
Montgomery Multiplication
Using Vector Instructions

Joppe W. Bos, Peter L. Montgomery, Daniel Shumow,
and Gregory M. Zaverucha(B)

Microsoft Research, Redmond, USA
{jbos,peter.montgomery,danshu,gregz}@microsoft.com

Abstract. In this paper we present a parallel approach to compute
interleaved Montgomery multiplication. This approach is particularly
suitable to be computed on 2-way single instruction, multiple data plat-
forms as can be found on most modern computer architectures in the
form of vector instruction set extensions. We have implemented this
approach for tablet devices which run the x86 architecture (Intel Atom
Z2760) using SSE2 instructions as well as devices which run on the ARM
platform (Qualcomm MSM8960, NVIDIA Tegra 3 and 4) using NEON
instructions. When instantiating modular exponentiation with this par-
allel version of Montgomery multiplication we observed a performance
increase of more than a factor of 1.5 compared to the sequential imple-
mentation in OpenSSL for the classical arithmetic logic unit on the Atom
platform for 2048-bit moduli.

1 Introduction

Modular multiplication of large integers is a computational building block used
to implement public-key cryptography. For schemes like RSA [34], ElGamal [11]
or DSA [36], the most common size of the modulus for parameters in use is large;
1024 bits long [20,28]. The typical modulus size will increase to 2048 and 3072
bits over the coming years, in order to comply with the current 112- and 128-
bit security standard (cf. [31]). When computing multiple modular multiplica-
tions, Montgomery multiplication [30] provides a speed up to this core arithmetic
operation. As RSA-based schemes are arguably the most frequently computed
asymmetric primitives today, improvements to Montgomery multiplication are
of immediate practical importance.

Many modern computer architectures provide vector instruction set exten-
sions in order to perform single instruction, multiple data (SIMD) operations.
Example platforms include the popular x86 architecture as well as the ARM
platform that can be found in almost all modern smartphones and tablets. The
research community has studied ways to reduce the latency of Montgomery mul-
tiplication by parallelizing this computation. These approaches vary from using
the SIMD paradigm [8,10,18,23] to the single instruction, multiple threads par-
adigm using a residue number system [14,29] as described in [4,19] (see Sect. 2.3
for a more detailed overview).

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 471–489, 2014.
DOI: 10.1007/978-3-662-43414-7 24, c© Springer-Verlag Berlin Heidelberg 2014

472 J. W. Bos et al.

In this paper we present an approach to split the Montgomery multiplica-
tion into two parts which can be computed in parallel. We flip the sign of the
precomputed Montgomery constant and accumulate the result in two separate
intermediate values that are computed concurrently. This avoids using a redun-
dant representation, for example suggested in the recent SIMD approach for
Intel architectures [18], since the intermediate values do not overflow to an addi-
tional word. Moreover, our approach is suitable for implementation using vector
instruction set extensions which support 2-way SIMD operations, i.e., a single
instruction that is applied to two data segments simultaneously. We implemented
the sequential Montgomery multiplication algorithm using schoolbook multipli-
cation on the classical arithmetic logic unit (ALU) and the parallel approach on
the 2-way SIMD vector instruction set of both the x86 (SSE2) and the ARM
(NEON) processors. Our experimental results show that on both 32-bit x86 and
ARM platforms, widely available in a broad range of mobile devices, this parallel
approach manages to outperform our classical sequential implementation.

Note, that the approach and implementation used in the GNU multiple pre-
cision arithmetic library (GMP) [13], is faster than the one presented in this
paper and the one used in OpenSSL [32] on some Intel platforms we tested. This
approach does not use the interleaved Montgomery multiplication but first com-
putes the multiplication, using asymptotically fast method like Karatsuba [25],
followed by the Montgomery reduction. GMP uses dedicated squaring code which
is not used in our implementation. Note, however, that GMP is not a crypto-
graphic library and does not strive to provide constant-time implementations.
See Sect. 3.1 for a more detailed discussion of the different approaches.

2 Preliminaries

In this section we recall some of the facts related to SIMD instructions and
Montgomery multiplication. In Sect. 2.3 we summarize related work of parallel
software implementations of Montgomery multiplication.

2.1 SIMD Instruction Set Extensions

Many processors include instruction set extensions. In this work we mainly focus
on extensions which support vector instructions following the single instruction,
multiple data (SIMD) paradigm. The two platforms we consider are the x86 and
the ARM, and the instruction set extensions for these platforms are outlined
below. The main vector instructions used in this work (on both processor types)
are integer multiply, shift, bitwise AND, addition, and subtraction.

The x86 SIMD Instruction Set Extensions. SIMD operations on x86 and
x64 processors have been supported in a number of instruction set extensions,
beginning with MMX in 1997. This work uses the streaming SIMD extensions 2
(SSE2) instructions, introduced in 2001. SSE2 has been included on most Intel
and AMD processors manufactured since then. We use “SSE” to refer to SSE2.

Montgomery Multiplication Using Vector Instructions 473

Algorithm 1. The radix-r interleaved Montgomery multiplication [30] method.

Input:

{
A,B,M, µ such that A =

∑n−1
i=0 air

i, 0 ≤ ai < r, 0 ≤ A,B < M, 2 � M,
rn−1 ≤ M < rn, gcd(r,M) = 1, µ = −M−1 mod r.

Output: C ≡ A · B · r−n mod M such that 0 ≤ C < M .
1: C ← 0
2: for i = 0 to n − 1 do
3: C ← C + ai · B
4: q ← µ · C mod r
5: C ← (C + q · M)/r
6: if C ≥ M then
7: C ← C − M
8: return C

SSE provides 128-bit SIMD registers (eight registers on x86 and sixteen registers
on x64) which may be viewed as vectors of 1-, 8-, 16-, 32-, or 64-bit integer
elements operating using 128-, 16-, 8-, 4-, or 2-way SIMD respectively. Vector
operations allow multiple arithmetic operations to be performed simultaneously,
for example PMULLUDQ multiplies the low 32-bits of a pair of 64-bit integers and
outputs a pair of 64-bit integers. For a description of SSE instructions, see [22].

The ARM NEON SIMD Engine. Some ARM processors provide a set of
additional SIMD operations, called NEON. The NEON register file can be viewed
as either sixteen 128-bit registers or 32 64-bit registers. The NEON registers can
contain integer vectors, as in SSE. The operations provided by NEON are com-
parable to those provided by SSE. For example, the vector multiply instruction
vmul takes two pairs of 32-bit integers as input and produces a pair of 64-bit
outputs. This is equivalent to the SSE2 instruction PMULUDQ, except the inputs
are provided in 64-bit registers, rather than 128-bit registers. Another example,
but without an SSE equivalent is the vmlal instruction which performs a vmull
and adds the results to a 128-bit register (treated as two 64-bit integers). For a
complete description of the NEON instructions, see [3].

2.2 Montgomery Arithmetic

Montgomery arithmetic [30] consists of transforming operands into a Mont-
gomery representation, performing the desired computations on these trans-
formed numbers, then converting the result (also in Montgomery representation)
back to the regular representation. Due to the overhead of changing representa-
tions, Montgomery arithmetic is best when used to replace a sequence of modular
multiplications, since the overhead is amortized.

