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Abstract. The Bayesian a posterior probability is a very important el-
ement in pattern recognition. In classification problems, the posterior
probabilities reflect the uncertainty of assessing an example to particu-
lar class. Such residual information will be useful for more deep under-
standing or analysis of examples. In this paper, we propose a nonlinear
discriminant analysis based on the probabilistic estimation of the Gaus-
sian mixture model (GMM). We use GMM to estimate the Bayesian a
posterior probabilities of any classification problems. Then we use poste-
rior probabilities estimated by GMM to construct discriminative kernel
function. The performance of the proposed kernel function is confirmed
by several experiments using UCI machine learning repository.
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1 Introduction

The Bayesian a posterior probability is a very important element in pattern
recognition. The task that classifies unknown example  can be interpreted as
the maximization procedure to the posterior probability P(Cj|x) which implies
the probability that x belongs to the k—th class Cj. Furthermore, in classifi-
cation problems, the posterior probabilities reflect the uncertainty of assessing
an example x to the class C. Such residual information will be useful for more
deep understanding or analysis of examples.

There are many ways to estimate the Bayesian a posterior probabilities. Naive
Bayes [16] is one of the most simple probabilistic classifier. Logistic regression
is a generalized linear model and it has saturated outputs which is suitable to
represent probabilities [2]. Several classifiers can also perform the estimation of
the posterior probability simultaneously with the classification task. Wu et al.
proposed how to presume the posterior probability from the output of SVM
[15]. The one of the most efficient methods to estimate the Bayesian a posterior
probabilities P(Ck|z) is to assume the probability densities of each class as
multivariate Gaussian distribution. To treat multi-modal distributions, Gaussian
mixture model is widely used many real application [3,17].
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Fisher’s Linear discriminant analysis (FLDA) [4] is one of the well known
methods to extract the best discriminating features for multi-class classification.
FLDA is useful for linear separable cases, but for more complicated cases, it is
necessary to extend it to nonlinear.

As one of the nonlinear extensions of FLDA, kernel discriminant analysis
(KFDA) has been successfully applied in many applications [9,1]. The polynomial
kernel, sigmoidal kernel or radial basis function (RBF) are popular and widely
used. However these functions are defined a priori and selected without the clear
reason. Also these functions are general and not related to probabilistic inference.

In recent years, discriminant kernel function (DKF) which is based on the
Bayesian a posterior probability estimation is proposed [8]. This kernel is derived
from the theory of optimum nonlinear discriminant analysis (ONDA) [11,12].
Since ONDA gives the optimum nonlinear mapping that maximizes the Fisher’s
discriminant criterion [4], the DKF derived from ONDA is also optimum in terms
of the discriminant criterion. The DKF is defined by explicitly using the Bayesian
a posterior probability P(Ck|x). Similar with the Bayesian decision theory, we
have to presume P(Cy|x) by a certain estimation method to use DKF for real
application.

In this paper, we propose a nonlinear discriminant analysis based on the prob-
abilistic estimation of the Gaussian mixture model. We use GMM to estimate
the Bayesian a posterior probabilities P(Cy|x) of any classification problems.
Then we use P(Cy|xz) estimated by GMM to construct discriminative kernel
function which is optimal in terms of the Fisher’s discriminant criterion. We call
this Gaussian mixture (GM) kernel.

We investigate the performance of the proposed GM kernel by several experi-
ments using UCI machine learning repository [5]. We compare the discriminative
power of the discriminant spaces which are constructed from the proposed kernel
and usual kernels. The visualization experiments for the discriminant spaces or
kernel matrices show some good properties of our discriminant kernels.

The rest of this paper is organized as follows: Section 2 reviews FLDA, KFDA
and discriminant kernels. Section 3 reviews Gaussian mixture model. Section 3.2
describes our proposed Gaussian mixture kernel. The experiments are described
in Section 4. Finally, Section 5 concludes the paper.

2 Discriminant Analysis

2.1 Fisher’s Linear Discriminant

Fisher’s linear discriminant analysis (FLDA) [4] is one of the well known methods
to extract the best discriminating features for multi-class classification. FLDA
is formulated as a problem to find an optimum linear mapping by which the
within-class scatter in the mapped discriminant feature space is made as small
as possible relative to the between-class scatter.

