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Abstract. This paper aims to improve the understanding of the com-
plexities for Matsui’s Algorithm 2 — one of the most well-studied and
powerful cryptanalytic techniques available for block ciphers today.

We start with the observation that the standard interpretation of the
wrong key randomisation hypothesis needs adjustment. We show that it
systematically neglects the varying bias for wrong keys. Based on that,
we propose an adjusted statistical model and derive more accurate esti-
mates for the success probability and data complexity of linear attacks
which are demonstrated to deviate from all known estimates. Our study
suggests that the efficiency of Matsui’s Algorithm 2 has been previously
somewhat overestimated in the cases where the adversary attempts to
use a linear approximation with a low bias, to attain a high computa-
tional advantage over brute force, or both. These cases are typical since
cryptanalysts always try to break as many rounds of the cipher as pos-
sible by pushing the attack to its limit.

Surprisingly, our approach also reveals the fact that the success prob-
ability is not a monotonously increasing function of the data complexity,
and can decrease if more data is used. Using less data can therefore result
in a more powerful attack.

A second assumption usually made in linear cryptanalysis is the key
equivalence hypothesis, even though due to the linear hull effect, the bias
can heavily depend on the key. As a further contribution of this paper,
we propose a practical technique that aims to take this into account.
All theoretical observations and techniques are accompanied by experi-
ments with small-scale ciphers.

Keywords: Block ciphers · Linear cryptanalysis · Data complexity ·
Wrong key randomisation hypothesis · Key equivalence · Linear hull
effect

1 Introduction

Linear cryptanalysis proposed by Matsui [25,26], besides differential cryptanaly-
sis [5], has been a seminal cryptanalytic technique used to attack block ciphers
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since two decades now. It was linear cryptanalysis that both theoretically and
practically broke the former U.S. encryption standard DES. This might suggest
that NSA could have been unaware of the entire power of this attack, at least
at the design time of DES back in the 1970s.

Numerous papers investigated the questions of how to improve linear crypt-
analysis on the one hand and how to design ciphers resistant to linear cryptanaly-
sis on the other. With the establishment of such block cipher design approaches
as the wide-trail design strategy [9], which eventually lead to the design of the
current U.S. encryption standard AES [9], the cryptographers were given reli-
able tools to construct ciphers that are arguably resistant against the classical
flavours of linear cryptanalysis.

The extension of linear cryptanalysis to take advantage of multiple approxi-
mations revived the field [16–18,32]. Lately, increasingly more works [23,27,32]
have been dedicated to the study of the linear hull effect [28,29] – the fact that
depending on the key, the efficiency of linear cryptanalysis may significantly vary.
Also in terms of the success probability and data complexity estimation, a lot of
detailed works have been published [2,3,6,19–21,33]. The fact that many pub-
lished attacks have data and time requirements beyond practical reach implies
that the question of how to accurately estimate their complexity (and hence
determine which attack actually is a valid attack) is of great importance to the
security of block ciphers.

Our Contributions. In this paper, we aim to obtain a more accurate estima-
tion of success probability and data complexity of linear attacks using Matsui’s
Algorithm 2 — a question fundamental to symmetric-key cryptanalysis. Our
contributions are as follows:

– New wrong key randomisation hypothesis: Informally speaking, the
wrong key randomisation hypothesis says that by partially decrypting/
encrypting with a wrong key up to the boundary of the linear approximation,
the adversary faces a randomly drawn permutation instead of the expected
cipher structure with rounds peeled off. The standard interpretation of this
hypothesis in linear cryptanalysis seems to have been to replace a randomly
drawn permutation which varies for every wrong key candidate with the
expected behaviour among all permutations. We demonstrate that this can
be misleading and result in underestimated complexity in some cases. Those
cases are likely to occur when the adversary tries to exploit a linear approx-
imation with low bias, or to attain a high advantage over the brute force, or
both. These cases are actually very typical since cryptanalysts always try to
break as many rounds of the cipher as possible by pushing the attack to the
limit.

– More data does not necessarily mean higher probability of success:
As a surprising consequence of the adjusted wrong key randomisation hypothe-
sis, our analysis reveals that the success probability in general is not a monoto-
nous function of the data complexity. This means that sometimes, using less
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data can result in a better success probability of a linear attack. This is backed
up by experimental results confirming the non-monotonous behaviour of the
success rate.

– Linear hull vs. linear trails: The general methodologies to evaluate the
complexity of linear attacks at hand assume the exact bias or its good estimate
is given to the adversary. Practically speaking, however, this is never the case
for almost any real-world cipher. This is due to the fact that for a relatively
large block size (e.g. longer 50 bits) it is challenging to exactly evaluate the bias
even for one known key. That is why most linear attacks base their complexity
estimates on one or several known trails1 (rather than on the entire linear
hull bias). In this context, we make two observations in this paper. First,
we propose to split the linear hull into a signal part and a noise part. The
signal part is then sampled for random cipher keys to obtain a more reliable
evaluation of the impact of those trails. Second, we statistically model the
noise part to make the estimation of complexity more realistic.