The idea behind Montgomery multiplication is to replace the expensive divi-
sion operations required when computing the modular reduction by cheap shift
operations (division by powers of two). Let w denote the word size in bits. We
write integers in a radix r system, for r = 2w where typical values of w are
w = 32 or w = 64. Let M be an n-word odd modulus such that rn−1 ≤ M < rn.

474 J. W. Bos et al.

The Montgomery radix rn is a constant such that gcd(rn,M) = 1. The Mont-
gomery residue of an integer A ∈ Z/MZ is defined as ˜A = A · rn mod M . The
Montgomery product of two residues is defined as M(˜A, ˜B) = ˜A· ˜B ·r−n mod M .
Algorithm 1 outlines interleaved Montgomery multiplication, denoted as coarsely
integrated operand scanning in [26], where the multiplication and reduction are
interleaved. Note that residues may be added and subtracted using regular mod-
ular algorithms since ˜A ± ˜B ≡ (A · rn) ± (B · rn) ≡ (A ± B) · rn (mod M).

2.3 Related Work

There has been a considerable amount of work related to SIMD implementations
of cryptography. The authors of [6,12,35] propose ways to speed up cryptography
using the NEON vector instructions. Intel’s SSE2 vector instruction set extension
is used to compute pairings in [15] and multiply big numbers in [21]. Simultane-
ously, people have studied techniques to create hardware and software implemen-
tations of Montgomery multiplication. We now summarize some of the techniques
to implement Montgomery multiplication concurrently in a software implemen-
tation. A parallel software approach describing systolic (a specific arrangement
of processing units used in parallel computations) Montgomery multiplication is
described in [10,23]. An approach using the vector instructions on the Cell micro-
processor is considered in [8]. Exploiting much larger parallelism using the single
instruction multiple threads paradigm, is realized by using a residue number sys-
tem [14,29] as described in [4]. This approach is implemented for the massively
parallel graphics processing units in [19]. An approach based on Montgomery
multiplication which allows one to split the operand into two parts, which can
be processed in parallel, is called bipartite modular multiplication and is intro-
duced in [24]. More recently, the authors of [18] describe an approach using the
soon to be released AVX2 SIMD instructions, for Intel’s Haswell architecture,
which uses 256-bit wide vector instructions. The main difference between the
method proposed in this work and most of the SIMD approaches referred to
here is that we do not follow the approach described in [21]. We do not use a
redundant representation to accumulate multiple multiplications. We use a dif-
ferent approach to make sure no extra words are required for the intermediate
values (see Sect. 3).

Another approach is to use the SIMD vector instructions to compute multiple
Montgomery multiplications in parallel. This can be useful in applications where
many computations need to be processed in parallel such as batch-RSA. This
approach is studied in [33] using the SSE2 vector instructions on an Pentium 4
and in [7] on the Cell processor.

3 Montgomery Multiplication Using SIMD Extensions

Montgomery multiplication, as outlined in Algorithm 1, does not lend itself to
parallelization directly. In this section we describe an algorithm capable of com-
puting the Montgomery multiplication using two threads running in parallel

Montgomery Multiplication Using Vector Instructions 475

Algorithm 2. A parallel radix-232 interleaved Montgomery multiplication algo-
rithm. Except for the computation of q, the arithmetic steps in the outer for-loop
performed by both Computation 1 and Computation 2 are identical. This app-
roach is suitable for 32-bit 2-way SIMD vector instruction units. Note that the
value of the precomputed Montgomery inverse µ is different (µ = M−1 mod 232)
than the one used in Algorithm 1 (µ = −M−1 mod 232).

Input:

⎧⎨
⎩

A,B,M, µ such that A =
∑n−1

i=0 ai2
32i, B =

∑n−1
i=0 bi2

32i,

M =
∑n−1

i=0 mi2
32i, 0 ≤ ai, bi < 232, 0 ≤ A,B < M,

232(n−1) ≤ M < 232n, 2 � M, µ = M−1 mod 232.

Output: C ≡ A · B · 2−32n mod M such that 0 ≤ C < M.

Computation 1 Computation 2

di = 0 for 0 ≤ i < n ei = 0 for 0 ≤ i < n
for j = 0 to n − 1 do for j = 0 to n − 1 do

q ← ((µ · b0) · aj + µ · (d0 − e0)) mod 232

t0 ← aj · b0 + d0 t1 ← q · m0 + e0 // Note that t0 ≡ t1 (mod 232)

t0 ←
⌊

t0
232

⌋
t1 ←

⌊
t1
232

⌋

for i = 1 to n − 1 do for i = 1 to n − 1 do
p0 ← aj · bi + t0 + di p1 ← q · mi + t1 + ei

t0 ←
⌊ p0
232

⌋
t1 ←

⌊ p1
232

⌋
di−1 ← p0 mod 232 ei−1 ← p1 mod 232

dn−1 ← t0 en−1 ← t1
↘ ↙
C ← D − E // where D =

n−1∑
i=0

di2
32i, E =

n−1∑
i=0

ei2
32i

if C < 0 do C ← C + M

which perform identical arithmetic steps. Hence, this algorithm can be imple-
mented efficiently using common 2-way SIMD vector instructions. For illustrative
purposes we assume a radix-232 system, but this can be adjusted accordingly to
other choices of radix.

As can be seen from Algorithm 1 there are two 1×n → (n+1) limb (aiB and
qM) and a single 1×1 → 1 limb (µC mod r) multiplications per iteration. These
three multiplications depend on each other, preventing concurrent computation.
In order to remove this dependence, note that for the computation of q only
the first limb c0 of C =

∑n−1
i=0 ci232i is required. Hence, if one is willing to

compute the updated value of c0 twice then the two larger 1 × n → (n + 1)
limb multiplications become independent of each other and can be computed in
parallel. More precisely, lines 3, 4, and 5 of Algorithm 1 can be replaced with

q ← ((c0 + ai · b0)µ) mod r

C ← (C + ai · B + q · M)/r

ensuring that the two larger multiplications do not depend on each other.

476 J. W. Bos et al.

The second idea is to flip the sign of the Montgomery constant µ: i.e. instead
of using −M−1 mod 232 (as in Algorithm 1) we use µ = M−1 mod 232 (the
reason for this choice is outlined below). When computing the Montgomery
product C = A ·B · 2−32n mod M , for an odd modulus M such that 232(n−1) ≤
M < 232n, one can compute D, which contains the sum of the products aiB, and
E, which contains the sum of the products qM , separately. Due to our choice
of the Montgomery constant µ we have C = D − E ≡ A · B · 2−32n (mod M),
where 0 ≤ D,E < M : the maximum values of both D and E fit in an n-limb
integer, avoiding a carry that might result in an (n + 1) limb long integer as in
Algorithm 1. This approach is outlined in Algorithm 2.

