensional binary vector,
where the elements have a value of 1 if the feature is selected and 0 otherwise.
Furthermore xg is the vector of the chosen and x; the vector of the unchosen
features. We assume that the process p can be defined by a subset of features
and so for an optimal vector 8* we have p(y|x) = p(y|xe-), in other words
the unselected features x;. are irrelevant or redundant given the selected ones.
We approximate the process p using a hypothetical predictive model f. This
model has two layers of parameters: 6, corresponding to the selected features,
and 7, corresponding to the parameters used in the learning procedure in order
to predict y. So the problem can be defined as searching for a minimal subset of
features, whilst maximizing the conditional likelihood of the training labels. For
single-label data the conditional likelihood (£) and the log-likelihood (¢) have
the form:

N N
o 1 o
L0 miylx) = [T £ b ) & 00, msyix) = > log f(y'lxh 7).
1=1

i=1

Brown et al. [3] showed that this likelihood decomposes as so:

. p(ylxe)
lim —(=F 1 1(X;Y|X H(Y|X).
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From the above three terms, the first describes how well the model f approxi-
mates p given the selected features, the second term depends on the choice of
the selected features, while the third term is an irreducible constant which forms
a bound on the Bayes error rate. More details regarding this decomposition can
be found in Brown et al. [3]. The main assumption of filter methods is that
the classification and the feature selection steps are independent [7]. Under this
assumption and ignoring the constant term, the value of 6 that maximizes the
conditional likelihood is the same as the value of f that minimizes the conditional
mutual information

arg max L£(6; y|x) = argmin I(X; Y[ Xy). (1)
0 0

As we see in Brown et al. [3] a greedy optimization process to minimize the
conditional mutual information in eq. (1) will select a feature X}, that maximizes
the following scoring function

JCMI(Xk) = I(Xk,Y|X9) with X € Xé‘, (2)

where the subscript CMI stands for Conditional Mutual Information.

Since Xy is high-dimensional, the estimates of the mutual information become
less reliable as we increase the number of selected features; this can lead to poorly
selected subsets. For that reason there have been proposed in the literature low-
dimensional approximations of this conditional mutual information, such as the
Mutual Information Mazimization (MIM) [1] and the Joint Mutual Information

mazximization (JMI) [12]. The respective criteria are given by
[ Xol
Inrm (Xi) = 1( X3 Y), Jonr(Xi) = 32 1(Xo, Xi;Y),

Jj=1
where we used the notation Xy, V j € {0,...,|Xp|} to represent the jth fea-
ture already selected, while | Xjy| is the number of selected features so far. As
we can see the MIM criterion selects the features independently and so it has
the ability to observe relevant features, but not to detect redundant ones. On
the other hand the JMI also controls the redundancy of the selected features,
as it examines the joint random variable Xy X3. Brown et al. [3] present the
assumptions made by each approximation, and derive these criteria from first
principles by incorporating the assumptions in eq. (2). Furthermore they show
in a large empirical study that assuming independence in the feature space (i.e.
with JMI/MIM) has major benefits over the full dependence case of CMI In
the following section we will extend the above framework to multi-label data,
exploring independence assumptions in the label space.

3 Extending the Framework to Multi-label Data

The key difference between single and multi-label classification is that in binary
single-label classification, for example, the label space ) is {0, 1}, while in multi-
label classification the space ) is {0, 1}9 where ¢ represents the number of labels.



146 K. Sechidis, N. Nikolaou, and G. Brown

The labeling of the i-th instance is a ¢-dimensional binary vector y* = [y ... y}],
with y; = 1 if the example ¢ is positive to the label [ and yj = 0 if it is nega-
tive. The labels are drawn from the random variables Y7, ..., Y, with their joint
distribution denoted Y7.q.

3.1 Label-Powerset Transformation

When learning from multi-label data, the most general approach is to not as-
sume any label independencies [15]. This transforms the multi-label problem
into a multi-class single label one by combining each different label set into a
different “meta-class”. This approach is known as the Label Powerset (LP) trans-
formation, and the maximum number of classes is 2¢. Figure 1 represents the
probabilistic graphical model for LP transformation, according to the framework
presented in Section 2.