Let an m dimensional feature vector be © = (x1,...,7,,)T. Consider K
classes denoted by {C1, ..., Ck}. Assume that we have n feature vectors {x;|i =
1,...,n} as training samples and they are labeled as one of the K classes. Then
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FLDA constructs a dimension reducing linear mapping from the input feature
vector & to a new feature vector y as

y=A"(z - 2r) (1)

where A = [a;;] is the coefficient matrix.
The discriminant criterion

J=tr (§@123> (2)

is used to evaluate the performance of the discrimination of the new feature
vectors y, where Sw and Yp are respectively the within-class covariance ma-
trix and the between-class covariance matrix of the new feature vectors y. The
objective of FLDA is to maximize the discriminant criterion J.

The optimal coefficient matrix A is then obtained by solving the following
generalized eigenvalue problem

YpA=YwAA (ATDwA=1) (3)

where A = diag (\1,...,Ar) is a diagonal matrix of eigen values and I denotes
the unit matrix. The matrices Xy and Xp are respectively the within-class
covariance matrix and the between-class covariance matrix of the input feature
vectors @, and they are computed as

K

Sw =Y P(Cy)Zy (4)
k=1

2= ! Z (xi — zp) (x; — 27)* (5)
Mk =Ch
K

Y= Z P(Cy)(Zk — 27) (2K — 27)7, (6)
k=1

where ng, P(Ck), T, and &7 denote the number of training samples of the class
C, a priori probability of the class C}, the mean vector of the class C) and the
total mean vector, respectively. Usually we compute the probability of the class
Ck as P(Ck) = nnk.

The j-th column of A is the eigenvector corresponding to the j-th largest
eigenvalue. Therefore, the importance of each element of the new feature vector y
is evaluated by the corresponding eigenvalues. The dimension of the new feature
vector y is bounded by min(K — 1,n) because the rank of the matrix Xp is
bounded by min(K — 1,n).

2.2 Kernel Discriminant Analysis

FLDA is useful for linear separable cases, but for more complicated cases, it is
necessary to extend it to nonlinear. Kernel discriminant analysis (KFDA) [1,9] is
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one of the nonlinear extensions of FLDA and constructs a nonlinear discriminant
mapping as a linear combination of kernel functions.

Consider a nonlinear mapping @ from a input feature vector & to the new
feature vector @(x). In KFDA the discriminant features y are constructed as a
linear combinations of the new feature ®(x).

The discriminant mapping can be given as

y(x) = UTP(x). (7)

Similar with the case of the kernel PCA, the coefficient matrix U can be expressed
as a linear combinations of the training samples as

n
U=> &@;)a], (8)
j=1
the discriminant mapping can be rewritten as
y(a) =Y a;d(z;) B(a) =Y a;K(z;, ) = ATk(), (9)
j=1 j=1

where K(x;,z) = &(x;)T®(x) and k(z) = (K(z1,x),...,K(x,,x)) are the
kernel function defined by the nonlinear mapping @(x) and the empirical kernel
vector, respectively.

Then the discriminant criterion is given as

J=tr (2;1,123) , (10)

where Yy and Yp are the within-class covariance matrix and the between-class
covariance matrix of the new feature vectors y(x), respectively.
The polynomial functions

K(z,y) = (z"y + 1)1 (11)

or the Radial Basis functions

e = (181 a2

202

are often used as the kernel function for KFDA.

2.3 Discriminant Kernel Functions

In the KFDA, usually the kernel functions are defined a priori and selected
without the clear reason. Also such kernel functions are general and not related
to the probabilistic inference.
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Recently, Kurita proposed the discriminant kernel function (DKF) which is
based on the Bayesian a posterior probability estimation [8]. This kernel function
is defined as x
3 P(Cy|x)P(Cly)

P(C)

where P(Cy|x) is the Bayesian a posterior probability which is presumed by a
certain estimation method, and P(C}) is the prior of the k-th class Cy.

The Eq. (13) is derived from the theory of optimum nonlinear discriminant
analysis (ONDA) [11,12]. Since ONDA gives the optimum nonlinear mapping
that maximizes the discriminant criterion, DKF derived from ONDA is also
optimum in terms of the discriminant criterion.

As shown in Eq. (13), DKF is defined by using the Bayesian a posterior prob-
ability P(Cj|x). Similar with the Bayesian decision theory, we have to estimate
P(Cg|z) by a certain estimation method to use DKF for real application. Con-
versely, DKF can be used as one of the optimal way to construct kernel functions
maximizing the discriminant criterion from the Bayesian a posterior probability
estimation.

There are many ways to estimate the Bayesian a posterior probabilities. De-
pending on the estimation method, we can define the corresponding discriminant
kernel function. In this paper we propose discriminant kernel function based on
Gaussian mixture model (GMM).

