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Abstract. Abstract graph transformation approaches traditionally
consider graph structures as algebras over signatures where all function
symbols are unary.

Attributed graphs, with attributes taken from (term) algebras over
arbitrary signatures do not fit directly into this kind of transformation
approach, since algebras containing function symbols taking two or more
arguments do not allow component-wise construction of pushouts. We
show how shifting from the algebraic view to a coalgebraic view of graph
structures opens up additional flexibility, and enables treating term alge-
bras over arbitrary signatures in essentially the same way as unstructured
label sets. We integrate substitution into our coalgebra homomorphisms
by identifying a factoring over the term monad, and obtain a flexible
framework for graphs with symbolic attributes. This allows us to prove
that pushouts can be constructed for homomorphisms with unifiable sub-
stitution components.

We formalised the presented development in Agda, which crucially
aided the exploration of the complex interaction of the different functors,
and enables us to report all theorems as mechanically verified.

1 Introduction

In computer science, algebras are used in two different rôles:

– “Algebras providing datatype” are the concern in particular of the field of
algebraic specifications [EM85,BKL+91,BM04]: The carrier sets of an algebra
are datatypes, and the operations are available as some kind of executable
function. Frequently, the carrier sets are so large that one would not consider
to keep all their elements simultaneously available in some data structure.

– “Algebras as data” are most obviously the topic of the algebraic approach to
graph transformation [CMR+97,EHK+97,EEPT06] which derives its name
from the fact that it considers graphs as algebras.

In attributed graphs, the two views come together: An attributed graph is first
of all a graph, that is an algebra that is considered in its whole as a piece of
data, but (some of) its items may be assigned attributes which are elements of
some datatypes provided by an attribute algebra, which is normally not con-
sidered in its whole as a piece of data. Although an attributed graph can be
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considered as a single algebra, implementation considerations alone already dic-
tate a separation into a graph structure part and an attribution part. As far
as attributed graphs are to be transformed via the algebraic approach to graph
transformation, theoretical reasons contribute to this separation: for graph struc-
tures, considered as unary algebras, the pushouts of their homomorphisms can
be calculated component-wise and independent of the presence of operations
between the different sorts, while in the presence of non-unary operations, this
is no longer the case. With more-than-unary operations, even a pushout of finite
algebras can become infinite, so that calculations of these pushouts is in gen-
eral not feasible. There is also typically little motivation to consider non-trivial
pushouts of attribute algebras, since most transformation concepts for attributed
graphs expect the transformation results to be attributed over the same attribute
datatypes. An exception to this consideration are symbolic attributes, which can
easily be drawn from term algebras over different variable sets during different
stages of transformation.

In the context of the algebraic approach to graph transformation, graph struc-
tures have traditionally been presented as unary algebras [Löw90,CMR+97].
However, as such they are the intersection between algebras and coalgebras, and
in this paper we show how more general coalgebras are useful in modelling graph
features, in particular symbolic attribution. Therefore, we define our graph struc-
tures not via algebraic signatures, but via coalgebraic signatures, and integrate
label types and term type constructors for attributes into the coalgebraic result
types.

For example, the following is a signature for directed hypergraphs where each
hyperedge has a sequence of source nodes and a sequence of target nodes, and
each node is labelled with an element of the constant set L:

sigDHG := 〈 sorts: N, E

ops: src : E→ List N

trg : E→ List N

nlab : N→L

〉

While constant sets like L are perfectly standard as results in coalgebras,
modelling labelled graphs as algebras always has to employ the trick of declar-
ing the label sets as additional sorts, and then consider the subcategory that
has algebras with a fixed choice for these label sets, and morphisms that map
them only with the identity. Similarly, list-valued source and target functions
are frequently considered for algebraic graph transformation, but with ad-hoc
definitions for morphisms and custom proofs of their properties.