At the start of every iteration of j the two separate computations need some
communication in order to compute the new value of q. In practice, this com-
munication requires extracting the values d0 and e0, the first limb of D and
E respectively, from the SIMD vector. No such extracting is required in the
inner-most loop over the i values in Algorithm 2. The value of q is computed as

q = ((µ · b0) · aj + µ · (d0 − e0)) mod 232 = µ(aj · b0 + c0) mod 232

since c0 = d0 − e0. Note that one can compute (µ · b0) mod 232 at the beginning
of the algorithm once and reuse it for every iteration of the for-loop.

Except for the computation of q, all arithmetic computations performed by
Computation 1 and Computation 2 are identical but work on different data.
This makes Algorithm 2 suitable for implementation using 2-way 32-bit SIMD
vector instructions. This approach benefits from 2-way SIMD 32 × 32 → 64-
bit multiplication and matches exactly the 128-bit wide vector instructions as
present in SSE and NEON. Changing the radix used in Algorithm 2 allows
implementation with larger or smaller vector instructions. For example, if a
64 × 64 → 128-bit vector multiply instruction is provided in a future version of
AVX, implementing Algorithm 2 in a 264-radix system with 256-bit wide vector
instructions could potentially speed-up modular multiplication by a factor of up
to two on 64-bit systems (see Sect. 3.1).

At the end of Algorithm 2, there is a conditional addition, as opposed to a
conditional subtraction in Algorithm 1, due to our choice of µ. The condition
is whether D − E is negative (produces a borrow), in this case the modulus
must be added to make the result positive. This conditional addition can be
converted into straight-line code by creating a mask depending on the borrow
and selecting either D − E (if there is no borrow) or D − E + M (if there is a
borrow) so that the code runs in constant-time (an important characteristic for
side-channel resistance [27]).

3.1 Expected Performance

The question remains if Algorithm 2, implemented for a 2-way SIMD unit, out-
performs Algorithm 1, implemented for the classical ALU. This mainly depends
on the size of the inputs and outputs of the integer instructions, how many

Montgomery Multiplication Using Vector Instructions 477

Table 1. A simplified comparison, only stating the number of arithmetic operations
required, of the expected performance of Montgomery multiplication when using a 32n-
bit modulus for a positive even integer n. The left side of the table shows arithmetic
instruction counts for the sequential algorithm using the classical ALU (Algorithm 1)
and when using 2-way SIMD instructions with the parallel algorithm (Algorithm 2).
The right side of the table shows arithmetic instruction counts when using one level of
Karatuba’s method [25] for the multiplication as analyzed in [17]

Instruction Classical 2-way SIMD Karatsuba Instruction
32-bit 64-bit 32-bit 32-bit

add - - n 13
4
n2 + 8n + 2 add

sub - - n 7
4
n2 + n mul

shortmul n n
2

2n
muladd 2n n -
muladdadd 2n(n − 1) n(n

2
− 1) -

SIMD muladd - - n
SIMD muladdadd - - n(n − 1)

instructions can be dispatched per cycle, and the number of cycles an instruc-
tion needs to complete. In order to give a (simplified) prediction of the perfor-
mance we compute the expected performance of a Montgomery multiplication
using a 32n-bit modulus for a positive even integer n. Let muladdw(e, a, b, c)
and muladdaddw(e, a, b, c, d) denote the computation of e = a × b + c and
e = a × b + c + d, respectively, for 0 ≤ a, b, c, d < 2w and 0 ≤ e < 22w as a
basic operation on a compute architecture which works on w-bit words. Some
platforms have these operations as a single instruction (e.g., on some ARM
architectures) or they must be implemented using a multiplication and addi-
tion(s) (as on the x86 platform). Furthermore, let shortmulw(e, a, b) denote
e = a × b mod 2w: this only computes the lower word of the result and can be
done faster (compared to a full product) on most platforms.

Table 1 summarizes the expected performance of Algorithm 1 and 2 in terms
of arithmetic operations only (e.g., the data movement, shifting and masking
operations are omitted). Also the operations required to compute the final con-
ditional subtraction or addition have been omitted. When solely considering
the muladd and muladdadd instructions it becomes clear from Table 1 that the
SIMD approach uses exactly half of the number of operations compared to the
32-bit classical implementation and almost twice as many operations compared
to the classical 64-bit implementations. However, the SIMD approach requires
more operations to compute the value of q every iteration and has various other
overhead (e.g., inserting and extracting values from the vector). Hence, when
assuming that all the characteristics of the SIMD and classical (non-SIMD)
instructions are identical, which will not be the case on all platforms, then we
expect Algorithm 2 running on a 2-way 32-bit SIMD unit to outperform a clas-
sical 32-bit implementation using Algorithm 1 by at most a factor of two while
being roughly twice as slow when compared to a classical 64-bit implementation.

478 J. W. Bos et al.

Inherently, the interleaved Montgomery multiplication algorithm (as used
in this work) is not compatible with asymptotically faster integer multiplica-
tion algorithms like Karatsuba multiplication [25]. We have not implemented
the Montgomery multiplication by first computing the multiplication using such
faster methods, and then computing the modular reduction, using SIMD vector
instructions in one or both steps. In [17], instruction counts are presented when
using the interleaved Montgomery multiplication, as used in our baseline imple-
mentation, as well as for an approach where the multiplication and reduction are
computed separately. Separating these two steps makes it easier to use a squar-
ing algorithm. In [17] a single level of Karatsuba on top of Comba’s method [9]
is considered: the arithmetic instruction counts are stated in Table 1. For 1024-
bit modular multiplication (used for 2048-bit RSA decryption using the CRT),
the Karatsuba approach can reduce the number of multiplication and addition
instructions by a factor 1.14 and 1.18 respectively on 32-bit platforms compared
to the sequential interleaved approach. When comparing the arithmetic instruc-
tions only, the SIMD approach for interleaved Montgomery multiplication is 1.70
and 1.67 times faster than the sequential Karatsuba approach for 1024-bit mod-
ular multiplication on 32-bit platforms. Obviously, the Karatsuba approach can
be sped up using SIMD instructions as well.

The results in Table 1 are for Montgomery multiplication only. It is known
how to optimize (sequential) Montgomery squaring [16], but as far as we are
aware, not how to optimize squaring using SIMD instructions. Following the
analysis from [17], the cost of a Montgomery squaring is 11n+14

14n+8 and 3n+5
4n+2 the

cost of a Montgomery multiplication when using the Karatsuba or interleaved
Montgomery approach on n-limb integers. For 1024-bit modular arithmetic (as
used in RSA-2048 with n = 32) this results in 0.80 (for Karatsuba) and 0.78 (for
interleaved). For RSA-2048, approximately 5/6 of all operations are squarings:
this highlights the potential of an efficient squaring implementation.

4 Implementation Results

We have implemented interleaved Montgomery modular multiplication (Algo-
rithm 1) as a baseline for comparison with the SIMD version (Algorithm 2).
In both implementations, the final addition/subtraction was implemented using
masking such that it runs in constant time, to resist certain types of side-channel
attacks using timing and branch prediction. Since the cost of this operation was
observed to be a small fraction of the overall cost, we chose not to write a sepa-
rate optimized implementation for operations using only public values (such as
signature verification).

