Skip to main content

Abstract

Cells, especially single cell organisms like yeast, must contend with frequent fluctuations in the availability of nutrients, variations in pH, temperature and external osmolarity, exposure to UV irradiation, dehydration and a large range of potentially toxic environmental compounds. In response to abrupt and adverse changes in the quality of their environment unicellular organisms invoke a variety of programmed stress responses. Characterization of these responses — the mechanisms involved in sensing stress, the signaling pathways that transmit that information to various parts of the cell and the resulting compensatory changes in gene expression and metabolism — permits us to understand how cells adapt and survive under non-ideal growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba H, Kawaura R, Yamamoto E et al. (1998) Isolation and characterization of high-osmolarity-sensitive mutants of fission yeast. J Bacteriol 180: 5038–5043

    PubMed  CAS  Google Scholar 

  • Aligue R, Akhavan-Niak H, Russell P (1994) A role for Hsp90 in cell cycle control: Weel tyrosine kinase activity requires interaction with Hsp90. EMBO J 13: 6099–6106

    PubMed  CAS  Google Scholar 

  • Buck V, Quinn J, Soto Pino T et al. (2001) Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol Biol Cell 12: 407–419

    PubMed  CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS et al. (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12: 323–337

    PubMed  CAS  Google Scholar 

  • Chen D, Toone WM, Mata J et al. (2002/3) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell (in press)

    Google Scholar 

  • Chung KS, Hoe KL, Kim KW, Yoo HS (1998) Isolation of a novel heat shock protein 70-like gene, pss1+ of Schizosaccharomyces pombe homologous to Hsp110/SSE subfamily. Gene 210: 143–150

    Article  PubMed  CAS  Google Scholar 

  • Danjoh I, Fujiyama A (1999) Ras-mediated signaling pathway regulates the expression of a low-molecular-weight heat-shock protein in fission yeast. Gene 236: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Delaunay A, Isnard AD, Toledano MB (2000) H202 sensing through oxidation of the Yapl transcription factor. EMBO J 19: 5157–5166

    Article  PubMed  CAS  Google Scholar 

  • Fernandez F, Jannatipour M, Hellman U et al. (1996) A new stress protein: synthesis of Schizosaccharomyces pombe UDP-Glc:glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability. EMBO J 15: 705–713

    PubMed  CAS  Google Scholar 

  • Gaits F, Degols G, Shiozaki K, Russell P (1998) Phosphorylation and association with the transcription factor Atfl regulate localization of Spcl/Styl stress-activated kinase in fission yeast. Genes Dev 12: 1464–1473

    Article  PubMed  CAS  Google Scholar 

  • Gallo GJ, Schuetz TJ, Kingston RE (1991) Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol Cell Biol 11: 281–288

    PubMed  CAS  Google Scholar 

  • Gallo GJ, Prentice H, Kingston RE (1993) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 13: 749–761

    PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257

    PubMed  CAS  Google Scholar 

  • Gasch AP, Huang M, Metzner S et al. (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Meclp. Mol Biol Cell 12: 2987–3003

    PubMed  CAS  Google Scholar 

  • Goes FS, Martin J (2001) Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mikl, Weel and Swel. Eur J Biochem 268: 2281–2289

    Google Scholar 

  • Goossens A, de La Fuente N, Forment J et al. (2000) Regulation of yeast H+-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20: 7654–7661

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300–372

    Article  PubMed  CAS  Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174: 6678–6681

    PubMed  CAS  Google Scholar 

  • Jang YJ, Park SK, Yoo HS (1996) Isolation of an HSP12-homologous gene of Schizosaccharomyces pombe suppressing a temperature-sensitive mutant allele of cdc4. Gene 172: 125–129

    Article  PubMed  CAS  Google Scholar 

  • Jannatipour M, Rokeach LA (1995) The Schizosaccharomyces pombe homologue of the chaperone calnexin is essential for viability. J Biol Chem 270: 4845–4853