In contrast, declaring these features via a coalgebra signature such as sigDHG
makes the generic theory of coalgebras available, which immediately produces
the standard homomorphism definition for directed hypergraphs considered as
sigDHG structures, without any necessity for ad-hoc treatment of the label type
or the list structure.
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Even more interesting is the use of coalgebras for symbolically attributed
graphs, where morphisms are required to also contain substitutions for attribute
variables; the main contribution of this paper is to formulate the beginnings of
a coalgebraic approach to corresponding categories of symbolically attributed
graphs.

After discussing related work in the next section, we provide some more
detailed motivation for moving to coalgebras. We quickly fix our categorical
notation in Sect. 3 and explain basics of (co)algebras in Sect. 4. We show more
complex graphs structures in Sect. 5, and discuss the limitations of using stan-
dard coalgebra homomorphisms. In Sect. 6 we show how a factoring of the coal-
gebra functor over a monad allows us to replace the morphisms underlying the
coalgebra homomorphisms with Kleisli arrows, enabling typical applications of
symbolic attributes where instantiation of variables via substitution is required
and the variable set may be modified by transformations. We show that this gen-
eral factoring accommodates a natural formalisation of term graphs as monadic
coalgebras. Refining this factoring in Sect. 7 for a general class of structures
encompassing in particular common kinds of symbolically attributed graphs, we
show that pushouts in that setting can be constructed from unifications for the
substitution components of the homomorphisms.

The whole theoretical development has been formalised in the dependently
typed programming language and proof checker Agda2 [Nor07] on top of the
basic category formalisations provided by [Kah11,Kah14]. The Agda source code
for this development is available on-line1. For not disrupting the flow of the
presentation, we just add a check mark “�” to statements for which a formalised
version has been mechanically checked by Agda.

2 Related Work

Löwe et al. [LKW93] started to consider attributed graphs in the context of the
algebraic approach to graph transformation; they propose working with a tri-
partitioned signature, with a unary graph structure part, an arbitrary attribute
signature, and a set of unary attribution operators connecting the two. Rewriting
uses the single pushout approach. Without discussing the issue in depth, they
propose to add sorts of attribute carriers that are deleted and re-created for
relabelling. König and Kozioura [KK08] follow the approach of [LKW93], but
impose a rigid organisation of unlabelled nodes, and labelled hyperedges with
label-conforming attribution.

In the double-pushout approach, Heckel et al. [HKT02] treat data algebra
carriers as graph nodes, with graph edges to them allowed, but data algebra
function symbols are not part of the graph. Their attribution edges from graph
nodes to data nodes are equivalent to the attribute carriers of [LKW93]. The
data part is kept constant during transformation. Rule graphs are attributed
over a term algebra with a fixed set of variables. The E-graphs of [EPT04] allows
also attribute edges starting from edges. The algebra integration of [HKT02] is
1 URL: http://relmics.mcmaster.ca/RATH-Agda/

http://relmics.mcmaster.ca/RATH-Agda/
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strengthened from a commuting square to a pullback, which is used for showing
the equivalence of categories of typed attributed graphs over type graph ATG
with categories of algebras over a derived signature AGSIG(ATG), where each
type graph item is turned into a sort. For the symbolic graphs of [OL10], the
Σ-algebra is not integrated into the graph structure, but only connected to it via
constraints: A symbolic graph is an E-graph over a sorted variable set together
with a set of formulae that may refer to constants drawn from the Σ-algebra.

While all the approaches presented so far worked with total algebras through-
out, the relabelling DPO graph transformations of Habel and Plump [HP02,
Plu09] use partially labelled interface graphs. Rule side images of unlabelled
interface nodes are unlabelled as well, and natural pushouts (that are also pull-
backs) with injective matching are used for rewriting. In [PS04], rule schemas are
introduced to get around the fixed label sets of [HP02]; these rule schemas are
rules that are labelled over a term algebra. A different approach to relabelling is
that of Rebout [RFS08], which employs a special mechanism for relabelling via
“computations” in the left-hand side of the rule.