Benchmark Hardware. Our implementations were benchmarked on recent
Intel x86-32, x64 and ARM platforms. On the Intel systems, Windows 7 and Win-
dows 8 were used, and on ARM systems Windows RT was used. The Microsoft

Montgomery Multiplication Using Vector Instructions 479

C/C++ Optimizing Compiler Version 16.10 was used for x86 and x64, and ver-
sion 17.00 was used for ARM.1 Our benchmark systems are the following:

Intel Xeon E31230. A quad core 3.2 GHz CPU on an HP Z210 workstation.
We used SSE2 for Algorithm 2 and also benchmark x86-32 and x86-64 imple-
mentations of Algorithm 1 for comparison.

Intel Atom Z2760. A dual core 1.8 GHz system-on-a-chip (SoC), on an Asus
Vivo Tab Smart Windows 8 tablet.

NVIDIA Tegra T30. A quad core 1.4 GHz ARM Cortex-A9 SoC, on an
NVIDIA developer tablet.

Qualcomm MSM8960. A quad core 1.8 GHz Snapdragon S4 SoC, on a Dell
XPS 10 tablet.

NVIDIA Tegra 4. A quad core 1.91 GHz ARM Cortex-A15 SoC, on an
NVIDIA developer tablet.

We chose to include the Xeon processor to confirm the analysis of Sect. 3.1, that
the x64 implementation should give the best performance, and to compare it
with the SIMD implementation. The other processors are common in tablets
and smartphones, and on these platforms, the SIMD implementation should be
the best available. The performance of 32-bit code is also of interest on 64-bit
systems, since 32-bit crypto libraries are included on 64-bit systems (e.g., on
64-bit Windows), to allow existing x86 applications to run on the 64-bit system
without being ported and recompiled.

On the Xeon system, Intel’s Turbo Boost feature will dynamically increase
the frequency of the processor under high computational load. We found Turbo
Boost had a modest impact on our timings. Since it is a potential source of
variability, all times reported here were measured with Turbo Boost disabled.

Benchmarks. We chose to benchmark the cost of modular multiplication for
512-bit, 1024-bit and 2048-bit moduli, since these are currently used in deployed
cryptography. The 512-bit modular multiplication results may also be interesting
for usage in elliptic curve and pairing based cryptosystems. We created imple-
mentations optimized for these “special” bitlengths as well as generic imple-
mentations, i.e., implementations that operate with arbitrary length inputs.
For comparison, we include the time for modular multiplication with 1024-
and 2048-bit generic implementations. Our x64 baseline implementation has no
length-specific code (we did not observe performance improvements).

We also benchmark the cost of RSA encryption and decryption using the
different modular multiplication routines. We do not describe our RSA imple-
mentation in detail, because it is the same for all benchmarks, but note that: (i)
decryption with an n-bit modulus is done with n/2-bit arithmetic using the Chi-
nese remainder theorem approach, (ii) this is a “raw” RSA operation, taking an
integer as plaintext input, no padding is performed, (iii) no specialized squaring
routine is used, and (iv) the public exponent in our benchmarks is always 216+1.

1 These were the newest versions available for each architecture at the time of writing.

480 J. W. Bos et al.

We compute the modular exponentiation using a windowing based approach. As
mentioned in (iii), we have not considered a specialized Montgomery squaring
algorithm for the sequential or the SIMD algorithms. Using squaring routines
can significantly enhance the performance of our code as discussed in Sect. 3.1.

All of our benchmarks are average times, computed over 105 runs for modular
multiplication, and 100 runs for RSA operations, with random inputs for each
run. With these choices the standard deviation is three percent or less. Note that
the performance results for RSA-1024 are stated for comparison’s sake only, this
80-bit secure scheme should not be used anymore (see NIST SP 800-57 [31]).

x86/x64 Results. In the first 32-bit benchmark (Xeon x86), our implemen-
tation using SIMD instructions is 1.6 to 2.5 times faster than the serial version
(see Table 2). The speed-up of the length-specific SIMD implementation over the
generic implementation is on average a factor 1.4, noticeably more than the factor
1.2 for the baseline. Algorithm 2 results in faster RSA operations as well, which
are roughly sped-up by a factor of two. Our second 32-bit benchmark (Atom
x86) was on average 1.69 times faster than our baseline. This makes our SIMD
algorithm the better option on this platform. However, the speed-up observed
was not as large as our Xeon x86 benchmark. This may be because the Atom has
an in-order instruction scheduler. The 64-bit implementation of Algorithm 1 is
roughly four times as fast as the 32-bit implementation and the SIMD algorithm
(also 32-bit) is right in the middle, roughly twice as slow as the 64-bit algorithm.
This agrees with our analysis from Sect. 3.1. On all platforms the performance
ratio between baseline and SIMD is slightly worse for 512-bit moduli due to the
overhead of using SIMD instructions. Algorithm 2 is still faster than the baseline
for 512-bit moduli on the Xeon x86, Atom and the Snapdragon S4.

ARM Results. On ARM our results are more mixed (see Table 3). First we
note that on the Tegra 3 SoC, our NEON implementation of Algorithm 2 is
consistently worse than the baseline, almost twice as slow. Going back to our
analysis in Sect. 3.1, this would occur if the cost of a vector multiply instruction
(performing two 32-bit multiplies) was about the cost of two non-vector multiply
instructions. This is (almost) the case according to the Cortex-A9 instruction
latencies published by ARM.2 Our efforts to pipeline multiple vector multiply
instructions did not sufficiently pay off – the length-specific implementations
give a 1.27 factor speed-up over the generic implementations, roughly the same
speed-up obtained when we optimize the baseline for a given bitlength (by fully
unrolling the inner loop).

On the newer ARM SoCs in our experiments, the S4 and Tegra 4, the results
are better. On the Snapdragon S4 the SIMD implementation is consistently bet-
ter than the baseline. The NEON length-specific implementations were especially
2 Results of the NEON vmull/vmlal instructions are available after 7 cycles, while

the two 32-bit outputs of the ARM umaal instruction become ready after 4 and 5
cycles [1,2].

Montgomery Multiplication Using Vector Instructions 481

T
a
b
le

2
.
Im

p
le

m
en

ta
ti

o
n

ti
m

in
g
s

in
m

ic
ro

se
co

n
d
s

a
n
d

cy
cl

es
fo

r
x
8
6
/
x
6
4

b
a
se

d
p
ro

ce
ss

o
rs

.
T

h
e

“
ra

ti
o
”

co
lu

m
n

is
b
a
se

li
n
e/

S
IM

D
.
T

h
e

5
1
2

g
,
1
0
2
4

g
a
n
d

2
0
4
8

g
ro

w
s

a
re

g
en

er
ic

im
p
le

m
en

ta
ti

o
n
s

th
a
t

d
o

n
o
t

o
p
ti

m
iz

e
fo

r
a

sp
ec

ifi
c

b
it

le
n
g
th

.