The remainder of the paper is organized as follows. Some brief background on
block ciphers, linear cryptanalysis and previous work in this direction is given
in Sect. 2. In Sect. 3, the new model for the data complexity of linear attacks
based on the new wrong key randomisation hypothesis is developed. The non-
monotonicity of the success rate as function of data complexity is studied in
Sect. 4. Section 5 proposes a method of computing the data complexity of a linear
attack and presents experimental results. Our refined key equivalence hypothesis
is presented in Sect. 6. Section 7 proposes a practical algorithm implementing
the new key equivalence hypothesis for key-alternating ciphers. We conclude in
Sect. 8.

2 Preliminaries

2.1 Notation

We denote by F2 = {0, 1} the finite field with two elements and the n-dimensional
vector space over F2 by F

n
2 . The canonical scalar product of two vectors a, b ∈ F

n
2

is denoted by aT b.
We denote by N (μ, σ2) the normal distribution with mean μ and variance

σ2. The probability density and cumulative distribution function of the standard
normal distribution N (0, 1) are denoted by φ(x) and Φ(x), respectively.

2.2 Block Ciphers and Linear Cryptanalysis

Block Ciphers. A block cipher is a mapping E : F
n
2 × F

κ
2 → F

n
2 with the

property that Ek
def= E(·, k) is a bijection of Fn

2 for every k ∈ F
κ
2 . If y = Ek(x),

1 We are aware of the earlier term linear characteristic [4] but prefer to use the term
linear trail throughout the paper.
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we refer to x as the plaintext, k as the key and y as the ciphertext of x under
the key k. We call n the block length and κ the key size of the cipher.

Block ciphers are often constructed as iterated mappings based on round
functions ρi[ki]. Let R denote the number of rounds. A key scheduling algorithm
expands the encryption key k into R round keys K

def= (k0, . . . , kR−1). The
ciphertext y of x0 = x is then obtained as y = xR with xi+1 = ρi[ki](xi). If the
iteration can be written as a sequence of unkeyed rounds and bitwise addition
of the round keys by XOR, the cipher is called a key-alternating cipher [8,9].

Note that ciphers following the substitution-permutation network design are
key-alternating by definition. However, also some Feistel ciphers [13] can be writ-
ten as key-alternating ciphers [10]. This includes the well-known Feistel ciphers
CLEFIA [35], CAMELLIA [1], Piccolo [34], SMS4 [24], KASUMI [14].

Linear Cryptanalysis and Matsui’s Algorithm 2. A linear approximation
(α, β) of a vectorial Boolean function f : Fn

2 → F
n
2 is an ordered pair of n-bit

masks α and β. It is said to hold with probability p
def= Prx∈F

n
2
(αT x = βT f(x)).

The deviation of p from 1/2 is called the bias ε
def= p − 1/2. The correlation of

a linear approximation (α, β) is C
def= 2p − 1 = 2ε. The quantity LP

def= C2 is
called the linear probability of (α, β).

Linear cryptanalysis [25,26] is a known plaintext attack exploiting linear
relations between bits of the plaintext and ciphertext holding with absolute bias
|ε| > 0. Note that in the known plaintext model, the plaintexts are assumed to
be sampled independently and uniformly at random from the plaintext space,
which implies that repetitions can occur [20,33].

In this paper, we consider linear attacks using Matsui’s Algorithm 2. We
describe the attack for the case where subkey bits of the last round are attacked.
The adversary observes a number N of plaintext/ciphertext pairs encrypted
under the same cipher key k and chooses a linear approximation (α, β) with
|ε| > 0 for the remaining first R − 1 rounds. Suppose that the bits of xR−1 =
ρ[kR]−1(y) selected by β depend on M bits of kR and the attacker wants to
recover a subset of m ≤ M of them. For each of the 2m possible values of the
target subkey bits, the adversary (partially) decrypts the N ciphertexts and
tests whether the linear approximation αT x = βT ρ[kR]−1(y) holds. In this way,
a counter Ti is maintained for each key candidate ki, 0 ≤ i < 2m. After this step,
the key candidates are ranked in increasing order of the absolute value of the
sample bias |ε̂i| def= |Ti/N − 1/2|. Following [33], if the correct key kr is ranked
among the highest 2l out of the 2m key candidates with probability PS , we say
that the attack provides an advantage of a

def= m − l bits over exhaustive search
with success probability PS .

Linear Trails and Hulls. A linear approximation (α, β) for an iterative block
cipher of R rounds with round functions ρi can actually be decomposed into
R connecting linear approximations for the intermediate steps: U = [(α, u1),
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(u1, u2), . . . , (uR−1, β)] with ui ∈ F
n
2 . For each fixed value of the ui, such a

sequence is called a linear trail [9] or linear characteristic [25,26]. The approx-
imation (α, β) can permit many trails with the same input mask α and output
mask β, but different intermediate masks. The collection of all such trails is
called the linear hull (α, β) [28,29].

2.3 Previous Analyses of the Data Complexity of Linear Attacks

The data complexity of both Matsui’s Algorithm 2 and the more general problem
of distinguishing the distributions for the right and the wrong keys have been
extensively studied in the literature [2,3,6,19–21,25,26,33].