The framework presented in Sec- 9
tion 2 can be extended to multi-label
data just by substituting the single la-
bel output variable Y with the multi-
label joint random variable Yi.,. By
making this substitution we arrive at <— T
the following multi-label filter:

LP .
Jonr(Xe) = I(Xp; Yig| Xo).  (3) Fig. 1. Label-powerset transformation
The superscript LP denotes the assumption over the label space (i.e. none) and
the subscript CMI stands for the assumptions over the feature space (i.e. also
in this case, none). Using the chain rule of mutual information I(XyXg; Y1.4) =
I(Xg; Y1.q) + I(Xk; Y1.4| Xg) we rewrite the CMI criterion as

Xy = argmax I(Xy; Y1.4|Xg) = argmax I (X, Xg; Y1.¢),
XkGXG" XkGXG"

which is ezactly the multi-label criterion heuristically proposed by Doquire &
Verleysen [4]. In our work we derived this criterion by maximising an explicit
objective function: the conditional likelihood of the training labels under the
probabilistic model presented in Figure 1.

3.2 Binary-Relevance Transformation

The number of distinct label combinations is 29, increasing exponentially with
the number of labels. Thus we need a large amount of data to have reliable
estimates for the probabilities under the LP transformation. There have been
proposed various transformation approaches to deal with this problem, a detailed
exposition of these can be found in Zhang & Zhou [15]. The simplest transfor-
mation is to ignore any dependencies between the labels and predict each label
independently, this method is known as Binary Relevance (BR) or one-vs-all
transformation. The graphical model for the BR transformation can be seen in
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Figure 2. The conditional likelihood for this model, which has been given in
Zhang & Schneider [16] in the context of composite likelihood, has the form

fWilxg, 7).

=
::Q

Lpr(0,7;ylx) =
1

% 1

By maximising this likelihood and fol-
lowing the same procedure as in Sec-
tion 2 we can derive the following

multi-label criterion @ @ - @

q
JEN (X)) =T (Xx:Yi|Xp). (4) - ™ .
=1

Again, the superscript BR represents Fig. 2. Binary-relevance transformation
the assumption of the conditionally

independent labels, while the subscript represents the assumptions made in the
feature space. This can be seen as the BR version of eq. (3); to the best of our
knowledge this is the first time this has been proposed in the literature.

At this point, we can observe two types of assumption behind different criteria
— in the feature space, and in the label space. Table 1 represents the different
types of assumption we explore in this work. From now on we will follow this
notation to describe the criteria.

Table 1. Choices in the design of multi-label feature selection criteria

Feature space independence assumptions

Label space CMI (none) JMI (partial) MIM (full)

ind 4 Label Powerset (none) Jy imone JY; bartial Jy ipene
ndependence . Y:full Y:full Y:full

. Blnary Relevance (full) JX none JX :partial JX full
assumptions

In the following section we will make no assumptions on feature space, and ex-
plore the effect of label space assumptions. We will thus compare the criteria

described by egs. (3) and (4), in our new notation Jynom¢ and JyMull respec-
tively.

3.3 Empirical Comparison of the Assumptions in the Label Space

The experiments are performed on real-world multi-label datasets — yeast [5]
and scene [2], taken from two characteristic applications for multi-label data:
biology and computer vision, respectively. These two datasets are used by both
Doquire & Verleysen [4] and Lee & Kim [9] to evaluate their criteria, with which
we compare our own in Section 5. Table 2 summarises some characteristics of
these datasets. In order to compare the different feature selection techniques we
use a nearest neighbor multi-label classifier, ML-kNN with k& = 7 as suggested
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Table 2. Characteristics of the datasets

Name  Application  Examples Features Labels Distinct labelsets
Scene Computer Vision 2407 294 6 15
Yeast Bioinformatics 2417 103 14 198

in Zhang & Zhou [14]. We chose a k-nearest neighbor classifier, since it makes
few assumptions and it does not perform implicitly any sort of feature selection,
as all the features have the same weight. We evaluate our techniques using two
different loss functions: hamming loss and ranking loss [15]. Since in multi-label
classification the evaluation is a complex task, we chose these two representative
measures. We perform 30 random splits of the data into 50% training and 50%
testing, reporting averages and 95% confidence intervals. The training data was
used for selecting features and training the ML-kNN classifier, while the testing
for measuring the performance of the different approaches. To estimate the mu-
tual information we use maximum likelihood estimates, discretising continuous
features into 5 bins using an equal width strategy.