B
en

ch
m

a
rk

X
eo

n
x
8
6

X
eo

n
x
6
4

A
to

m
(x

8
6
)

B
a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o

m
o
d
m

u
l
5
1
2

1
.2

2
9

0
.8

0
5

1
.5

3
0
.4

9
8

0
.8

0
5

0
.6

2
5
.9

4
8

4
.3

1
7

1
.3

8
(c

y
cl

es
)

3
9
3
3

2
5
7
7

1
.5

3
1
5
9
8

2
5
7
7

0
.6

2
1
0
7
0
6

7
7
7
5

1
.3

8

m
o
d
m

u
l
1
0
2
4

3
.5

2
3

1
.8

4
2

1
.9

1
1
.0

3
0

1
.8

4
2

0
.5

6
2
1
.3

9
0

1
2
.3

8
8

1
.7

3
(c

y
cl

es
)

1
1
2
5
5

5
8
8
7

1
.9

1
3
2
9
5

5
8
8
7

0
.5

6
3
8
4
7
9

2
2
2
8
8

1
.7

3
R

S
A

en
c

1
0
2
4

7
5
.4

5
9

3
6
.7

4
5

2
.0

5
1
6
.4

1
1

3
6
.7

4
5

0
.4

5
4
0
7
.8

3
5

2
5
0
.2

8
5

1
.6

3
(c

y
cl

es
)

2
4
1
0
1
4

1
1
7
4
1
9

2
.0

5
5
2
4
5
7

1
1
7
4
1
9

0
.4

5
7
3
3
2
2
4

4
5
0
0
9
2

1
.6

3
R

S
A

d
ec

1
0
2
4

1
2
7
5
.0

3
0

6
5
6
.8

3
1

1
.9

4
2
7
8
.4

4
4

6
5
6
.8

3
1

0
.4

2
6
7
7
0
.6

4
6

4
2
5
7
.8

3
8

1
.5

9
(c

y
cl

es
)

4
0
7
0
9
6
2

2
0
9
7
2
5
8

1
.9

4
8
8
9
1
0
3

2
0
9
7
2
5
8

0
.4

2
1
2
1
6
7
9
3
3

7
6
5
2
1
7
8

1
.5

9

m
o
d
m

u
l
2
0
4
8

1
3
.8

7
3

5
.4

8
8

2
.5

3
3
.0

1
2

5
.4

8
8

0
.5

5
7
2
.8

7
0

4
1
.4

0
2

1
.7

6
(c

y
cl

es
)

4
4
3
0
2

1
7
5
2
9

2
.5

3
9
6
2
1

1
7
5
2
9

0
.5

5
1
3
0
9
7
5

7
4
4
2
5

1
.7

6
R

S
A

en
c

2
0
4
8

2
7
7
.7

1
9

1
2
9
.8

7
6

2
.1

4
5
6
.8

1
3

1
2
9
.8

7
6

0
.4

4
1
4
3
7
.4

5
9

8
9
1
.1

8
5

1
.6

1
(c

y
cl

es
)

8
8
6
8
2
8

4
1
4
7
8
7

2
.1

4
1
8
1
4
1
2

4
1
4
7
8
7

0
.4

4
2
5
8
3
6
4
3

1
6
0
1
8
7
8

1
.6

1
R

S
A

d
ec

2
0
4
8

8
2
3
1
.2

3
3

3
8
2
4
.6

9
0

2
.1

5
1
5
4
3
.6

6
6

3
8
2
4
.6

9
0

0
.4

0
4
4
6
2
9
.1

4
0

2
8
9
3
5
.0

8
8

1
.5

4
(c

y
cl

es
)

2
6
2
8
0
7
2
5

1
2
2
1
1
7
0
0

2
.1

5
4
9
2
8
6
3
3

1
2
2
1
1
7
0
0

0
.4

0
8
0
2
0
4
3
1
7

5
2
0
0
0
3
6
7

1
.5

4

m
o
d
m

u
l
5
1
2
g

1
.3

5
6

0
.9

8
6

1
.3

8
0
.4

9
8

0
.9

8
6

0
.5

1
6
.3

8
7

5
.1

1
6

1
.2

5
(c

y
cl

es
)

4
3
3
6

3
1
5
5

1
.3

7
1
5
9
8

3
1
5
5

0
.5

1
1
1
4
9
6

9
2
1
3

1
.2

5
m

o
d
m

u
l
1
0
2
4
g

4
.1

1
1

2
.5

3
4

1
.6

2
1
.0

3
0

2
.5

3
4

0
.4

1
2
5
.3

6
2

1
3
.5

6
0

1
.8

7
(c

y
cl

es
)

1
3
1
3
2

8
0
9
8

1
.6

2
3
2
9
5

8
0
9
8

0
.4

1
4
5
6
3
1

2
4
3
9
3

1
.8

7
m

o
d
m

u
l
2
0
4
8
g

1
5
.6

0
7

9
.3

0
4

1
.6

8
3
.0

1
2

9
.3

0
4

0
.3

2
7
4
.2

1
2

4
4
.8

0
6

1
.6

6
(c

y
cl

es
)

4
9
8
3
8

2
9
7
1
4

1
.6

8
9
6
2
1

2
9
7
1
4

0
.3

2
1
3
3
3
8
7

8
0
5
4
3

1
.6

6

482 J. W. Bos et al.

T
a
b
le

3
.

Im
p
le

m
en

ta
ti

o
n

ti
m

in
g
s

in
m

ic
ro

se
co

n
d
s

fo
r

A
R

M
-b

a
se

d
p
ro

ce
ss

o
rs

.
T

h
e

“
ra

ti
o
”

co
lu

m
n

is
b
a
se

li
n
e/

S
IM

D
.
T

h
e

5
1
2

g
,
1
0
2
4

g
a
n
d

2
0
4
8

g
ro

w
s

a
re

g
en

er
ic

im
p
le

m
en

ta
ti

o
n
s

th
a
t

d
o

n
o
t

o
p
ti

m
iz

e
fo

r
a

sp
ec

ifi
c

b
it

le
n
g
th

.

B
en

ch
m

a
rk

S
n
a
p
d
ra

g
o
n

S
4

T
eg

ra
4

T
eg

ra
3

B
a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o

m
o
d
m

u
l
5
1
2

4
.0

9
7

3
.3

8
4

1
.2

1
1
.9

7
6

2
.2

1
2

0
.8

9
3
.5

5
3

5
.2

6
5

0
.6

7
(c

y
cl

es
)

6
4
4
3

5
3
7
2

1
.2

0
3
6
5
8

4
0
2
0

0
.9

1
4
6
7
8

6
8
6
1

0
.6

8

m
o
d
m

u
l
1
0
2
4

1
0
.6

7
6

7
.2

8
1

1
.4

7
8
.4

5
4

8
.6

2
2

0
.9

8
9
.5

1
2

1
5
.8

9
1

0
.6

0
(c

y
cl

es
)

1
6
3
8
2

1
1
2
4
3

1
.4

6
1
0
3
5
1

1
0
5
6
0

0
.9

8
1
2
3
1
4

2
0
4
9
0

0
.6

0
R

S
A

en
c

1
0
2
4

1
9
8
.1

8
7

1
4
2
.9

5
6

1
.3

8
1
6
8
.6

1
7

1
7
9
.2

2
7

0
.9

4
1
8
9
.4

2
0

2
9
5
.1

1
0

0
.6

4
(c

y
cl

es
)