For general theory of coalgebra, we refer to Rutten’s overview article [Rut00].
The part of the coalgebra literature that deals with combining algebras and coal-
gebras is probably closest to our current endeavour; one approach considers sep-
arate algebraic and coalgebraic structures in the same carriers, for example Kurz
and Hennicker’s “Institutions for Modular Coalgebraic Specifications” [KH02].
A further generalisation are “dialgebras” [Hag87,PZ01], which have a single car-
rier X, and operations fi : Fi X → Gi X, where both Fi and Gi are polynomial
functors.

Pardo studies the combination of corecursion with monads [Par98], using as
an essential tool natural transformations for distribution of the monad over the
functor; his “monadic coalgebras” are defined by an operation of type
A → M (F A), which is the opposite functor composition to the one we use
in Sect. 6. Capretta’s survey [Cap11] covers coalgebras in functional program-
ming and type theory; like Pardo, also Capretta concentrates on coinduction
and infinite structures.

3 Category Notation

We assume familiarity with the basics of category theory; for notation, we write
“f : A→B” to declare that morphism f goes from object A to object B, and
use “;” as the associative binary forward composition operator that maps two
morphisms f : A→B and g : B→C to (f ; g) : A→C. The identity morphism
for object A is written IA.

We assign “;” higher priority than other binary operators, and assign unary
operators higher priority than all binary operators.

The category of sets and functions is denoted by Set.
A functor F from one category to another maps objects to objects and

morphisms to morphisms respecting the structure generated by →, I, and com-
position; we denote functor application by juxtaposition both for objects, F A,
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and for morphisms, F f . Although we use forward composition of morphisms,
we use backward composition “ ◦ ” for functors, with (G ◦ F) A = G (F A),
and may even omit parentheses and just write GFA.

A bifunctor is a functor where the source is a product category. An important
example is the coproduct bifunctor + : C × C→C for a category C with a choice
of coproducts. Functors with more than two arguments are handled similarly.

The double-pushout (DPO) approach to high-level rewriting [CMR+97], uses
transformation rules that are spans L

l←−G
r−→R in an appropriate category

between the left-hand side L, gluing object G, and right-hand side R. A direct
transformation step from object A to object B via such a rule is given by a
double pushout diagram, where m is called the match:

L l� G r � R

m

�

h

�

n

�
A a� H b � B

4 Algebras and Coalgebras

The category-theoretic definitions of algebras and coalgebras are simple: Given
a (unary) functor F ,

– an F-algebra A = (CA, fA) is an object CA together with a morphism
fA : F CA→CA

– an F-coalgebra A = (CA, fA) is an object CA together with a morphism
fA : CA→F CA.

The algebraic approach to graph transformation was named for its understand-
ing of graphs as algebras — unlabelled graphs are conventionally presented as
algebras over the the following signature:

sigGraph := 〈 sorts: N,E
ops: src : E→ N

trg : E→ N 〉
(From now on, we assume the product bifunctor ×, the coproduct bifunctor +,
the terminal object 1, and the initial object O to be given.) The functor giving
rise to graphs as algebras is a functor on the product category Set × Set since
there is more than one sort:

FsigGraph−alg (N , E) = ((E + E) , O) ,

since there is an isomorphism mapping functions E+E → N to pairs of functions
(E → N)× (E → N), and there is only one “empty” function in O→ E.

This functor can be constructed systematically from the signature above, and
the signatures for which this systematic procedure works are called “algebraic”:
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– An algebraic signature has only single sort symbols as result types.

Dually, a coalgebra functor can be constructed systematically for the following:

– An coalgebraic signature has only single sort symbols as argument types.