In Figure 3 we compare criteria derived from different label space assumptions,
making no assumptions in the feature space. The goal is to investigate the effect
that the independence assumptions made on the label space have on the quality
of the selected feature subset. As we can see the BR version (J¥:Iu) very
marginally outperforms the LP version (J{2o0¢) for yeast dataset. This reflects
that for yeast, a dataset with large number of distinct labelsets, the benefits of
the conditional independence assumption regarding the labels (better probability
estimates) outweigh its drawbacks (ignoring inter-label interactions). The effect
is slightly more pronounced in the case of ranking loss. Naturally, the difference
in performance decreases as we increase the number of selected features. We omit
the figures for the scene dataset since both approaches have similar performance,
and there is no statistically significant difference between the two criteria. Thus
in both datasets, the quality of the selected feature subset is not significantly
affected by the different independence assumptions in the label space. Since by
increasing the number of selected features Xy the estimates of the conditional
mutual information in eq. (3) and (4) degrade, it will be interesting to explore
how feature space independence assumptions help the situation.

Yeast Yeast

Y:full \Y:none
JX none JX none

45 70 5
Number of features selected Number of features selected

(a) Hamming loss (b) Ranking loss

Fig. 3. Comparing criteria derived from different label space assumptions and making
no feature space assumption. Y:none indicates the LP transformation, while Y:full
indicates the BR transformation.
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4 Criteria under Different Feature Space Assumptions

The previous section investigated independence assumptions in the label space.
In this section we will explore assumptions on the feature space. While in Section
2 we reviewed the CMI, JMI and MIM criteria in the context of single label
data, in the current section we will present how the approximate criteria MIM
and JMI are converted in the multi-label context.

4.1 MIM and JMI Criteria under LP Transformation
Under the LP transformation, and following a similar procedure to that of Sec-

tion 2, eq. (3) can be approximated by the lower-order criteria

[ Xol
TGRS (X0) = T (XkiYag), (5)  JXpaifa (Xa) = D1 (X5 Xo,: Y1) (6)
j=1
The Jy; ‘more criterion has been proposed heuristically by Spoladr et al. [10].

4.2 MIM and JMI Criteria under BR Transformation

Under the BR transformation and following the framework presented in Section
2, eq. (4) can be approximated by the lower-order criteria

q [Xol ¢
Tttt (Xn) = D T (X Ya), () Iipata (Xk) = Y > 1 (XaXe,5Yi). (8)
=1 j=11=1

Clearly JYfL‘jllll, makes the most strict assumptions, full independence of both
features and labels. As such, this has been suggested heuristically in numerous
works [10,11,13]. Here we have shown that this can be derived as an approximate
maximizer of the composite likelihood of the model in Figure 2. However this is
the first time that JMI criteria, such as Jy. partial and Jgf;‘;lrltial, are introduced
in the multi-label setting.

4.3 Empirical Comparison of the Assumptions in the Feature Space

Figure 4 compares criteria derived from different feature space assumptions un-
der the same experimental setup we used in Section 3. This comparison was
performed under the BR transformation but the results under the LP transfor-
mation are similar. The goal now is to investigate which independence assump-
tion on the feature space gives the best feature selection results. We see that

the JM I criterion (J;(’ If)‘;lllml) outperforms the other two approaches as it con-

sistently achieves good performance for both datasets. On the yeast dataset the
JMI and MIM perform similarly, and we can draw the same conclusion as in
Doquire & Verleysen [4], i.e. that the relevant features are non-redundant in this
data. On the scene dataset JMI outperforms the other criteria for almost any
number of selected features in the cases of hamming loss, and for any number of
selected features for ranking loss.
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Yeast Scene
Y :full Yofull Y :full - Y :full Yofull Y :full
X:none Xcfull X:partial 0.16 X:none JX:fuII - X:partial

0.21F

0.14f
0.12
0.2F
0.1
i i L i i i i L mls s s .
10 20 45 70 103 10 40 90 140 190 240 294

Number of features selected Number of features selected

(a) Hamming loss

Yeast Scene
Y-full JY:fuII Y- full ) 0.25 Y :full JY:luII o Y :full )
X:none X:full X:partial X:none Xcfull X:partial

019 Y 1 Ty 0.2}

o018l A o

0.1r

10 20 45 70 103 10 40 90 140 190 240 294
Number of features selected Number of features selected

(b) Ranking loss

Fig. 4. Comparing criteria derived from different feature space assumptions and assum-
ing full independence in the label space. X:none indicates the C'M I criterion, X:partial
the JMI and X:full the MIM.