3
0
2
8
9
8

2
1
9
2
4
4

1
.3

8
1
9
5
2
1
2

2
0
7
6
4
7

0
.9

4
2
4
5
1
6
7

3
7
9
7
3
6

0
.6

5
R

S
A

d
ec

1
0
2
4

3
4
2
4
.4

1
3

2
4
7
5
.7

1
6

1
.3

8
1
9
9
9
.2

1
1

2
3
0
3
.5

8
8

0
.8

7
3
3
0
6
.2

3
0

5
5
9
7
.2

8
0

0
.5

9
(c

y
cl

es
)

5
1
7
9
3
6
5

3
7
4
6
3
7
1

1
.3

8
3
2
8
8
1
7
7

3
3
3
2
2
6
2

0
.9

9
4
2
3
3
8
6
2

7
1
6
6
8
9
7

0
.5

9

m
o
d
m

u
l
2
0
4
8

3
6
.2

6
0

2
1
.5

3
1

1
.6

8
3
0
.4

6
5

3
2
.0

6
4

0
.9

5
3
1
.9

1
2

5
5
.0

7
0

0
.5

8
(c

y
cl

es
)

5
5
2
6
0

3
2
9
7
8

1
.6

8
3
7
1
8
5

3
6
9
8
4

1
.0

1
4
1
0
0
4

7
0
6
5
5

0
.5

8
R

S
A

en
c

2
0
4
8

7
1
6
.1

6
0

4
6
7
.7

1
3

1
.5

3
5
9
3
.3

2
6

6
1
7
.7

5
8

0
.9

6
6
7
9
.9

2
0

1
0
6
0
.0

5
0

0
.6

4
(c

y
cl

es
)

1
0
8
7
3
1
8

7
1
0
9
1
0

1
.5

3
7
2
5
3
3
6

7
1
2
5
4
2

1
.0

2
8
7
2
4
6
8

1
3
5
8
9
5
5

0
.6

4
R

S
A

d
ec

2
0
4
8

2
2
9
9
2
.5

7
6

1
4
2
0
2
.8

8
6

1
.6

2
1
9
0
2
4
.4

0
5

1
9
7
9
7
.9

8
8

0
.9

6
2
1
5
1
9
.8

8
0

3
6
8
7
1
.5

5
0

0
.5

8
(c

y
cl

es
)

3
4
7
6
9
1
4
7

2
1
4
7
8
0
4
7

1
.6

2
2
3
1
7
7
6
1
7

2
2
8
1
2
0
4
0

1
.0

2
2
7
5
4
7
4
3
4

4
7
2
0
5
9
1
9

0
.5

8

m
o
d
m

u
l
5
1
2

g
4
.5

8
6

4
.1

4
9

1
.1

1
2
.1

8
7

2
.7

9
8

0
.7

8
4
.1

0
8

6
.1

7
7

0
.6

7
(c

y
cl

es
)

7
1
7
9

6
6
2
7

1
.0

8
4
0
4
5

5
1
6
6

0
.7

8
5
3
8
3

8
0
2
9

0
.6

7
m

o
d
m

u
l
1
0
2
4

g
1
2
.2

7
4

9
.6

9
7

1
.2

7
8
.9

7
3

1
2
.1

5
1

0
.7

4
1
2
.1

1
2

1
9
.4

2
1

0
.6

2
(c

y
cl

es
)

1
8
7
9
5

1
4
8
9
4

1
.2

6
1
0
9
8
4

1
4
8
7
0

0
.7

4
1
5
6
5
2

2
5
0
0
4

0
.6

3
m

o
d
m

u
l
2
0
4
8

g
4
0
.5

5
4

3
0
.7

4
3

1
.3

2
3
1
.9

5
9

4
4
.8

4
1

0
.7

1
4
0
.4

9
4

6
9
.0

0
9

0
.5

9
(c

y
cl

es
)

6
1
6
2
1

4
6
9
4
5

1
.3

1
3
7
7
8
6

5
1
6
9
3

0
.7

3
5
1
9
9
3

8
8
5
0
0

0
.5

9

Montgomery Multiplication Using Vector Instructions 483

Table 4. Performance results expressed in cycles of RSA 1024-bit and 2048-bit encryp-
tion (enc) and decryption (dec). The first four performance numbers have been obtained
from eBACS: ECRYPT Benchmarking of Cryptographic Systems [5] while the fifth row
corresponds to running the performance benchmark suite of OpenSSL [32] on the same
Atom device used to obtain the performance results in Table 2. The last two rows
correspond to running GMP on our Atom and Xeon (in 32-bit mode)

Platform RSA 1024 RSA 2048
Enc Dec Enc Dec

ARM – Tegra 250 (1000 MHz) 261677 11684675 665195 65650103
ARM – Snapdragon S3 (1782 MHz) 276836 7373869 609593 39746105
x86 – Atom N280 (1667 MHz) 315620 13116020 871810 81628170
x64 – Xeon E3-1225 (3100 MHz) 49652 1403884 103744 6158336
x86 – Atom Z2760 (1800 MHz) 610200 10929600 2323800 75871800
x86 – Atom Z2760 (1800 MHz) 305545 5775125 2184436 37070875
x86 – Xeon E3-1230 (3200 MHz) 106035 1946434 695861 11929868

important and resulted in a speed-up by a factor of 1.30 to 1.40 over generic
implementations, while optimizing the baseline implementation for a specific
length was only faster by a factor slightly above 1.10. This is likely due to the
inability of the processor to effectively re-order NEON instructions to minimize
pipeline stalls – the main difference in our length-specific implementation was
to partially unroll the inner loop and re-order instructions to use more registers
and pipeline four multiply operations.

Performance of the SIMD algorithm on the Tegra 4 was essentially the same
as the baseline performance. This is a solid improvement in NEON performance
compared to our benchmarks on the Tegra 3, however the Tegra 4’s NEON per-
formance still lags behind the S4 (for the instructions used in our benchmarks).
We suspect (based on informal experiments) that an implementation of Algo-
rithm 2 specifically optimized for the Tegra 4 could significantly outperform the
baseline, but still would not be comparable to the S4.

There is a slight difference between the cycle count measurement and the
microsecond measurement for the 2048-bit ARM benchmarks on the Tegra 4.
To measure cycles on ARM we read the cycle count register (PMCCNTR), and time
is measured with the Windows QueryPerformanceCounter function. Since these
are different time sources, a small difference is not surprising.

4.1 Comparison to Previous Work

Comparison to eBACS and OpenSSL. We have compared our SIMD imple-
mentation of the interleaved Montgomery multiplication algorithm to our base-
line implementation of this method. To show that our baseline is competi-
tive and put our results in a wider context, we compare to benchmark results
from eBACS: ECRYPT Benchmarking of Cryptographic Systems [5] and to
OpenSSL [32]. Table 4 summarizes the cycle counts from eBACS on platforms
which are close to the ones we consider in this work, and also includes the

484 J. W. Bos et al.

results of running the performance benchmark of OpenSSL 1.0.1e [32] on our
Atom device. As can be seen from Table 4, our baseline implementation results
from Table 2 and 3 are similar (except for 1024-bit RSA decryption, which our
implementation does not optimize, as mentioned above).