Obviously, sigGraph is also a coalgebraic signature, and the functor giving rise
to graphs as coalgebras is the following:

FsigGraph (N , E) = (1 , (N ×N))

For algebras, one frequently considers only polynomial functors, that is, functors
constructed from +, ×, and 1. For coalgebras, more varied functors are the
norm, and many more complicated kinds of graphs can easily be characterised
via coalgebraic signatures, for example:

– Node-labelled graphs are often presented with signature sigNLG1 for some
node label set L — note that sigNLG1 is not an algebraic signature, since L
is not a sort symbol:

sigNLG1 〈 sorts: N,E
ops: src : E→ N

trg : E→ N
nlab : N→ L 〉

sigNLG2 〈 sorts: N,E, L
ops: src : E→ N

trg : E→ N
nlab : N→ L 〉

Although this is easily fixed, see sigNLG2 which introduces an additional sort
L, this comes at the cost of considering the label set a part of the graph,
while usually one may want to consider it as fixed. The category of sigNLG2-
structures admits morphisms that change labels, and encompasses as subcat-
egories images of the categories of sigNLG1-structures for different choices of
the interpretation of L.
However, both sigNLG1 and sigNLG2 are coalgebraic signatures, which shows
that the coalgebraic view has advantages even when dealing with very sim-
ple graph structures. For a fixed node set L, coalgebras over the functor for
sigNLG1 form exactly the category of graphs with node labels drawn from L,
without any complications:

FsigNLG1
(N,E) = (L , N ×N)

– sigDHG, already mentioned in the introduction, is a signature for directed
hypergraphs where each hyperedge has a sequence of source nodes and a
sequence of target nodes, and each node is labelled with an element of the
constant set L:

sigDHG := 〈 sorts: N,E
ops: src : E→ List N

trg : E→ List N
nlab : N→ L 〉
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Writing List for the list functor2, the functor corresponding to sigDHG is again
a functor between product categories because of the two sorts:

FsigDHG (N E) = (L , ((List N)× (List N)))

In general, we assume a language of functor symbols (with arity), and a signature
introduces first, after “sorts:”, a list of sort symbols, and then, after “ops:”, a
list of function symbols (or operation symbols), and for each operation symbol,
an argument type expression and a result type expression (separated by “→”)
each built from the functor symbols and the sort symbols.

In sigDHG, we used the unary functor symbol List and the zero-ary functor
symbol L — we will not make any notational distinction between functor symbols
and their interpretation as functors.

5 Limitations of Standard Coalgebra Homomorphisms

For a different situation consider edge-attributed graphs, with symbolic attributes
taken from the term algebra TΣ V over some term signature Σ and with variables
from the variable carrier set for sort V:

sigAGΣ := 〈 sorts: N,E,V
ops: src : E→ N

trg : E→ N
attr : E→ TΣ V 〉

The resulting homomorphism concept only allows renaming of variables:

Fact 5.1. A sigAGΣ-coalgebra homomorphism F : G1 → G2 consists of three
mappings FN : N1 → N2 and FE : E1 → E2 and FV : V1 → V2 satisfying the
following conditions:

FE ; src2 = src1 ; FN

FE ; trg2 = trg1 ; FN

FE ; attr2 = attr1 ; TΣ FV ��

DPO rewriting in this category therefore has to rely on deletion and re-creation
of attribute carrying edges to implement relabelling, like the approaches of
[LKW93,KK08]. In addition we also lack the ability to instantiate rules via
variable substitution as part of the morphism concept, and might therefore be
tempted to add such instantiation outside the DPO rewriting framework, as in
[PS04].

Another example where the coalgebra category is unsatisfactory are term
graphs, where each node is either a variable (of sort V), or an inner node (of
sort N) that has a label (from set L) and a list of successors, which can be either
variables or other nodes:
2 Note that List A can be defined as the initial algebra of the functor LA Y = 1+A×Y .
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sigTG := 〈 sorts: V,N
ops: lab : N→ L

suc : N→ List (N + V) 〉

The resulting standard homomorphism concept also has FV : V1 → V2 and
therefore does not allow mapping of variables to inner nodes:

Fact 5.2. A sigTG-coalgebra homomorphism F : G1 → G2 consists of two map-
pings FN : N1 → N2 and FV : V1 → V2 satisfying the following conditions:

FN ; lab2 = lab1

FN ; suc2 = suc1 ; List(FN + FV) ��

In the resulting category, pushout complements exist only in very special cases,
and the resulting DPO rewriting concept does not correspond to any useful term
graph rewriting concept.