In his original papers, using a normal approximation to the binomial distrib-
ution, Matsui [25,26] estimates the data complexity to be of the order |2ε|−2 and
gives estimations which multiple of this is required to obtain a certain success
probability. This analysis has been systematized and deepened by Junod [19].
Furthermore, Junod and Vaudenay [21] have proven that Matsui’s key ranking
procedure is optimal for the case of Algorithm 2 using a single linear approxi-
mation.

In his important work, Selçuk [33] presented a thorough statistical analysis
of the data complexity of linear and differential attacks based on a model of
Junod [19] and a normal approximation for order statistics. This yields practical
closed formulas for the success probability PS and data complexity N of a linear
attack when an advantage of a bits is sought:

Theorem 1 ([33, Theorem 2]). Let PS be the probability that a linear attack
on an m-bit subkey, with a linear approximation of probability p, with N known
plaintext blocks, delivers an a-bit or higher advantage. Assuming that the linear
approximation’s probability to hold is independent for each key tried and is equal
to 1/2 for all wrong keys, one has for sufficiently large m and N :

PS = Φ
(

2
√

N |p − 1/2| − Φ−1(1 − 2−a−1)
)

. (1)

Corollary 1 ([33, Corollary 1]). With the assumptions of Theorem 1,

N =
(

(Φ−1(PS) + Φ−1(1 − 2−a−1))/2
)2 · |p − 1/2|−2 (2)

plaintext blocks are needed in a linear attack to accomplish an a-bit advantage
with a success probability of PS.

Other published estimates include analyses by Junod [20], Baignères, Junod
and Vaudenay [2], Baignères and Vaudenay [3], and Blondeau, Gérard and
Tillich [6]. Those estimates are summarised in Table 1, with D(p||q) denoting
the Kullback-Leibler divergence between two binomial distributions with prob-
abilities p and q.

Note that throughout the literature, the assumption is made that decrypting
with a wrong key results in a zero bias for the linear approximation. As we will
see, this constitutes a simplified view of the problem.
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Table 1. Estimates for the data complexity of a linear attack based on a linear approx-
imation with probability p, success probability PS and advantage a

Estimate for data complexity N Reference

N ≈
2Φ−1

(
(1−PS)+2−a−1

2

)2

D(p||0.5)
Baignères, Junod and

Vaudenay [2], Theorem 6

N ≈ − ln max{1−PS ,2−a−1}
D(p||0.5)

Baignères and Vaudenay [3],
Corollary 4

N ′ = −
ln

(
ν·2−a−1√
D(p||0.5)

)
+0.5 ln (− ln (ν·2−a−1))

D(p||0.5)

with ν =
(
(p − 0.5)

√
2π(1 − p)

)
/
(√

p/2
) Blondeau, Gérard and

Tillich [6], Theorem 2

2.4 Distribution of Biases in Boolean Permutations

Daemen and Rijmen [11] have proved the following characterisation of the dis-
tribution of correlation of a fixed linear approximation over the set of all n-bit
permutations:

Fact 1 ([11, Theorem 4.7]). Consider a fixed nontrivial linear approximation
(α, β) with α, β �= 0. When n ≥ 5, the distribution of the correlation Cα,β over
all n-bit permutations can be approximated by the following distribution up to
continuity correction:

Cα,β ∼ N (0, 2−n). (3)

Since C = 2ε, this immediately implies

Corollary 2. With the assumptions of Fact 1,

εα,β ∼ N (0, 2−n−2). (4)

3 Improved Key Randomisation Hypothesis
and Success Rate

3.1 More Accurate Wrong Key Randomisation

In Matsui’s Algorithm 2 using a linear approximation (α, β) and N known plain-
texts, a counter Ti is maintained for each key candidate ki. For each of the N
texts, the counter Ti is incremented if the approximation holds for a text when
performing a trial decryption with the key ki.

The distribution of Ti has a crucial impact on the precision of estimating the
data complexity of Matsui’s Algorithm 2. First of all, the distribution of the Ti

for the wrong keys has to be determined. It has been generally assumed that once
the ciphertext is partially decrypted using a wrong key, the resulting permutation
– over which the linear approximation is checked – turns into a randomly chosen
permutation. This is called the wrong key randomisation hypothesis [15,19].
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Multiple works have used this hypothesis and it usually proves to reflect the
reality. However, in its basic formulation it does not explicitly specify which
distribution to assume for the Ti. In the sequel, we argue that this is exactly
the point where the standard interpretation of the wrong key randomisation
hypothesis needs adjustment.

To the best of our knowledge, all previous complexity evaluations of Matsui’s
Algorithm 2 have used the hypothesis that for all wrong keys kw, 0 ≤ w �= r <
2m, the approximation (α, β) will hold with probability of exactly 1/2, that is
with bias zero. This constitutes the best scenario from the attacker’s point of
view:

Hypothesis 1 (Standard wrong key randomisation hypothesis). Con-
sider a nontrivial linear approximation L = (α, β) with absolute bias |ε| 	 0
for virtually all possible cipher keys. Let kr be the right subkey guess. Then, for
virtually all cipher keys and for all wrong subkey guesses kw �= kr:

∣

∣

∣ Pr(L holds
∣

∣ kw) − 1
2

∣

∣

∣ = 0.