Comparison to GMP. The implementation in the GNU multiple precision
arithmetic library (GMP) [13] is based on the non-interleaved Montgomery mul-
tiplication. This means the multiplication is computed first, possibly using a
asymptotically faster algorithm than schoolbook, followed by the Montgomery
reduction (see Sect. 3.1). The last two rows in Table 4 summarize performance
numbers for our Atom and Xeon (in 32-bit mode) platforms. The GMP perfor-
mance numbers for RSA-2048 decryption on the Atom (37.1 million) are signifi-
cantly faster compared to OpenSSL (75.9 million), our baseline (80.2 million) and
our SIMD (52.0 million) implementations. On the 32-bit Xeon the performance of
the GMP implementation, which uses SIMD instructions for the multiplication
and has support for asymptotically faster multiplication algorithms, is almost
identical to our SIMD implementation which uses interleaved Montgomery mul-
tiplication. Note that both OpenSSL and our implementations are designed to
resist side-channel attacks, and run in constant time, while both the GMP mod-
ular exponentiation and multiplication are not, making GMP unsuitable for use
in many cryptographic applications. The multiplication and reduction routines
in GMP can be adapted for cryptographic purposes but it is unclear at what
performance price. From Table 2, it is clear that our SIMD implementation per-
forms better on the 32-bit Xeon than on the Atom. The major difference between
these two processors is the instruction scheduler (in-order on the Atom and out-
of-order on the Xeon).

4.2 Engineering Challenges

In this section we discuss some engineering challenges we had to overcome in
order to use SIMD in practice. Our goal is an implementation that is efficient
and supports multiple processors, but is also maintainable. The discussion here
may not be applicable in other circumstances.

ASM or Intrinsics? There are essentially two ways to access the SIMD instruc-
tions directly from a C program. One either writes assembly language (ASM), or
uses compiler intrinsics. Intrinsics are macros that the compiler
translates to specific instructions, e.g., on ARM, the Windows RT header file
arm neon.h defines the intrinsic vmull u32, which the compiler implements with
the vmull instruction. In addition to instructions, the header also exposes spe-
cial data types corresponding to the 64 and 128-bit SIMD registers. We chose to
use intrinsics for our implementation, for the following reasons. C with intrinsics
is easier to debug, e.g., it is easier to detect mistakes using assertions. Further-
more, while there is a performance advantage for ASM implementations, these
gains are limited in comparison to a careful C implementation with intrinsics (in

Montgomery Multiplication Using Vector Instructions 485

our experience). In addition ASM is difficult to maintain. For example, in ASM
the programmer must handle all argument passing and set up the stack frame,
and this depends on the calling conventions. If calling conventions are changed,
the ASM will need to be rewritten, rather than simply recompiled. Also, when
writing for the Microsoft Visual Studio Compiler, the compiler automatically
generates the code to perform structured exception handling (SEH), which is an
exception handling mechanism at the system level for Windows and a require-
ment for all code running on this operating system. Incorrect implementation
of SEH code may result in security bugs that are often difficult to detect until
they are used in an exploit. Also, compiler features such as Whole Program
Optimization and Link Time Code generation, that optimize code layout and
time-memory usage tradeoffs, will not work correctly on ASM.

Despite the fact that one gets more control of the code (e.g. register usage)
when writing in ASM, using instrinsics and C can still be efficient. Specifically,
we reviewed the assembly code generated by the compiler to ensure that the run-
time of this code remains in constant time and register usage is as we expected. In
short, we have found that ASM implementations require increased engineering
time and effort, both in initial development and maintenance, for a relatively
small gain in performance. We have judged that this trade off is not worthwhile
for our implementation.

simd.h Abstraction Layer. Both SSE2 and NEON vector instructions are
accessible as intrinsics, however, the types and instructions available for each
differ. To allow a single SIMD implementation to run on both architectures, we
abstracted a useful subset of SSE2 and NEON in header named simd.h. Based
on the architecture, this header defines inline functions wrapping a processor-
specific intrinsic. simd.h also refines the vector data types, e.g., the type
simd32x2p t stores two 32-bit unsigned integers in a 64-bit register on ARM,
but on x86 stores them in a 128-bit integer (in bits 0–31 and 64–95), so that
they are in the correct format for the vector multiply instruction (which returns
a value of type simd64x2 t on both architectures). The compiler will check that
the arguments to the simd.h functions match the prototype, something that is
not possible with intrinsics (which are preprocessor macros). While abstraction
layers are almost always technically possible, we find it noteworthy that in this
case it can be done without adding significant overhead, and code using the
abstraction performs well on multiple processors. With simd.h containing all
of architecture-specific code, the SIMD timings in the tables above were gen-
erated with two implementations: a generic one, and a length-specific one that
requires the number of limbs in the modulus be divisible by four, to allow partial
unrolling of the inner loop of Algorithm 2.

Length-Specific Routines. Given the results from Tables 2 and 3, it is clear
that having specialized routines for certain bitlengths is worthwhile. In a math
library used to implement multiple crypto primitives, each supporting a range
of allowed keysizes, routines for arbitrary length moduli are required as well.

486 J. W. Bos et al.

This raises the question of how to automatically select one of multiple imple-
mentations. We experimented with two different designs. The first design stores
a function pointer to the modular multiplication routine along with the modulus.
The second uses a function pointer to a length-specific exponentiation routine.
On the x86 and x64 platforms, with 1024-bit (and larger) operands, the perfor-
mance difference between the two approaches is small (the latter was faster by a
factor around 1.10), however on ARM, using function pointers to multiplication
routines is slower by a factor of up to 1.30 than when using pointers to exponen-
tiation routines. The drawback of this latter approach is the need to maintain
multiple exponentiation routines.

SoC-Specific Routines. Our experiments with multiple ARM SoCs also show
that performance can vary by SoC. This is expected, however we were surprised
by the range observed, compared to x86/x64 processors which are more homo-
geneous. We also observed that small code changes can result in simultaneous
speed improvements on one SoC, and regression on another. Our current imple-
mentation performs a run-time check to identify the SoC, to decide whether to
use Algorithm 1 or 2. Our results highlight that there is a great deal of variabil-
ity between different implementations of the ARM architecture and that, for the
time being, it is difficult to write code that performs well on multiple ARM SoCs
simultaneously. This also implies that published implementation results for one
ARM microprocessor core give little to no information on how it would perform
on another. For more information, see the ARM technical reference manuals [3].

5 Conclusions and Future Work

In this paper we present a parallel version of the interleaved Montgomery mul-
tiplication algorithm that is amenable to implementation using widely available
SIMD vector extension instructions (SSE2 and NEON). The practical impli-
cations of this approach are highlighted by our performance results on com-
mon tablet devices. When using 2048-bit moduli we are able to outperform our
sequential implementation using the schoolbook multiplication method by a fac-
tor of 1.68 to 1.76 on both 32-bit x86 and ARM processors.