6 Monadic Coalgebra Morphisms

We now introduce a more powerful morphism concept to remedy these short-
comings. We first show how the homomorphism concepts for sigAGΣ-coalgebras
and for sigTG-coalgebras can be “fixed” to allow substitution, and then extract
the general pattern behind this class of “fixes”.

6.1 Substituting Attributed Graph Homomorphisms

If we want to allow substitutions in morphisms between sigAGΣ-coalgebras, we
also have to adapt the morphism conditions to take the substituted variables
inside the image terms of the attribution function into account:

Definition 6.1. We define the category AGΣ to have sigAGΣ-coalgebras as
objects, and a morphism F : G1 → G2 consists of three mappings typed as
shown to the left, satisfying the conditions shown to the right:

FN : N1 → N2 FE; src2 = src1;FN

FE : E1 → E2 FE; trg2 = trg1;FN

FV : V1 → TΣ V2 FE; attr2 = attr1; TΣ FV;μTΣ

where μTΣ
: ∀X . TΣ(TΣ X)→ TΣ X is the canonical “term flattening” function

that turns two-level nested terms into one-level terms. ��

It is not hard to verify that this category is well-defined � — the key to the
proof is to recognise that the FV components are substitutions and compose via
Kleisli composition of the term monad.

The category AGΣ of course does not have all pushouts, since pushout con-
struction for the FV components involves term unification, which is not always
defined.
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6.2 “Substituting” Term Graph Homomorphisms

For term graphs, we just want to allow variables to be mapped also to inner
nodes, and therefore adapt the type of FV accordingly. The resulting adaptation
in the commutativity condition for suc affects only the argument of the List
functor:

Definition 6.2. We define the category TG to have sigTG-coalgebras as objects,
and a morphism F : G1 → G2 consists of two mappings

FN : N1 → N2

FV : V1 → N2 + V2

satisfying the following conditions:

FN ; lab2 = lab1

FN ; suc2 = suc1 ; List((FN + FV) ; μ(N2+))

where μ(N+) : ∀X . (N+(N+X))→ (N+X) is the canonical flattening function
for nested alternatives with N. ��

This time, we are dealing with a parameterised monad, namely (N+), which
maps any X to N+X, where the parameter N is instantiated with the respective
carrier of that sort. Composition of the V components of F : T1 → T2 and
G : T2 → T3 is defined accordingly:

(F ; G)V = FV ; (GN + GV) ; μ(N3+)

Again, the resulting category is well-defined. �

6.3 Generalised Coalgebra Morphisms

For obtaining the general shape of such “monadic coalgebra morphisms”, inspec-
tion of the signatures shows that each of the functors underlying these kinds of
coalgebras not only contains a primitive monad (the term monad for attributed
graphs, and an “alternative monad” for term graphs), but even can be factored
over a monad on the relevant product category.

Since the signature sigAGΣ has three sorts, the underlying category is the
triple product Set× Set× Set, with triples of sets as objects.

The coalgebra functor for sigAGΣ is then

GsigAGΣ
(N,E, V ) = (1, (N ×N × TΣ V ),1) ,

mapping node and edge set to the terminal object 1 since no operations take
nodes or edges as arguments; since there are three operations taking edges as
arguments, GsigAGΣ

produces as “edge component” of its result type the Cartesian
product N ×N × TΣ V consisting of the target sets of the three operations.
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We can decompose this as GsigAGΣ
= FsigAGΣ

◦MsigAGΣ
, where:

MsigAGΣ
(N,E, V ) = (N,E, TΣ V )

FsigAGΣ
(N,E, T ) = (1, (N ×N × T ),1)