In this case, making the usual independence assumption, the distribution of
the wrong key counters Tw is given by a binomial distribution with probability
p = 1/2 and N repetitions. For sufficiently large N , this can be very closely
approximated by a normal distribution with mean Np = N/2 and variance
Np(1 − p) = N/4. The sample bias ε̂w = Tw/N − 1/2 of the wrong keys is
therefore assumed to be approximately distributed as N (0, 1/(4N)).

Though the standard formulation of the wrong key randomisation hypothesis
is inspired by the intention to make the approximation (α, β) behave as for a
randomly drawn n-bit permutation, the distribution of the ε̂w is not completely
adequate. In fact, it is known (see Fact 1 and Corollary 2) that the bias of (α, β)
over the n-bit permutations is not constantly zero, but instead follows a known
distribution over the wrong keys. We therefore postulate:

Hypothesis 2 (Adjusted wrong key randomisation hypothesis). Con-
sider a nontrivial linear approximation L = (α, β) with absolute bias |ε| 	 0
for virtually all possible cipher keys. Let kr be the right subkey guess. Then, for
virtually all cipher keys and for all wrong subkey guesses kw �= kr:

∣

∣

∣ Pr(L holds
∣

∣ kw) − 1
2

∣

∣

∣ = N (0, 2−n−2).

The following lemma, which is a new result, takes this into account.

Lemma 1. In a linear attack with Matsui’s Algorithm 2 on an n-bit block cipher
using N known plaintexts, the sample bias ε̂w of the wrong keys approximately
follows a normal distribution with mean zero and variance 1/4 · (1/N + 1/2n):

ε̂w ∼ N (0, 1/4
(

1
N

+
1
2n

)

). (5)
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Proof. See the full version [7] of this paper for the proof.

Previous interpretations of the wrong key randomisation hypothesis have
therefore used the mean zero instead of the full distribution N (0, 2−n−2) for the
bias when decrypting with a wrong key. For the sample bias of the wrong keys,
this resulted in using N (0, 1/(4N)) instead of N (0, 1/4

(

1
N + 1

2n

)

), implying that
the distributions for the right key and the wrong keys were assumed to only
differ in the mean, but had the same variance. While this arguably simplifies the
analysis, the possible impact of this simplification has to be investigated.

Experimental Verification. Even in the new form presented in Lemma 1, the
wrong key randomisation hypothesis remains an idealisation. In order to verify
that it reflects the reality with reasonable accuracy, we have experimentally
determined the distribution of the sample bias over 216 wrong keys for two
structurally very different small-scale ciphers with a block length of 20 bits:
SmallPresent-20 [22] with 8 rounds, and RC6-5/6/10 [31] with four 5-bit
words, 6 rounds and an 80-bit key. In both cases, the number of samples was
N = 216. As illustrated in Fig. 1 the resulting distributions follow the theoretical
estimate of (5) quite closely in both cases. Note that the scattering of data points
occurs due to the fact that we are basically using a histogram with bin size one,
and deal with raw data instead of averaging.

3.2 Probability of Success

In this section, we study the implications of Lemma 1 for the success probability
in linear cryptanalysis with Matsui’s Algorithm 2. This leads to a new formula
for the success probability of a linear attack.

Theorem 2. Consider a linear attack with Matsui’s Algorithm 2 on an n-bit
block cipher (n ≥ 5) using a linear approximation with bias ε �= 0 and sufficiently

 0
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 0.0015
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 0.0025

 0.003

-0.015 -0.01 -0.005  0  0.005  0.01  0.015

Experimental sample bias distribution
Normal approximation (Lemma 1)

(a) SmallPresent -20, 8 rounds

 0
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 0.0015

 0.002

 0.0025

 0.003

-0.015 -0.01 -0.005  0  0.005  0.01  0.015

Experimental sample bias distribution
Normal approximation (Lemma 1)

(b) RC6-5/6/10

Fig. 1. Experimental distribution of the sample bias over 216 wrong keys and 216 texts
for SmallPresent and small-scale RC6.
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large N ≤ 2n known plaintexts. Denote by PS the probability that this attack
succeeds with an advantage of a > 0 bits over exhaustive key search. Then

PS ≈ Φ

(

2
√

N |ε| −
√

1 +
N

2n
Φ−1(1 − 2−a−1)

)

. (6)

Proof. See the full version of this paper [7] for the proof.

Note that the difference between (6) and Selçuk’s formula (1) lies in the

factor
√

1 + N
2n of the term Φ−1(1−2−a−1). Since Φ is monotonously increasing,

our estimate for PS is always smaller or equal to (1), and the resulting data
complexity required for a certain advantage and PS will always be at least as
big as the one of (2).

The biggest deviations between both models occur when the influence of the

second term
√

1 + N
2n · Φ−1(1 − 2−a−1) grows. This can happen if the adversary

seeks a particularly big advantage a, or when the number of known plaintexts
gets close to 2n. Both cases typically occur when the cryptanalyst is aiming for
the maximum possible number of rounds that can be broken by his respective
linear attack.