5 Summary and Connections to Literature

In Section 3.3 we examined the effect of the label space assumptions on the
feature selection process and found that BR has a marginal advantage over LP.
In Section 4.3 we investigated the effect of the feature space assumptions and
observed an advantage of JMI over CMI and to a lesser extent over MIM. In this
section we connect our work with the literature, and we compare the criterion
with the best performance under our analysis, with the state-of-the-art in multi-
label feature selection.

5.1 Connections with the Literature

Yang & Pedersen [13] introduced the first multi-label feature selection criteria
which can be classified as the Jy 4l of our analysis. Trohidis et al. [11] present a
comparison between the J;{:’ff“;llll and J;{:’f‘}ﬁ{le criteria, but using x2-statistic instead
of mutual information, while recently these criteria were re-introduced under the
problem transformation approach [10]. Doquire & Verleysen [4] proposed J5 :none,
In order to produce better estimates they use a nearest neighbor mutual infor-
mation estimator and they apply the pruned problem transformation technique,
under which the rare label combinations are discarded, and as a consequence this
leads to some loss of information. Finally, Lee & Kim [9] propose the use of mul-

tivariate mutual information for selecting features in a criterion without applying
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Yeast Scene

0.14¢
[ Y :full " .
——Jy l:’a“mal —&— Doquire & Verleysen [4] —&— Lee & Kim [8] —— Jxipartiar — = Doquire & Verleysen [4] —&— Lee & Kim [8]

0.22f 0.13F¥

012}
0.21F
0.1}

0.2 0.1+

i i i i 0.09 i i i i L ey
10 20 45 70 103 10 40 90 140 190 240 294
Number of features selected Number of features selected
(a) Hamming loss
Yeast Scene
el , . 0181 el
0.2} | =9 Yiparia —5— Doaquire & Verleysen [4] —— Lee & Kim [8] ‘ ‘ —— i parial —— Doquire & Verleysen [4] —&— Lee & Kim [8]
0.16 :
0.14
0.12F
0.1F
i i i i 0.08 i i i i i i
10 20 45 70 103 10 40 90 140 190 240 294
Number of features selected Number of features selected

(b) Ranking loss

JY:full

X:partial CTiterion with criteria proposed in the literature

Fig. 5. Comparing the

any transformation, but since this method is computationally inefficient they pro-
pose an approximate solution which involves only three variables.

5.2 Comparison to the State-of-the-Art

We compare J%jé‘;iltial, the criterion with the best performance under our anal-
ysis, with two different criteria proposed recently in the literature: the pruned
transformation criterion proposed by Doquire & Verleysen [4] (we prune rare
examples using thresholds given in that work) and the multi-variate mutual in-
formation criterion proposed by Lee & Kim [9]. As we can see in Figure 5 the
proposed criterion J%’jé‘;iltial consistently performs well across the different num-
ber of selected features and the different datasets. On the yeast dataset it has
the best performance for both loss functions and all numbers of selected features.
On the scene dataset it outperforms the other techniques in all areas apart from
10-130 selected features under hamming loss. However, in terms of ranking loss
it continuously outperforms the other criteria.

6 Conclusions

We have provided a theoretical justification for multi-label feature selection crite-
ria. Our framework introduces the idea of mazximizing the conditional composite
likelihood expression for multi-label decompositions. Different assumptions lead
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naturally to different filters, some of which have been heuristically proposed in
the literature, while others are novel. In our experiments we explored how differ-
ent assumptions of feature/label space compare. The best trade-off appears to be
assuming partial independence in feature space, and full independence in label
space. Our observation regarding the label space assumptions agrees with recent
empirical results in the context of wrapper feature selection [6]. The correspond-
ing filter we propose is shown to outperform the state-of-the-art approaches on
real-world datasets. Finally, under this framework we can incorporate assump-
tions that explicitly encode domain knowledge, leading to filters specialised for
particular problems.
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