K(z,y) = (13)

k=1

3 Gaussian Mixture Model

Multivariate Gaussian distribution is defined as

N(z;p, X) = (27r)m/12|21/2 exp { —;(w — )2 (x - p) } (14)

where m is a number of variables, g is a mean vector and X is a covariance
matrix.

Gaussian mixture model (GMM) is a linear combination of multiple Gaussian
distributions. In GMM, each elemental Gaussian distribution is called compo-
nent. GMM is formulated as

Zm (@ 1, Z;) (15)

where J is a number of components, p; and Y; is a mean vectors and a covariance
matrix of the j-th component respectively, and 7; is coefficient of the linear
combination.

The parameters p;, X; and 7; are usually estimated by Expectation Maxi-
mization (EM) algorithm [2].
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3.1 The Bayesian A Posterior Probability Estimation by GMM

To estimate the Bayesian a posterior probability P(Ck|x) by GMM, we define
the probability densitiy p(x|C}) of each class Cy as

:L‘|Ck Zﬂ-k]Nk] (16)

where Ny, j(x) represetns N (z; py, ;, Zk’j), the j-th Gaussian component for the
class C. Ji, is a number of components for the class Cy. The coeflicient 7, 5, the
mean vector py ; and the covariance matrix Xy ; are estimated by using given
samples  belongs to the class Cj.

Then the posterior probability can be written as

_ P(Cr)p(z|Cr) (Ck)zj 1 Tk, N, ()
P(Ck|513) - kp(w) ; - p(:L‘)

where

K K Jn
px) = P(Cp)p(x|Cr) = > P(Ck) > jiNij (). (18)
k=1 k=1

Jj=1

3.2 Gaussian Mixture Kernel

As described in Sec. 2.3, the estimation of the Bayesian a posterior probabil-
ity P(Ck|x) can be used to construct the kernel function which is optimum in
terms of the discriminant criterion. We obtain kernel function based on Gaussian
mixture model by substituting Eq. (17) for Eq. (13):

2’(: P(Cylx)P(Ckly) _ Y25y P(Chp(|Cr)p(y|Cr)
— P(Ck) p(x)p(y)

K
- P(Cr) S0 S0y ik j N (@) N 5 ()
p(x)p(y)
We call this the Gaussian mixture (GM) kernel.

The matrix K having the component k..., = Kgum(@m,xn) is regarded as
the kernel matrix of GM kernel. We can perform a novel nonlinear discriminant
analysis by applying FLDA to the matrix K. We call it GMM based kernel
discriminant analysis (GM KDA).

After several deformations, Eq. (19) can be rewritten as

J  Jk ) )
e 35 s M 0}

i=1 j=1

Kom(z,y) =

(19)

Kou(z,y) = p(x)p(y)

Tk,iTk,j (21)
)P/ | Dk il X 5]

My i(x) = (z — “k,i)TEl;;(w — My i) (22)

Qkij =
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Table 1. Specifications of data sets

data set  # of classes # of samples # of features

heart 2 270 13
breast cancer 2 683 10
australian 2 690 14
wine 3 178 13
vehicle 4 846 18
vowel 11 990 10

My i(x) represents the Mahalanobis distance between x and p, ;, the mean
vector of the i-th Gaussian component for the class Cy. Then the proposed
kernel function can be interpreted as the sum of exponential of negative averaged
Mahalanobis distances.

4 Experiments

The performance of our GMM based nonlinear discriminant analysis is evaluated
by using six standard data sets (heart, breast cancer, australian, wine,
vehicle and vowel) from UCI Machine Learning Repository [5]. Table 1 shows
the statistics of these data sets.

For classification experiments, each data set is divided into a training set (2/3
of all samples) and a test set (remaining samples) at random. A training and
testing task is repeated 10 times with different random seeds, and the averaged
classification rate for the test sets are shown in the following sections. For all
experiments, we used the class prior P(C)) = Ni/N where Ny, is the number of
samples in CY.

4.1 Evaluation of the Number of Components

Gaussian mixture model has the hyper-parameter J which implies the number
of Gaussian components. We confirm the relationship between the number of
components and classification accuracy. In this section we express the Gaussian
mixture model having J components as J-GMM.

For the dataset heart and vowel, five Gaussian mixture models (1-GMM to
5-GMM) are trained. Each model is used to make GM kernel, and these kernels
are used to do the GMM based discriminant analysis.

Tab. 2 shows the training and testing accuracy. Although the performances
to the training samples are improving with the number of components, the per-
formances to the test samples are not always increasing.