4 Non-monotonicity of Success Rate as Function
of Data Complexity

Consider any fixed given combination of the bias ε, the block length n and the
advantage a. The success probability of a linear attack is then a function of the
number of known plaintexts N only and can hence be expressed as PS(N). Even
though our estimate for PS(N) given by Theorem 2 is always smaller or equal to
Selçuk’s formula (1), the addition of the second term results in a function that
is not necessarily monotonously increasing in N anymore.

From (6), we can derive

Proposition 1. For fixed ε, a and n, the success probability PS(N) with respect
to the data complexity as given by Eq. (6) attains a relative maximum at

̂N
def=

4|ε|2 · 22n

(Φ−1(1 − 2−a−1))2 − 4|ε|2 · 22n
. (7)

Proposition 1 implies that our model can in certain cases predict a decrease
in success probability for an increased number of known plaintexts. While this
may seem counterintuitive at first, one has to take into account that the success
probability depends on the overlapping area between two approximately normal
distributions, namely N (ε, 1

4N ) for the right key and N (0, 1
4

(

1
N + 1

2n

)

) for the
wrong keys. In the context of small ε and large N of the order 2n, increasing
N can actually result in increasing the overlapping area, and hence decrease the
success probability. This can be seen as a direct consequence of linear cryptanaly-
sis being a known plaintext attack: Since the observed plaintexts are sampled
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(b) Situation for N = 2
17 .

Fig. 2. Example of an equal overlapping area between N (ε, 1
4N

) and N (0, 1
4

(
1
N

+ 1
2n

)
)

for n = 20, ε = 2−10 and different values of N .

independently and uniformly at random from the plaintext space, the probabil-
ity of duplicates increases with N , up to a point where adding more samples to
the statistic only amplifies the noise. An attack exploiting a fixed linear approx-
imation with fewer known plaintexts could therefore be more efficient than with
more given samples.

A given advantage a corresponds to a fixed threshold T for distinguishing the
distributions, with the type I error EI = 1−PS varying with N , and fixed type II
error EII = 2−a−1. Having PS(N) = PS(N ′) for N �= N ′ is therefore equivalent
to having the same overlapping area EI +EII between the distributions for N and
N ′ samples. This is depicted in Fig. 2: the overlapping area EI +EII between the
two Gaussian distributions in Fig. 2a and b is the same for different values of N .

We note that two conditions have to be fulfilled to be able to speak of mean-
ingful (i.e., practically relevant) non-monotonous behaviour: First, the condition
̂N < 2n has to be satisfied (since N cannot exceed 2n); and second, one must
have PS ≥ 2−a, i.e. the success probability of the attack must be higher than
two times the false positive rate. Otherwise, the adversary would have to repeat
the attack 1/PS > 2a times and gain only a bits advantage over the exhaustive
search.

An example of a parameter combination fulfilling both conditions is |ε| =
2−10, n = 20 and a = 12, i.e., seeking a large advantage out of an approxima-
tion with only marginal bias. In this case, ̂N ≈ 218.75 < 220, and PS( ̂N) ≈
2−9.89 > 2−12 = 2−a. With PS(220) ≈ 2−10.45, this constitutes a meaningful
example where using more samples actually decreases the success probability.
This theoretical prediction has been verified in the real world using experiments
with SmallPresent-20. The recovery of 10000 keys exhibiting exactly the bias
ε = 2−10 was attempted for different values of N . The results given in Fig. 3
confirm the non-monotonous behaviour.
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N theor. PS exp. PS

217 0.00072 0.0006
218 0.00096 0.0009
218.5 0.00104 0.0009
218.75 0.00105 0.0011
219 0.00104 0.0010
219.5 0.00093 0.0009
220 0.00071 0.0007

(a) Experimental success probability.
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(b) Plot of PS(N) (Theorem 2).

Fig. 3. Experimental verification of non-monotonous behaviour for SmallPresent-20
with ε = 2−10 and a = 12.

5 Evaluation of the Data Complexity

In practice, when evaluating a particular linear attack (where n and ε are fixed),
it is often interesting to determine the number N of required known plaintexts
for certain success probabilities and advantages that are sought by the attacker.
In the case of PS = 1/2 and an arbitrary fixed advantage of a ≥ 1 bits, Eq. (6)
yields a closed formula for N :

Corollary 3. With the assumptions of Theorem 2, using a linear approxima-
tion with bias |ε| > Φ−1(1 − 2−a−1)/2n/2−1, the number N of known plaintexts
required to obtain an advantage of a ≥ 1 bits with success probability PS = 1/2
is given by

N ≈ 1/
(

(

2ε/Φ−1(1 − 2−a−1)
)2 − 2−n

)

. (8)

The condition |ε| > Φ−1(1− 2−a−1)/2n/2−1 in Corollary 3 basically prevents
the estimate for N from becoming negative. This happens if the sought advantage
a is too big for the given bias |ε|, resulting in a data requirement of N > 2n texts,
which is clearly impossible and a step outside the model.