SinceMsigAGΣ
is the product of twice the identity monad with the term monad

TΣ , it is obviously a monad. �
Analogously, the coalgebra functor for sigTG is

GsigTG (N,V ) = (L× List (N + V ),1) ,

mapping the variable set to the terminal object 1 since no operations take vari-
ables as arguments. We can decompose this as GsigTG = FsigTG ◦MsigTG, where:

MsigTG (N,V ) = (N, (N + V ))
FsigTG (N,S) = (L× List S,1)

It is straightforward to prove that MsigTG is a monad constructed as a “depen-
dent product monad”. �

In general, we define:

Definition 6.3. Given a monad M and an endofunctor F over a category C,
anM-F-coalgebra is a coalgebra over the functor F ◦M, that is, a pair (A, opA)
consisting of

– an object A of C, and
– a morphism opA : A→ F (M A)

A raw M-F-coalgebra homomorphism from (A, opA) to (B, opB) is a morphism
from A to B in the Kleisli category of M; raw morphism composition is Kleisli
composition. ��

One might expect that we obtain just coalgebras over the Kleisli category of
M. However, the following complications hold:

– F does in general not give rise to a functor over the Kleisli category ofM.
– If a natural transformation from F ◦M to M◦F exists, an endofunctor on

the Kleisli category that coincides with F on objects can be constructed —
however, no such a natural transformation exists for sigAGΣ . �

– Constructing an endofunctor on C from an endofunctor on the Kleisli category
would require transformations to “extract from the monadM” which can be
natural neither on C nor on the Kleisli category. �

In addition, not all raw MsigAGΣ
-FsigAGΣ

-coalgebra homomorphisms satisfy the
conditions we listed above for monadic sigAGΣ coalgebra homomorphisms — we
need to identify an appropriate subcategory of the Kleisli category.

From the material we have, we can easily construct the following two mor-
phisms:

f ;M opB : A→MFMB
opA ;FMf : A→ FMMB
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“Obviously”, we can complete this to a commutativity condition using a natural
transformation constructed from the return η and the join μ transformations of
the monad M, namely:

Fμ ; η : F ◦M ◦M⇒M◦F ◦M

For the category AGΣ of Definition 6.1, this condition is unfortunately only
satisfied by morphisms where FV only renames variables �, which defeats our
intentions. This problem is actually not even due to the choice of Fμ; η, but
to the choice of direction, since it arises for every natural transformation from
F ◦M ◦M to M◦F ◦M. Therefore, using distribution transformations from
F ◦M to M◦F as used by Pardo [Par98] is not an option either.

We found that natural transformations fromM◦F ◦M to Fs ◦M “work”
when combined with a join on the other side:

Definition 6.4. For an endofunctor F and a monad (M, η, μ) on C, an M-F-
distrjoin transformation is a natural transformation ξ : M◦ F ◦M ⇒ F ◦M
for which the following properties hold:

– η ; ξ = I

– μ ; ξ =Mξ ; ξ
– MFμ ; ξ = ξ ;Fμ ��

Definition 6.5. Given an endofunctor F and a monad (M, η, μ) on C, and
also anM-F-distrjoin transformation ξ, anM-F-coalgebra homomorphism from
(A, opA) to (B, opB) is a morphism f : A→MB making the following diagram
commute:

FMA
FMf � FMMB

Fμ � FMB

opA

�
ξ

�

A
f � MB

M opB � MFMB

Theorem 6.6. M-F-coalgebras with such M-F-coalgebra homomorphisms
form a category. � ��

The instantiations of this for edge-attributed graphs (sigAGΣ) and for term
graphs (sigTG) are appropriate:

Theorem 6.7. The MsigAGΣ
-FsigAGΣ

-coalgebra category is equivalent to the
category AGΣ Definition 6.1. � ��

Theorem 6.8. TheMsigTG-FsigTG-coalgebra category is equivalent to the cate-
gory TG of Definition 6.2. � ��
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6.4 Pushouts of Monadic Coalgebra Morphisms

It is well-known that the Kleisli category over the term monad T does not have all
pushouts, and that existence of pushouts essentially corresponds to unifiability.