To avoid the over-fitting problem, we have to reduce the unnecessary compo-
nents. In this paper, we manually determine the appropriate number of compo-
nents based on the preliminary experiments. For all classes Cy, we use Jy, = 1 for
heart, breast cancer, australian, wine, vehicle and use J; = 3 for vowel.
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Table 2. Relationship between the number of components and classification accuracy

1-GMM 2-GMM 3-GMM 4-GMM 5-GMM
heart (train) 88.28% 90.11% 92.06% 93.50% 94.06%
heart (test) 81.56% 79.11% 77.22% 75.44% 76.00%
vowel (train) 94.11% 98.56% 99.26% 99.33% 99.38%
vowel (test) 85.67% 91.88% 94.18% 93.15% 94.03%

Table 3. Classification rates (and standard deviations) of 9-NN in discriminant spaces

Fisher’'s LDA  RBF KDA GM KDA (proposed)

heart  81.11% (1.57) 77.56% (8.84)  81.56% (3.02)
breastcancer 97.06% (1.48) 96.40% (1.79) 96.67% (1.51)
australian  85.48% (1.76) 84.87% (1.75) 85.74% (1.28)
wine  98.50% (1.46) 98.17% (2.00)  98.33% (1.76)
vehicle  76.95% (2.06) 84.49% (1.19)  82.45% (1.39)
(1.64) (1.94)  94.18% (1.97)
(1.66) (2.92) (1.82)

89.82%

vowel 75.52% (1.64) 97.03% (1.94 1.97

Average  85.77% (1.66) 89.75% (2.92 1.82

4.2 Visualization of Kernels

To compare the property of the proposed and the existing kernel functions, the
feature spaces or kernel matrices of the wine are illustrated in Fig. 1, 2.

Fig. 1 shows the PCA space of the original features or the discriminant spaces
of RBF or GM kernel. It shows a goodness of the proposed kernel. It is noticed that
samples of the GM kernel are distributing only on the triangle regions. Generally,
for K classes problems, the discriminant spaces of the proposed discriminant ker-
nel forms the K — 1 dimensional hyper-tetrahedron (simplex) which is expected to
be ideal. Since the GM kernel is defined by the Bayesian a posterior probabilities,
it easily gives a probabilistic interpretation such as how a sample is close to each
class. On the other hand, samples of the original features and the RBF kernel are
freely and widely distributing in the two dimensional plane.

Fig. 2 shows the visualization result for three types of kernel matrices. The
first one is linear kernel; it is constructed from just a inner product of the pair
of the original features. Others are the RBF or GM kernel. The color of the
i-th row and the j-th column shows the similarity between sample ¢ and j.
Since the samples are sorted in order of a class label beforehand, ideally, these
matrices should have a block diagonal structure. Such diagonal class structure
more clearly appears in the GM kernel than the Linear or the RBF kernel.

4.3 Comparison of Classification Accuracy

We compare the performances of the proposed GMM based discriminant anal-
ysis with usual Fisher’s Linear Discriminant Analysis (FLDA) and RBF Kernel
Discriminant Analysis (RBF KDA). For the classification method in their dis-
criminant spaces, k-nearest neighbor method is adopted. We use k = 9 for all
dataset and all discriminant spaces.
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Fig. 1. Sample distributions of wine data. The top row and the bottom row show the
training and test sets, respectively. (Left) PCA spaces of original features. (Center)
Discriminant spaces obtained from RBF kernel matrices. (Right) Discriminant spaces
obtained from GM kernel matrices.

Fig. 2. Visualized kernel matrices of wine data. The top row and the bottom row show
the results of training and test sets, respectively. (Left) Linear kernel (inner product)
of original features. (Center) RBF kernel matrices. (Right) GM kernel matrices.

The parameters of RBF KDA, i.e. the coefficient ¢ in Eq. (12), are deter-
mined by grid search and 10-fold cross validation. We search the best o from 31
candidates ¢ = 215,214 9713 ... 9t+l4 o+15

Table 3 shows the classification rates for test samples of the proposed and
existing methods. The proposed GMM based discriminant analysis has a better
performance about averaged accuracy for six datasets. RBF KDA and GM KDA
have almost comparable accuracy, but GM KDA shows good (smaller) averaged
variance.

5 Conclusion

In this paper we propose GMM based nonlinear discriminant analysis which
is formulated by the Bayesian a posterior probabilities estimated by Gaussian
mixture model. The GM kernel has comparable classification performance with
RBF kernel while GM kernel has more good stability (smaller variance).

In the experiment, we manually determined the hyper-parameter J which
is the number of individual Gaussian distributions. We shoud automatically
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determine J by using cross validation or several statistical validation methods
as the future work.
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