For values of PS different from 1/2, we can determine N by means of an
efficient numerical procedure for given PS , a, |ε| and n. Note that this procedure
is equally applicable to the case PS = 1/2.

Proposition 2. With the assumptions of Theorem 2, for fixed ε, PS , n and a,
the data complexity N can be determined numerically using Algorithm 5.1 up to
an absolute error of 1 − 2−n in linear time in the block length n.

Proof. See the full version of the paper [7] for the proof.
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Algorithm 5.1. Numerical computation of the data complexity N

Input: Bias ε, block length n, success probability PS ≥ 2−a, precision bound ν (∗)
Output: Data complexity N required for the given parameters.

1: Define f(N) = 2
√

N |ε| −
√

1 + N
2n Φ−1(1 − 2−a−1)

2: Calculate N̂ ← (4|ε|2 · 22n
)
/
((

Φ−1(1 − 2−a−1)
)2 − 4|ε|2 · 22n

)

3: lower ← 1, upper ← min{N̂ , 2n}, i ← 0
4: while |f(lower) − PS | > 10−ν and i < n do
5: mid ← lower+upper

2

6: if f(mid) < PS then
7: lower ← mid
8: else
9: upper ← mid

10: end if
11: i ← i + 1
12: end while
13: return lower
∗The value of ν in step 4 is used to early-abort fast-converging iterations as soon as an
adequate precision is reached. A recommended value is ν = 15.

Algorithm 5.1 runs very efficiently even for large block sizes. For instance,
a straightforward Matlab implementation computes the value N = 2126.76 for
n = 128, |ε| = 2−61.9, a = 10 and PS = 0.95 in about 0.09 seconds on an Intel
Core2 Duo E8400.

5.1 Experimental Results

In this section, we summarise the results of experiments carried out to verify the
accuracy of the estimate given by Theorem 2 and Proposition 2 and compare it
to other models.

The experiments were first carried out on SmallPresent-20, a small-scale
variant [22] of the block cipher present with block size n = 20 bits. The original
key schedule algorithm was used. In all experiments, we fixed a linear approxi-
mation with a certain bias ε and success probability PS and then analysed the
data complexity N which is required to obtain different levels of advantage with
this PS . Each experiment for a certain combination of N and a was averaged
over 1000 times to obtain a reliable relation between N and a for this fixed PS .
To verify the independence of our experimental findings from the structure of
SmallPresent, all experiments were repeated with RC6-5/r/10, an instantia-
tion of RC6 [31] with a block size of 20 bits and an 80-bit key. The results on
this small-scale variant of RC6 indicate that our model is equally applicable to
this substantially different block cipher structure.

In the first experiment on SmallPresent, a linear approximation with bias
ε = 2−8.22 was used. The success probability was fixed at 0.95. From (6), the
influence of the new model for wrong keys is expected to manifest itself already
for small advantages given this relatively high PS and low ε (compared to the
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(a) SmallPresent, 8 rounds, n = 20, |ε| =
2−8.22, PS = 0.95.
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(b) RC6-5/8/10, n = 20, |ε| = 2−8.09, PS =
0.95.

Fig. 4. Theoretical and experimental evaluation of the data complexity estimate of
Proposition 2 for different levels of advantage.

block length). The results are depicted in Fig. 4a. The curve with squares was
obtained using Proposition 2 with an estimation of the hull bias averaged over
200 random keys. We can see that the experiments follow the theoretical pre-
diction very closely. The difference to the estimate of [33] is also apparent as
soon as a ≥ 6. For a = 11, Selçuk’s formula can result in an underestimation of
N of factor two. The line with crosses represents the estimate based on Algo-
rithm 1 of [6]. The results of an analogous experiment on RC6-5/8/10 are given
in Fig. 4b.

Additional experimental results for different levels of ε and a are given the
full version of the paper [7].

Our experiments indicate that Theorem 2 and its derivatives are unlikely to
decrease the precision in comparison to previous work, since our estimates are
more realistic for large a and/or low ε but very close to Selçuk’s for small advan-
tages and/or high biases. They can hence be used as a universal replacement.
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Larger Block Sizes. Given the experimental evidence supporting the accuracy
of the estimates based on Theorem 2, it remains to investigate the impact of the
new model for larger block sizes where no practical experiments can be carried
out. This is detailed in the full version of the paper [7].

6 Towards a More Realistic Key Equivalence Hypothesis

In order to evaluate the success probability and data complexity of a linear
attack using Matsui’s Algorithm 2, one has to know the exact (absolute value of
the) bias ε(kr) of the used linear approximation (α, β) for the right key kr.

6.1 Standard Key Equivalence Hypothesis

Dually to the wrong key randomisation hypothesis, a common assumption for the
statistical behaviour when partially de- and/or encrypting with the right key is
that the bias of the resulting linear approximation does not deviate significantly
from its average over all keys [19]. More concretely, this is usually interpreted in
the following way [15], which we call the standard key equivalence hypothesis:

Hypothesis 3 (Standard key equivalence hypothesis). Consider a non-
trivial linear approximation L = (α, β) with bias ε(kr). Then |ε(kr)| is indepen-
dent of the choice of the key:

|ε(kr)| = 2−κ
∑

k∈F
κ
2

|ε(k)| ∀kr.