The performance numbers agree with our analysis that a 2-way SIMD imple-
mentation using 32-bit multipliers is not able to outperform a classical inter-
leaved Montgomery multiplication implementation using 64-bit multiplication
instructions. Hence, we also conclude that it would be beneficial for new 256-
bit SIMD instruction sets to include 2-way integer multipliers. For example, our
results suggest that modular multiplication could be sped-up by up to a factor of
two on x64 systems if a future set of AVX instructions included a 64×64 → 128-
bit 2-way SIMD multiplier.

It remains of independent interest to study ways to use both asymptotically
faster integer multiplication methods (like Karatsuba) and Montgomery reduc-
tion using SIMD instructions to reduce latency, including side-channel protec-
tions. This is left as future work. Furthermore, as pointed out by an anonymous

Montgomery Multiplication Using Vector Instructions 487

reviewer, another possibility might be to compute the proposed parallel Mont-
gomery multiplication routine using both the integer and floating point unit
instead of using vector instructions.

Acknowledgements. The authors would like to thank: Adam Glass for discussions on
ARM SoCs; Patrick Longa for comments on baseline implementations and general help;
Jason Mackay for catching mistakes in early drafts; Paul Schofield for help timing on
the Tegra 4; and Niels Ferguson for discussions of SIMD. Also, we thank the anonymous
reviewers of SAC for their helpful feedback and thank Daniel J. Bernstein and Tanja
Lange for the additional suggestions, both of which improved the quality of this paper.

References

1. ARM. Cortex-A9. Technical Reference Manual (2010). Version r2p2
2. ARM. Cortex-A9 NEON Media Processing Engine. Technical Reference Manual

(2012). Version r4p1
3. ARM Limited. ARM Architechture Reference Manual ARMv7-A and ARMv7-R

edition (2010)
4. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery modular multi-

plication algorithm. IEEE Trans. Comput. 47(7), 766–776 (1998)
5. Bernstein, D.J., Lange, T. (eds).: eBACS: ECRYPT Benchmarking of Crypto-

graphic Systems. http://bench.cr.yp.to. Accessed 2 July 2013
6. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)

CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012)
7. Bos, J.W.: High-performance modular multiplication on the cell processor. In:

Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 7–24. Springer,
Heidelberg (2010)

8. Bos, J.W., Kaihara, M.E.: Montgomery multiplication on the cell. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009,
Part I. LNCS, vol. 6067, pp. 477–485. Springer, Heidelberg (2010)

9. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29(4),
526–538 (1990)

10. Dixon, B., Lenstra, A.K.: Massively parallel elliptic curve factoring. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 183–193. Springer, Heidelberg
(1993)

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (1985)

12. Faz-Hernandez, A., Longa, P., Sanchez, A.H.: Efficient and secure algorithms
for GLV-based scalar multiplication and their implementation on GLV-GLS
curves. Cryptology ePrint Archive, Report 2013/158 (2013). http://eprint.iacr.
org/. CT RSA. doi:10.1007/978-3-319-04852-9 1

13. Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arithmetic
Library (2013). http://www.gmplib.org/

14. Garner, H.L.: The residue number system. IRE Trans. Electron. Comput. 8, 140–
147 (1959)

15. Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of
cryptographic pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 35–50. Springer, Heidelberg (2009)

http://bench.cr.yp.to
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-04852-9_1
http://www.gmplib.org/

488 J. W. Bos et al.

16. Großschädl, J.: Architectural support for long integer modulo arithmetic on RISC-
based smart cards. Int. J. High Perform. Comput. Appl. - IJHPCA 17(2), 135–146
(2003)

17. Großschädl, J., Avanzi, R.M., Savaş, E., Tillich, S.: Energy-efficient software imple-
mentation of long integer modular arithmetic. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 75–90. Springer, Heidelberg (2005)

18. Gueron, S., Krasnov, V.: Software implementation of modular exponentiation,
using advanced vector instructions architectures. In: Özbudak, F., Rodŕıguez-
Henŕıquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 119–135. Springer, Hei-
delberg (2012)

19. Harrison, O., Waldron, J.: Efficient acceleration of asymmetric cryptography on
graphics hardware. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580,
pp. 350–367. Springer, Heidelberg (2009)

20. Holz, R., Braun, L., Kammenhuber, N., Carle, G.: The SSL landscape: a thorough
analysis of the x.509 PKI using active and passive measurements. In: Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference,
IMC ’11, pp. 427–444. ACM (2011)

21. Intel Corporation. Using streaming SIMD extensions (SSE2) to perform big mul-
tiplications. Whitepaper AP-941 (2000). http://software.intel.com/file/24960

22. Intel Corporation. Intel 64 and IA-32 Architectures Software Developers Manual
(Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C) (2013). http://download.intel.
com/products/processor/manual/325462.pdf

23. Iwamura, K., Matsumoto, T., Imai, H.: Systolic-arrays for modular exponentiation
using montgomery method. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 477–481. Springer, Heidelberg (1993)

24. Kaihara, M.E., Takagi, N.: Bipartite modular multiplication method. IEEE Trans.
Comput. 57(2), 157–164 (2008)

25. Karatsuba, A.A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Proc. USSR Acad. Sci. 145, 293–294 (1962)

26. Koc, K., Acar, T., Kaliski Jr, B.S.: Analyzing and comparing montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

28. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

29. Merrill, R.D.: Improving digital computer performance using residue number the-
ory. IEEE Trans. Electron. Comput. EC–13(2), 93–101 (1964)

30. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

31. National Institute of Standards and Technology. Special publication 800–57: Rec-
ommendation for key management part 1: General (revision 3). http://csrc.nist.
gov/publications/nistpubs/800-57/sp800-57 part1 rev3 general.pdf

32. OpenSSL. The open source toolkit for SSL/TLS (2013)
33. Page, D., Smart, N.P.: Parallel cryptographic arithmetic using a redundant Mont-

gomery representation. IEEE Trans. Comput. 53(11), 1474–1482 (2004)
34. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

http://software.intel.com/file/24960
http://download.intel.com/products/processor/manual/325462.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Montgomery Multiplication Using Vector Instructions 489

35. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON implementation of an attribute-
based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg
(2013)

36. U.S. Department of Commerce/National Institute of Standards and Technol-
ogy. Digital Signature Standard (DSS). FIPS-186-3 (2009). http://csrc.nist.gov/
publications/fips/fips186-3/fips 186-3.pdf

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

	Montgomery Multiplication Using Vector Instructions
	1 Introduction
	2 Preliminaries
	2.1 SIMD Instruction Set Extensions
	2.2 Montgomery Arithmetic
	2.3 Related Work

	3 Montgomery Multiplication Using SIMD Extensions
	3.1 Expected Performance

	4 Implementation Results
	4.1 Comparison to Previous Work
	4.2 Engineering Challenges

	5 Conclusions and Future Work
	References