Therefore we cannot expect the category of monadic sigAGΣ coalgebras to
have all pushouts. Nevertheless, since pushouts are the key ingredient of the
categoric approach to graph transformation, an interesting question is whether
pushouts in the Kleisli category ofM give rise to pushouts in theM-F-coalgebra
category. It is easy to see that this is not the case for term graphs; however, it does
hold for symbolically edge-attributed graphs, and in this section we explore the
question how to prove this from the point of view of M-F-coalgebra categories
without considering decompositions ofM and F .

A pushout for a span B
F←−A

G−→C is a completion B
H−→D

K←−C to a
commuting square that is “minimal” in the sense that every other candidate
completion factors uniquely over it (via U).

A F � B

G

�

H

�

C K � D

�
�
�
�
�
�
�
�
�
�

H ′

����������

K ′

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

U

D′

Assuming such a pushout in the Kleisli category of M, for constructing the
operation opD of the target coalgebra we need to choose appropriate H ′ and K ′

such that the U can be used to construct opD and prove its pushout property
in the category ofM-F-coalgebras.

Without assuming additional (natural) transformations, we can only choose
the following:

H ′ = opB ;F(MH ; μ) ; η
K ′ = opC ;F(MK ; μ) ; η

However, commutativity F �H ′ = G�K ′ in the Kleisli category can only be shown
assuming additional (natural) transformations and/or laws, which however are
not available for the setting of sigAGΣ — there, this commutativity does not
hold. � The essential reason for this is that F maps V to 1, while V is also
the only component that has a non-trivial monad. Commutativity fails for the
V components due to the fact that opB and opC map these to 1, while M for
the V components is the term monad TΣ :
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MFMD ? �� MFMD

MF(MH ., μ)

	
	

	
	

	

MF(MK ., μ)

MFMB
M opB� MB MC

M opC� MFMC

	
	

	
	

	

F G

A

Due to this property of the operators in sigAGΣ , commutativity will actually fail
for any definition of H ′ of the shape “H ′ = opB ; . . .”. We solve this problem in
the next section by restriction to more specialised versions of M and F , which
allows us to “patch” H ′ and K ′ so as to avoid this conflict.

7 Monadic Product Coalgebras

We now specialise theM-F-coalgebras of Sect. 6.3 in a way that still generalises
the setup for symbolically edge-attributed graphs there, while also allowing a
pushout construction.

The most general shape we have been able to identify for this are “monadic
product coalgebras” over a product category C1 × C2, defined in the following
setting (which we will assume for the remainder of this section): Let C1 and C2
be two categories; letM be a monad on C2, and F a functor from C1×C2 to C1.

In terms of coalgebraic signatures this implements the restriction that sorts
mentioned as monad arguments do not occur as source sorts of operators, and
that the monad must not depend on sorts that do occur as source sorts of oper-
ators. This restriction is satisfied by all simple kinds of symbolically attributed
graphs where the monad is typically a term monad, is applied only to sets of free
variables, and these variables do not otherwise participate in the graph structure.

Definition 7.1. AnM-F-product-coalgebra A is a triple (A1, A2, opA) consist-
ing of

– an object A1 of C1, and
– an object A2 of C2, and
– a morphism opA : A1 → F (A1, M A2)

AM-F-product-coalgebra homomorphism f from (A1, A2, opA) to (B1, B2, opB)
is a pair (f1, f2) consisting of a C1-morphism f1 from A1 to B1 and a morphism
f2 from A2 to B2 in the Kleisli category ofM such that

f1 ; opB = opA ;F (f1, M f2 ; μ) .