However, for most practically interesting designs (including the AES, Serpent
and PRESENT), it has been shown that this strong form of the key equivalence
hypothesis does not hold [8,9]. In the case of key-alternating ciphers (or Feis-
tel ciphers which can be written as such), the contributions of the biases of
the individual trails to the bias of the hull for a fixed key kr can be explicitly
computed [8,9] as:

ε(kr) =
∑

u0=α,ur=β

(−1)dU ⊕UT K |εU |, (9)

with K denoting the key expansion of the key kr. This is known as the linear
hull, which causes the trail biases to be added or subtracted depending on the
value of the key [18,23,27,32]. As a consequence, it usually becomes infeasible
to compute the exact value of |εr| or even its average over all keys.

Since the standard key equivalence hypothesis does not hold in most cases,
the question arises which value of εr to take for the evaluation of the attack
complexity. For instance, the work [30] fixes the expanded key of present to zero
to estimate εr. We note, though, that using a different key for this estimation will
result in a different value of εr and hence change the estimated attack complexity.

In order to address this issue, we need to refine the usual key equivalence
hypothesis by taking the influence of linear hulls into account.
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To this end, we propose to decompose the linear hull into two parts: a signal
part (corresponding to the known dominant trails) and a noise part (consisting of
the unknown remainder of the hull). The signal part is then sampled for random
cipher keys to obtain a more reliable evaluation of the impact of those dominant
trails. We then model the noise part statistically to make the estimation of
complexity more realistic.

Previous approaches have omitted the influence of the unknown trails com-
pletely, and as has been demonstrated [23,27], the influence of the unknown part
of the hull can be very significant. Additionally, we average the data complexity
estimate over a number of randomly drawn master keys, as opposed to fixing one
specific expanded key. This leads to a refined formulation of the key equivalence
hypothesis.

6.2 Refined Key Equivalence Hypothesis

Assume that only one or a small number of dominant trails with high contri-
bution to the absolute bias of the hull (α, β) are known. In a linear attack, to
recover (part of) the key kr, this hull has an unknown bias εr(kr), potentially
varying from key to key. For each fixed value of the key, the actual value of
εr(kr) can be decomposed into the contributions that stem from the biases of
the known trails and the biases of the remaining unknown trails in the hull. We
define the former to be the signal and the latter the noise:

Definition 1. Consider the linear approximation (α, β) over an R-round itera-
tive block cipher and a fixed cipher key kr. The bias εr(kr) of the hull (α, β) is
given by

εr(kr) =
∑

u0=α,uR=β

εU (kr),

with εU (kr) denoting the bias of the trail U with key kr. Suppose some t dominant
trails U = {U1, . . . , Ut} of the hull (α, β) are known. By defining

εUsignal
(kr)

def=
∑

U∈U
εU (kr) (10)

εUnoise
(kr)

def=
∑

(α,β)\U
εU (kr), (11)

we obtain a repartitioning of the above sum as follows:

εr(kr) = εUsignal
(kr) + εUnoise

(kr). (12)

In contrast to our approach, Röck and Nyberg [32] mention the concept of con-
sidering a subset of dominant trails, but do not consider the remainder of the
hull.

Based on Corollary 2, the noise part εUnoise(kr) of the trail contributions can
now be modeled to approximately follow a normal distribution N (0, 2−n−2) over
the right keys. This leads to our refined key equivalence hypothesis:



34 A. Bogdanov and E. Tischhauser

Hypothesis 4 (Refined key equivalence hypothesis). In the setting of Def-
inition 1, the key-dependent bias of a linear approximation in a key-alternating
cipher is given by

ε(kr) = εUsignal
(kr) + εUnoise

(kr)

=
t

∑

j=1

(−1)dUj
⊕UT

j kr |εUj
| + N (0, 2−n−2).

Here, dUj
is either 0 or 1, standing for the key-independent part of the sign of

the linear trail contribution |εUj
|, while UT

j kr deals with the key-dependent part
of it.

7 Constructive Key Equivalence in Key-Alternating
Ciphers

This leads to the following algorithm for estimating the data complexity N of a
linear attack on an n-bit block cipher using the linear approximation (α, β): We
know t trails from the hull and sample εUsignal over a number of keys by means
of (9), each time adding εUnoise sampled from N (0, 2−n−2). For each tried key,
we compute an estimate for N based on this value of εr. Then the average over
all tried keys is taken as the final estimate for N . This procedure is described in
Algorithm 7.1.

Algorithm 7.1. Computation of N using the signal-noise decomposition of the
hull for key-alternating ciphers.
Input: Trails Uj , 1 ≤ j ≤ t from the hull (α, β), their absolute biases |εUj |, number of

keys � to sample.
Input: Block length n, success probability PS ≥ 2−a.
Output: Estimate of the data complexity N required for the given parameters.
1: for i = 1, . . . , � do
2: Select the master key ki uniformly at random and compute the expanded key.
3: Sample noise(ki) from N (0, 2−n−2).
4: Compute

ε(ki) = εUsignal(ki) + εUnoise(ki)

=

t∑
j=1

(−1)
dUj

⊕UT
j Ki |εUj | + noise(ki).