    Article  PubMed  CAS  Google Scholar 

  • Jannatipour M, Callejo M, Parodi AJ et al. (1998) Calnexin and BiP interact with acid phosphatase independently of glucose trimming and reglucosylation in Schizosaccharomyces pombe. Biochemistry 37: 17253–17261

    Article  PubMed  CAS  Google Scholar 

  • Jia ZP, McCullough N, Martel R et al. (1992) Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J 11: 1631–1640

    PubMed  CAS  Google Scholar 

  • Kato T Jr, Okazaki K, Murakami H et al. (1996) Stress signal, mediated by a Hogl-like MAP kinase, controls sexual development in fission yeast. FEBS Lett 378: 207–212

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Taoka H, Toda T et al. (1999) A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Papl. J Biol Chem 274: 15151–15158

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Jones N, Nomoto A (1997) Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16: 1710–1720

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Toda T, Iizuka N, Nomoto A (1998) Crml (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 3: 521–532

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Arita M, Murayama A et al. (2001) Regulation of the yeast Yaplp nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 15: 6139–6150

    Article  Google Scholar 

  • Lee J, Dawes IW, Roe JH (1995) Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiology 141: 3127–3132

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55: 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Liu XD, Liu PC, Santaro N, Thiele DJ (1997) Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSE EMBO J 16: 6466–6477

    CAS  Google Scholar 

  • Ma Y, Hendershot LM (2001) The unfolding tale of the unfolded protein response. Cell 107: 827–830

    Article  PubMed  CAS  Google Scholar 

  • Millar JBA, Buck V, Wilkinson MG (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 9: 2117–2130

    Article  PubMed  CAS  Google Scholar 

  • Moradas-Ferreira P, Costa, V (2000) Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defenses, damage and death. Redox Rep 5: 277–285

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Ogawa N, Kawahara T et al. (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Haclp is required for efficient activation of the unfolded protein response. Proc Natl Acad Sci USA 97: 4660–4665

    Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788–3796

    Article  PubMed  CAS  Google Scholar 

  • Munoz MI, Jimenez J (1999) Genetic interactions between Hsp90 and the Cdc2 mitotic ma- chinery in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 261: 242–250

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AN, Shiozaki K (1999) Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev 13: 1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AN, Lee A, Place W, Shiozaki K (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell 11: 1169–1181

    PubMed  CAS  Google Scholar 

  • Ohmiya R, Yamada H, Nakashima K et al. (1995) Osmoregulation of fission yeast: cloning of two distinct genes encoding glycerol-3-phosphate dehydrogenase, one of which is responsible for osmotolerance for growth. Mol Microbiol 18: 963–973

    Article  PubMed  CAS  Google Scholar 

  • Pahlman AK, Granath K, Ansell R, Alder L (2001) The yeast glycerol 3-phosphatases Gpplp and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276: 3555–3563

    Article  PubMed  CAS  Google Scholar 

  • Pidoux AL, Armstrong J (1992) Analysis of the BiP gene and identification of an ER retention signal in Schizosaccharomyces pombe. EMBO J 11: 1583–1591

    PubMed  CAS  Google Scholar 

  • Powell MJ, Watts FZ (1990) Isolation of a gene encoding a mitochondrial HSP70 protein from Schizosaccharomyces pombe. Gene 95: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Quinn J, Findlay VJ, Dawson K et al. (2002) Distinct regulatory proteins control the graded transcriptional response to increasing H202 levels in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 13: 805–816

    Article  PubMed  CAS  Google Scholar 

  • Saltsman KA, Prentice HL, Kingston RE (1999) Mutations in the Schizosaccharomyces pombe heat shock factor that differentially affect responses to heat and cadmium stress. Mol Gen Genet 261: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Samejima I, Mackie S, Fantes PA (1997) Multiple modes of activation of the stress-responsive MAP kinase pathway in fission yeast. EMBO J 16: 6162–6170