Morphism composition is composition of the corresponding product category. ��
This morphism composition is well-defined �, and induces a category �.
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Now letM0 be the product monad of the identity monad on C1 andM, and
define F0 as endofunctor on C1 × C2 by:

F0(X1,X2) = (F(X1,X2),1)

With these definitions, the M0-F0-distrjoin transformation (see Definition 6.4)
has identities of C1 and terminal morphisms of C2 as its two components �,
which allows us to identify monadic product coalgebras as a special case of the
monadic coalgebras of Sect. 6.3:

Theorem 7.2. The category of M-F-product-coalgebra homomorphisms is
equivalent to the category ofM0-F0-coalgebra homomorphisms. � ��

In addition, the more fine-grained structure of monadic product coalgebras
allows us to circumvent the problems we encountered in Sect. 6.4.

Let K be the Kleisli category ofM0. SinceM0 is a product monad, pushouts
in K are calculated component-wise, that is, they consist of a pushout in C1 and
a pushout in the Kleisli category ofM.

Theorem 7.3. Let a span B
F←−A

G−→C ofM-F-product-coalgebra homomor-
phisms be given, and a cospan (B1, B2)

H−→(D1,D2)
K←−(C1, C2) in K that is a

pushout for the Kleisli morphisms underlying F and G. Then (D1,D2) can be
extended to aM-F-product-coalgebra D = (D1,D2, opD) such that B

H−→D
K←−C

is a pushout for B
F←−A

G−→C in theM-F-product-coalgebra category. �

Proof sketch: The first step is the construction of a cospan

(B1, B2)
H′
−→ D′ K′

←− (C1, C2)

in K such that the first component of the universal morphism U : (D1,D2)→ D′

from the K pushout can be used as opD.
The first constituent of D′ therefore must be the target of opD, so we define:

D′ = ( F(D1,M D2) , D2)
H ′ = ( opB ;F(H1,M H2 ; μ) , H2)
K ′ = ( opC ;F(K1,M K2 ; μ) , K2)

The second constituent of D′ is inherited from (D1,D2), which allows us to
use the universality of the original K pushout when proving universality of the
resulting M-F-product-coalgebra pushout. ��

Together with the two equivalences of categories of Theorems 7.2 and 6.7,
pushouts for edge-attributed graphs essentially reduce to unification for their
variable components (if we choose an underlying category that has pushouts,
such as Set):

Corollary 7.4. A span B
F←−A

G−→C in the MsigAG-FsigAG-coalgebra category
over Set for edge-attributed graphs (as sigAGΣ structures) has a pushout if FV

and GV, as substitutions, have a pushout. � ��
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8 Conclusion and Outlook

We have shown how the additional flexibility of coalgebraic signatures enables us
to integrate label types and symbolic attribute types into graph structure signa-
tures, and then modified the coalgebraic homomorphism concept via integration
of Kleisli arrows to achieve the flexibility necessary to allow substitutions as part
of our morphisms. We showed that several seemingly plausible formalisations for
this do not model the intended applications, and arrived at a simple factoring
setup (Sect. 6.3) that additionally encompasses a natural formalisation of term
graphs. For symbolically attributed graphs fitting into the pattern of monadic
product coalgebras (Sect. 7), we showed that pushouts can be obtained where
the substitution components of their homomorphisms are unifiable.

Without the support of our mechanised formalisation in Agda, the mentioned
failures of inappropriate formalisations, and also the successful proofs reported
in the paper would have been extremely hard to arrive at with comparable
confidence.

Since pushouts do not necessarily exist in Kleisli categories, an important
question is whether general results for appropriate classes of restricted monomor-
phisms can be obtained. In this context, the “guarded monads” of Ghani et al.
[GLDM05] might be useful, since a guarded monad essentially can be represented
as Id + N for some functor N , and the identity component can be used to lift
monomorphisms from the base category into the Kleisli category.

The ultimate goal of this work is a fully verified implementation of monadic
coalgebra transformation that can be instantiated in particular for the transfor-
mation of symbolically attributed graph structures.

Acknowledgements. I am grateful to the anonymous referees for their constructive
comments.
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