5: Compute N(ki) based on ε(ki) with Algorithm 5.1.
6: end for
7: return Average N = 1

�

∑�
i=1 N(ki).
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7.1 Experimenting the Signal/Noise Decomposition

We have performed experiments on SmallPresent-20 to illustrate the effect of
the signal/noise decomposition of a linear hull. With a block length of n = 20
bits, and an 80-bit key space, it is not feasible to compute the exact distribution
or even only the exact average bias of a hull (α, β) over the keys. Since n is small,
sampling and averaging over some keys is possible here, but this is not the case
anymore for realistic block lengths.

Consider the hull (α, β) = (0x20400, 0x20000) over 3 rounds. A branch-and-
bound search for trails with |ε| ≥ 2−11 yields 8 trails from the hull: three with
absolute bias |ε| = 2−10 and five with |ε| = 2−11. Based on this data, the following
estimates for the data complexities of a linear attack with PS = 0.95 and varying
advantages were computed based on Proposition 2:

1. N for εr(kr) of the known trails for one cipher key kr;
2. N determined with Algorithm 7.1 with 	 = 200 keys, but without the noise

part;
3. N determined with Algorithm 7.1 with 	 = 200 keys;
4. N for an estimation of the hull bias by means of the expected linear proba-

bility (ELP), averaged over all keys [28].

Additionally, the actual data complexity was determined experimentally. Each
experiment for a certain combination of N and a was averaged over 1000 times
to obtain a reliable relation between N and a for this fixed PS .

The results are depicted in Fig. 5. One observes that summing the trail biases
for one key results in a far too optimistic estimation. Averaging the data com-
plexity estimates for the signal trails for 200 keys (but without the noise part)
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Fig. 5. Theoretical and experimental evaluation of the data complexity with the
signal-noise decomposition of Algorithm 7.1. Cipher is SmallPresent with 5 rounds,
n = 20, PS = 0.95, the signal part contains 8 trails Uj with 2−10 ≤ |εUj | ≤ 2−11.
Experimental value of ε is 2−8.02.
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improves the accuracy, but yields an overestimate here. This can be attributed to
the impact of two factors: First, the hull must contain more signal trails that are
missing in our set of eight trails; and second, the noise impact of the remainder
of the hull is not accounted for. Additionally taking the noise into account yields
a more realistic estimate. In this specific case though, it is still an overestimate
since here obviously the remainder of the hull constructively helps to increase
the bias for many keys.

Figure 5 also compares our approach to the estimate based on the ELP,
obtained as the sum of the trail ELPs [28]. Note that computing the ELP exactly
is infeasible for realistic block ciphers, in contrast to our decomposition approach
where only a limited number of dominant trails have to be known.

8 Conclusions

In this paper, we proposed an approach to improving the accuracy of estimating
the data complexity and success probability of Matsui’s Algorithm 2.

First, we demonstrated that the standard interpretation of the wrong key
randomisation hypothesis in linear cryptanalysis implies a simplification that
can result in significant overestimations of the attack efficiency. Our adjusted
interpretation results in more precise estimates for the success probability and
data complexity of linear attacks. The largest improvements compared to pre-
vious results occur in the cases where the adversary attempts to use a linear
approximation with a low bias, or to attain a high computational advantage
over brute force, or both. These cases are particularly relevant in practice since
attacks are usually pushed to the limit by recovering many key bits or covering
as many rounds of the cipher as possible.

Second, our new analysis of linear attacks reveals that the success probability
is not a monotonous function of the data complexity, and can decrease if more
data is used. Somewhat surprisingly, using less data can therefore result in a
more powerful attack.

Third, we proposed a technique to refine the usual key equivalence hypothesis
by taking the linear hull effect into account.

Finally, all theoretical observations and techniques presented in this paper
have been verified by experiments with structurally different small-scale ciphers.

Acknowledgments. The authors would like to thank Vincent Rijmen for fruitful
discussions and the anonymous referees for their constructive comments.
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33. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptology 21(1), 131–147 (2008)

34. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

35. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

http://eprint.iacr.org/2010/143
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

	On the Wrong Key Randomisation and Key Equivalence Hypotheses in Matsui's Algorithm 2
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Block Ciphers and Linear Cryptanalysis
	2.3 Previous Analyses of the Data Complexity of Linear Attacks
	2.4 Distribution of Biases in Boolean Permutations

	3 Improved Key Randomisation Hypothesis and Success Rate
	3.1 More Accurate Wrong Key Randomisation
	3.2 Probability of Success

	4 Non-monotonicity of Success Rate as Function of Data Complexity
	5 Evaluation of the Data Complexity
	5.1 Experimental Results

	6 Towards a More Realistic Key Equivalence Hypothesis
	6.1 Standard Key Equivalence Hypothesis
	6.2 Refined Key Equivalence Hypothesis

	7 Constructive Key Equivalence in Key-Alternating Ciphers
	7.1 Experimenting the Signal/Noise Decomposition

	8 Conclusions
	References