    Article  PubMed  CAS  Google Scholar 

  • Samejima I, Mackie S, Warbrick E et al. (1998) The fission yeast mitotic regulator win1+ encodes a MAP kinase kinase kinase that phosphorylates and activates Wisl MAP kinase kinase in response to high osmolarity. Mol Biol Cell 9: 2325–2335

    PubMed  CAS  Google Scholar 

  • Sanchez-Piris M, Posas F, Alemany V et al. (2002) The serine/threonine kinase Cmk2 is required for oxidative stress response in fission yeast. J Biol Chem 277: 17722–17727

    Article  PubMed  CAS  Google Scholar 

  • Shieh JC, Wilkinson MG, Buck V et al. (1997) The Mcs4 response regulator coordinately controls the stress-activated Wakl-Wisl-Styl MAP kinase pathway and fission yeast cell cycle. Genes Dev 11: 1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Shieh JC, Wilkinson MG, Millar JB (1998) The Winl mitotic regulator is a component of the fission yeast stress-activated Styl MAPK pathway. Mol Biol Cell 9: 311–322

    PubMed  CAS  Google Scholar 

  • Shiozaki K, Russell P (1995) Cell cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378: 739–743

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atfl transcription factor in fission yeast. Genes Dev 10: 2276–2288

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki K, Shiozaki M, Russell P (1997) Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wikl-Wisl-Spcl kinase cascade. Mol Biol Cell 8: 409–419

    PubMed  CAS  Google Scholar 

  • Shiozaki K, Shiozaki M, Russell P (1998) Heat stress activates fission yeast Spcl/StyI MAPK by a MEKK-independent mechanism. Mol Biol Cell 9: 1339–1349

    PubMed  CAS  Google Scholar 

  • Siderius M, Mager WH (1997) General stress response: in search of a common denominator. In: Hohmann S, Mager W (eds) Yeast stress responses. Landes Co, Austin Schizosaccharomyces pombe atfl+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 14: 6193–6208

    Google Scholar 

  • Tibbles LA, Woodgett JR (1999) The stress-activated protein kinase pathways. Cell Mol Life Sci 55: 1230–1254

    Article  PubMed  CAS  Google Scholar 

  • Toone WM, Kuge S, Samuels M et al. (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crml ( Exportin) and the stress-activated MAP kinase Styl/Spcl. Genes Dev 12: 1453–1463

    Google Scholar 

  • Toone WM, Jones N (1999) AP-1 transcription factors in yeast. Curr Opin Genet Dev 9: 5561

    Article  Google Scholar 

  • Toone WM, Morgan BA, Jones N (2001) Redox control of AP-1-like factors in yeast and beyond. Oncogene 20: 2336–2346

    Article  PubMed  CAS  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L et al. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101: 249–258

    Article  PubMed  CAS  Google Scholar 

  • Usui T, Yoshida M, Kasahara K et al. (1997) A novel HSP70 gene of Schizosaccharomyces pombe that confers K-252a resistance. Gene 189: 43–47

    Article  PubMed  CAS  Google Scholar 

  • Warbrick E, Fantes PA (1991) The wisl protein kinase is a dosage-dependent regulator of mitosis in Schizosaccharomyces pombe. EMBO J 10: 4291–4299

    PubMed  CAS  Google Scholar 

  • Wilkinson MG, Samuels M, Takeda T et al. (1996) The Atfl transcription factor is a target for the Styl stress-activated MAP kinase pathway in fission yeast. Genes Dev 10: 2289–2301

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Lee LH, Davis LI (1998) Crmlp mediates regulated nuclear export of a yeast AP-1like transcription factor. EMBO J 17: 7416–7429

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Yanagi H, Yura T (1995) Cloning and characterization of the mitochondrial HSP60-encoding gene of Schizosaccharomyces pombe. Gene 167: 163–166

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Moarefi I, Hartl OF (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154: 267–273

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toone, W.M., Jones, N. (2004). Stress Responses in S. pombe . In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics